

Sustainability Initiatives Through Collaborative Engagement Projects

Margie U. Alcaide* Aloha Rosario V. Aguirre

Jose Rizal University, 80 Shaw Boulevard, Mandaluyong City 1550, Philippines

Abstract

This study explores the factors that drive respondents' willingness to collaborate on interdisciplinary sustainability projects focusing on attitudes, subjective norms, perceived behavioral control, and behavioral intention. This is a mixed method participated in by randomized sample of 250 education, engineering, and business management students. Respondents were asked to answer a 4-point Likert Scale survey.

Respondents' intention to collaborate suggested strong capacity for interdisciplinary projects or activities. The overall result implied that students were ready to embrace sustainability initiatives under supportive conditions. The qualitative results revealed ten key challenges among the student-respondents as they engaged in interdisciplinary teamwork; namely, divergent disciplinary approaches, interdisciplinary language gaps, power dynamics in collaboration, logistical challenges, structural limitations, misaligned project goals, cognitive dissonance, skill gaps in collaboration, interpersonal friction, and undefined collaboration roles. Despite these challenges, there are mutual learning opportunities for students' life skills in interdisciplinary collaborations.

Keywords: attitudes; behavioral intention; collaborations; inter-disciplinary sustainability projects; subjective norms; perceived behavioral control

1. Introduction

The pursuit of sustainability has become a cornerstone of global educational initiatives, emphasizing the integration of environmental, social, and economic considerations into learning systems. Higher Education Institutions (HEIs) are now more invested than ever in fostering interdisciplinary collaboration among students, recognizing its potential to address complex sustainability challenges. Collaborative engagement projects that unite students from fields such as education, engineering, and business management have shown particular promise in generating innovative solutions. These collaborations enable participants to blend technical expertise with strategic

Corresponding author: Margie U. Alcaide

Received: 2.03.2025

Accepted: 5.03.2025

Revised: 14.03.2025

Published: 17.03.2025

DOI: 10.51200/jberd.v11i1.6223

thinking, creating comprehensive approaches to sustainability problems (Levine & Kotowski, 2020; Nguyen et al., 2021).

Despite the increasing emphasis on interdisciplinary teamwork, significant gaps remain in understanding how students from diverse disciplines navigate these collaborations, particularly in the context of non-Western educational systems like those in the Philippines. While much of the existing literature has explored interdisciplinary teamwork in Western settings, few studies delve into the specific challenges faced by these student-respondents working together in Southeast Asia. Furthermore, the nuances of cultural and institutional dynamics unique to the Philippine context are often overlooked, leaving educators and policymakers with limited guidance on fostering effective collaboration (Liu et al., 2021; Fernandez & Gomez, 2021).

This study sought to address these gaps by exploring the factors that influence respondents' willingness to collaborate on sustainability projects. Through a mixed-methods approach, the research investigated key variables such as attitudes, subjective norms, perceived behavioral control, and behavioral intention. Additionally, it examined the challenges students face when engaging in interdisciplinary projects, offering a nuanced understanding of their lived experiences. By focusing on the Philippine context, this study aimed to provide culturally relevant insights that can inform tailored interventions.

To bridge the identified gaps, this research also introduced the Interdisciplinary Sustainability Collaboration Program (ISCP), a structured initiative designed to enhance collaborative skills and address common barriers. The ISCP aims to promote effective teamwork and innovative problem-solving among students. By contributing to the growing body of literature on sustainability education, this study not only highlighted the transformative potential of interdisciplinary collaboration but also underscored the importance of localized strategies in advancing global sustainability goals (UNESCO, 2020; Turner et al., 2019).

Specifically, this study sought answers to the following questions:

1. What is the perceived level of influence among respondents' willingness to collaborate on interdisciplinary sustainability projects in terms of their:
 - 1.1. attitudes,
 - 1.2. subjective norms,
 - 1.3. perceived behavioral control, and
 - 1.4. behavioral intention?
2. What are the common challenges of respondents in collaborating with other disciplines on sustainability projects?
3. Based on the findings of the study, what innovative program may be crafted to support college students in developing the skills and resources needed for effective collaboration on sustainability initiatives?

2. Literature Review

Numerous studies and readings have been exhausted in order to explain the current research constructs which are thematically discussed in this part.

2.1 Attitudes Toward Collaboration

Attitude is a significant determinant of students' willingness to engage in interdisciplinary collaboration. Positive attitude often stems from an appreciation of the diverse perspectives and skills that other disciplines bring to sustainability projects. Nguyen et al. (2021) emphasized that students who view interdisciplinary work as an opportunity for mutual learning and innovative problem-solving are more likely to approach these initiatives with enthusiasm. Conversely, negative attitude, frequently rooted in stereotypes about other fields, can create barriers

to collaboration. For example, engineering students might undervalue the strategic insights of business students, while business students may misjudge the technical focus of engineers as overly rigid (Levine & Kotowski, 2020).

2.2 Subjective Norms and Peer Influence

Subjective norms, defined as the perceived social pressures to engage or refrain from specific behaviors, significantly shape students' collaborative intentions. The support and encouragement from peers, instructors, and institutional leaders can enhance students' willingness to participate in interdisciplinary projects (Evenson & Monroe, 2022). On the other hand, negative perceptions or stereotypes about certain disciplines can deter collaboration. Fernandez and Gomez (2021) underscored the importance of fostering a supportive academic culture where interdisciplinary engagement is normalized and valued.

2.3 Perceived Behavioral Control

Perceived behavioral control refers to an individual's belief in their ability to successfully perform a specific behavior. In the context of interdisciplinary collaboration, this involves confidence in communication, problem-solving, and teamwork skills. Turner et al. (2019) found that students with greater perceived behavioral control were more likely to initiate and sustain collaborative efforts. Barriers such as a lack of interdisciplinary training or limited exposure to sustainability concepts can undermine this confidence, highlighting the need for targeted educational programs (Carter et al., 2020).

2.4. Behavioral Intention to Collaborate

Behavioral intention serves as a strong predictor of actual collaboration. Students with prior positive experiences in interdisciplinary projects often exhibit a higher intention to engage in future collaborations (Nguyen et al., 2021). Conversely, unresolved conflicts or inequitable contributions in past projects can negatively impact their intentions. Structured interventions that promote equitable participation and conflict resolution are critical to maintaining positive behavioral intentions (Evenson & Monroe, 2022).

2.5. Interdisciplinary Collaboration

Interdisciplinary collaboration is increasingly regarded as a cornerstone for effectively addressing complex sustainability challenges in both academic and professional contexts (Klein, 2017). Research underscored that integrating diverse disciplinary perspectives enhances creativity, critical thinking, and innovative problem-solving capabilities, all of which are crucial for tackling multifaceted environmental, social, and economic issues (Levine & Kotowski, 2020). Engineering students, with their technical and analytical expertise, complemented the strategic and market-driven approaches contributed by business students, creating a synergy that is particularly impactful in sustainability-focused initiatives (Turner et al., 2019). This collaborative dynamic not only bridges knowledge gaps but also prepares students to develop holistic and actionable solutions, aligning with the growing emphasis on interdisciplinary education in advancing sustainable development (Nguyen et al., 2021).

2.5 Challenges in Interdisciplinary Collaboration

Interdisciplinary collaboration is fraught with challenges, including communication barriers, disciplinary silos, and differing expectations. Levine and Kotowski (2020) highlighted how these challenges often stem from the distinct priorities of different fields—engineers may prioritize technical accuracy, while business students may focus on market feasibility. In the Philippine context, additional factors such as hierarchical classroom dynamics and varying levels of exposure to sustainability education further complicate collaboration (Fernandez & Gomez, 2021). Addressing these challenges requires a nuanced understanding of both global best practices and local educational dynamics. Moreover, despite the benefits, interdisciplinary projects often encounter barriers such as communication difficulties, disciplinary silos, and perceptions of unequal contributions (DeZure et al., 2020). Addressing these challenges requires structured interventions, including team-building exercises and mentorship programs.

3. Methodology

Research Design. This study employed a mixed-methods approach, combining quantitative surveys and qualitative interviews to explore the research questions comprehensively. A randomized sample of 250 education, engineering, and business management students participated in the study.

Quantitative Component. A structured questionnaire was designed based on the TPB framework to measure attitudes, subjective norms, perceived behavioral control, and behavioral intention. Responses were recorded on a 4-point Likert scale, with higher scores indicating stronger influences.

Qualitative Component. Semi-structured interviews were conducted with a subset of 30 participants to delve deeper into the challenges and benefits of interdisciplinary collaboration. Thematic analysis was employed to identify recurring themes.

4. Findings

The results on respondents' perceived level of influence among respondents' willingness to collaborate on interdisciplinary sustainability projects in terms of four variables; attitudes, subjective norms, perceived behavioral control, and behavioral intention are as follows:

Table 1.1 *Level of Influence among Respondents' Willingness to Collaborate on Interdisciplinary Sustainability Projects in Terms of Attitudes*

Statements	Mean	SD	VI	Rank
1. I believe interdisciplinary collaboration is essential for addressing sustainability challenges.	4.38	0.90	HI	2
2. Working with students from other disciplines enhances my learning experience.	4.41	0.83	HI	1
3. I enjoy collaborating on projects with individuals from diverse academic backgrounds.	4.28	0.93	HI	5
4. Interdisciplinary cooperation brings great value to project results.	4.31	0.87	HI	4
5. I feel motivated to engage in interdisciplinary work for sustainability.	4.23	0.93	HI	6
6. Working with other students in other disciplines widens my perspective.	4.37	0.88	HI	3
7. I appreciate contributions by other disciplines in sustainability initiatives.	4.07	1.00	HI	9
8. I feel that interdisciplinary collaboration fosters innovation.	4.15	0.95	HI	7
9. I appreciate the unique contributions of other disciplines to sustainability projects.	4.13	0.96	HI	8
10. I would recommend interdisciplinary projects to my peers.	3.91	1.01	HI	10
Overall	4.22	0.77	HI	

Note: 1.00 to 1.75- Low Influence (LI), 1.76 to 2.50- Moderate Influence (MI), 2.51 to 3.25- High Influence (HI), and 3.26 to 4.00 Very High Influence (VHI)

Table 1.1 shows an overall **mean** of **4.22** which is verbally interpreted as **High Influence**. The same overall interpretation was found among the ten statements. The statement #10, “I would recommend interdisciplinary projects to my peers”, has the lowest average with a mean of 3.91. Respondents exhibited highly positive attitudes towards collaboration, reflecting a strong belief in the value of interdisciplinary work for addressing sustainability challenges. These attitudes were influenced by their recognition of the unique perspectives each discipline brings, which they viewed as critical for effective problem-solving.

Table 1.2 *Level of Influence among Respondents' Willingness to Collaborate on Interdisciplinary Sustainability Projects in Terms of Subjective Norms*

Statements	Mean	SD	VI	Rank
1. My peers motivate me to work on interdisciplinary projects.	4.28	0.92	HI	4
2. Faculty members support interdisciplinary collaboration for sustainability.	4.29	0.89	HI	3
3. The school and its administrators value interdisciplinary efforts in addressing sustainability issues.	4.36	0.90	HI	2
4. I am motivated to work with students from other departments	4.25	0.94	HI	5
5. Interdisciplinary projects are encouraged by our university.	4.05	0.98	HI	10
6. Friends and family support my participation in interdisciplinary initiatives.	4.19	0.96	HI	7
7. The academic community recognizes the importance of interdisciplinary work.	4.16	0.94	HI	9
8. I receive positive feedback when engaging in interdisciplinary projects.	4.19	0.94	HI	7
9. Interdisciplinary collaboration aligns with societal expectations.	4.22	0.93	HI	6
10. I feel fulfilled to participate in interdisciplinary projects for sustainability.	4.38	0.88	HI	1
Overall Mean	4.24	0.80	HI	

Note: 1.00 to 1.75- Low Influence (LI), 1.76 to 2.50- Moderate Influence (MI), 2.51 to 3.25- High Influence (HI), and 3.26 to 4.00 Very High Influence (VHI)

Table 1.2 depicts an overall **mean** of **4.24** which is interpreted as **High Influence**. It was also the verbal interpretation of three schools and all the statements. Meanwhile, the lowest overall mean was garnered by statement #5, “Interdisciplinary projects are encouraged by our university.” at 4.05.

Subjective norms had a high influence on students' willingness to collaborate. Variability in perceptions of peer and societal support suggests that while students generally recognize the importance of collaboration, majority of the respondents felt pressured to participate in interdisciplinary projects for sustainability.

Table 1.3 *Level of Influence among Respondents' Willingness to Collaborate on Interdisciplinary Sustainability Projects in Terms of Perceived Behavioral Control*

Statements	Mean	SD	VI	Rank
1. 1. I am confident to work with students from other fields.	4.38	0.90	HI	2
2. I have access to resources that facilitate interdisciplinary work.	4.41	0.83	HI	1
3. My institution offers proper support for interdisciplinary projects.	4.28	0.93	HI	5
4. I can communicate well with students from other fields.	4.31	0.87	HI	4
5. I am aware of other disciplines' roles and contributions.	4.23	0.93	HI	6
6. I am able to overcome interdisciplinary collaboration challenges	4.37	0.88	HI	3
7. I possess the skills needed for interdisciplinary projects.	4.07	1.00	HI	9
8. I am equipped to deal with conflicts that would occur in interdisciplinary collaborations	4.15	0.95	HI	7
9. I can manage time effectively in interdisciplinary collaborations.	4.13	0.96	HI	8
10. I have prior experience working on interdisciplinary projects.	3.91	1.01	HI	10
Overall Mean	4.22	0.77	HI	

Note: 1.00 to 1.75- Low Influence (LI), 1.76 to 2.50- Moderate Influence (MI), 2.51 to 3.25- High Influence (HI), and 3.26 to 4.00 Very High Influence (VHI)

Table 1.3 depicts an overall **mean** of **4.22** which is interpreted as **High Influence**. It was also the overall verbal interpretation of all the statements. Meanwhile, the lowest overall mean was garnered by statement #10, "*I have prior experience working on interdisciplinary projects*" at 3.91. It can be reasoned that student-respondents have little to no experience working with other students on collaborative projects especially from other disciplines.

Confidence in the ability to collaborate effectively was high among students. Perceived behavioral control was bolstered by factors such as prior collaborative experiences, access to resources, and the presence of supportive institutional structures.

Table 1.4 *Level of Influence among Respondents' Willingness to Collaborate on Interdisciplinary Sustainability Projects in Terms of Behavioral Intention*

Statements	Mean	SD	VI	Rank
1. I enjoy working on interdisciplinary sustainability projects.	4.21	0.91	HI	4
2. I am open to collaboration with students in other fields on sustainability projects	4.08	0.85	HI	10
3. I plan to look for interdisciplinary collaboration opportunities.	4.28	0.87	HI	2
4. I will most likely work on interdisciplinary projects within the next few months.	4.13	0.99	HI	6
5. Interdisciplinary collaboration is my top choice for academic pursuits	4.29	0.92	HI	1
6. I am committed to working on interdisciplinary sustainability projects.	4.12	0.97	HI	7
7. I will advise others on interdisciplinary projects.	4.11	1.01	HI	9
8. I look forward to being part of sustainability efforts that incorporate other fields	4.12	0.92	HI	7
9. I will actively pursue interdisciplinary collaboration.	4.24	0.90	HI	3
10. I intend to incorporate interdisciplinary work in my future work.	4.18	0.93	HI	5
Overall Mean	4.18	0.82	HI	

Note: 1.00 to 1.75- Low Influence (LI), 1.76 to 2.50- Moderate Influence (MI), 2.51 to 3.25- High Influence (HI), and 3.26 to 4.00 Very High Influence (VHI)

Table 1.4 depicts an overall **mean** of **4.18** which is interpreted as **High Influence**. It was also the verbal interpretation of all statements that manifest the same interpretation. Meanwhile, the lowest overall mean was garnered by statement #1, “*I enjoy working on interdisciplinary sustainability projects*” at 4.08. As noted, students may be focusing only on the collaborate projects within their discipline or college.

The respondents demonstrated a strong intention to collaborate, driven by their positive attitudes and confidence in their ability to contribute. This highlights a readiness to engage in interdisciplinary sustainability initiatives when the necessary support structures are in place.

The respondents' answers on their biggest challenges in collaborating with students from other disciplines on sustainability projects are presented and discussed in the table below.

Table 2. Challenges in Collaborating with Students from Other Disciplines on Sustainability Projects

Statements	Codes	Main Theme
<i>“Engineering students often focus on technical aspects, but we marketing students struggle to connect these with customer needs during project discussions.”</i>	Misalignment of priorities	Divergent disciplinary approaches
<i>“We find it hard to understand each other’s terminologies—engineers use technical jargon, and we in marketing talk more about strategies.”</i>	Communication barriers	Interdisciplinary language gap
<i>“The engineers seem to think they do most of the work, but marketing has just as much value in making the project feasible.”</i>	Perceived inequality of contributions	Power dynamics in collaboration
<i>“Time management is a big problem because engineering and marketing students have different schedules and workloads.”</i>	Scheduling conflicts	Logistical challenges
<i>“There is a lack of shared spaces where both groups can meet and work together comfortably.”</i>	Insufficient resources	Structural limitations
<i>“Some of my groupmates seem more focused on getting high grades rather than truly collaborating on sustainable solutions.”</i>	Differing motivations	Misaligned project goals
<i>“Marketing students tend to approach problems creatively, while engineers rely on structured methodologies, leading to clashes during brainstorming.”</i>	Differing problem-solving approaches	Cognitive dissonance
<i>“We were not trained enough on how to work with other disciplines, which makes teamwork stressful.”</i>	Lack of interdisciplinary training	Skill gaps in collaboration
<i>“Cultural differences, like engineers being more formal and marketing students being more casual, sometimes cause misunderstandings.”</i>	Cultural clashes	Interpersonal friction
<i>“The project guidelines are not clear about how to balance engineering and marketing inputs, which causes confusion.”</i>	Ambiguity in role expectations	Undefined collaboration roles

The theme on ‘*Divergent Disciplinary Approaches*’ highlights the inherent differences in priorities and perspectives among engineering and marketing students. Engineers prioritize technical accuracy and feasibility, while marketing students focus on customer needs and marketability. This divergence often leads to conflicts in project direction. According to Liu et al. (2021), interdisciplinary collaboration benefits from structured frameworks that align divergent disciplinary priorities toward a shared goal.

Next, the theme on ‘*Interdisciplinary Language Gap*’ or inability to understand each other’s jargon and terminologies is a significant barrier to effective communication. Evenson and Monroe (2022) emphasized the importance of cross-disciplinary communication training to bridge language gaps and foster mutual understanding.

Additionally, the theme on ‘*Power Dynamics in Collaboration*’ explains that perceived inequality in contributions can create tension among team members. Strachan, S. L., & Block, M. K. (2020) found that clearly defined roles and equitable task distribution significantly reduce power struggles in interdisciplinary projects.

Differences in academic schedules and workloads complicate collaboration in the theme, ‘*Logistical Challenges*’. Freeth, R., & Caniglia, G. (2020) suggest implementing flexible meeting schedules and digital collaboration tools to address logistical barriers.

While the lack of interdisciplinary training leaves students ill-equipped to navigate collaboration challenges in the theme, '*Skill Gaps in Collaboration*'. A study by Strachan, S. L., & Block, M. K. (2020) highlighted the need for incorporating interdisciplinary teamwork courses into college curricula to develop collaborative competencies.

Respondents identified communication barriers, disciplinary silos, and perceptions of unequal contributions as the most significant challenges in interdisciplinary collaboration. Engineering students often noted difficulties in understanding business-oriented language and approaches, while business students reported challenges in grasping technical terminologies and processes. Despite these challenges, students highlighted mutual learning opportunities as a significant advantage. They appreciated the chance to gain insights into each other's disciplines and acknowledged that interdisciplinary collaboration fostered a holistic approach to problem-solving.

Based on the findings of this study, the researchers came up with an innovative program to support engineering and business students in developing the skills and resources needed for effective collaboration on sustainability initiatives. The proposed program is the *Interdisciplinary Sustainability Collaboration Program (ISCP)* which is designed to address the identified challenges and enhance collaboration skills among students. Key components include: *Workshops on Communication and Teamwork* which focuses on developing cross-disciplinary communication skills and fostering mutual respect. Another is *Project-Based Learning Opportunities* which provides real-world sustainability challenges for interdisciplinary teams to solve collaboratively. Next is *Mentorship Initiatives* that pairs students with mentors from both engineering and business backgrounds to guide collaborative efforts. Lastly, *Resource Accessibility* that offers access to shared tools, platforms, and spaces that facilitate interdisciplinary work.

5. Conclusions

This study highlighted the pivotal role of attitudes, subjective norms, perceived behavioral control, and behavioral intention in shaping the willingness of student-respondents to collaborate on interdisciplinary sustainability projects. Quantitative findings demonstrated that high influence on positive attitudes, subjective norms, perceived behavioral control, and behavioral intention which are significant drivers of collaboration, indicating that students value interdisciplinary work and believe in their capacity to contribute effectively. These results suggested that fostering a supportive academic environment and enhancing students' self-efficacy are critical to promoting effective collaboration.

Qualitative findings uncovered ten key challenges that students face in interdisciplinary teamwork: divergent disciplinary approaches, interdisciplinary language gaps, power dynamics in collaboration, logistical challenges, structural limitations, misaligned project goals, cognitive dissonance, skill gaps in collaboration, interpersonal friction, and undefined collaboration roles. These challenges collectively highlighted the complexities of integrating engineering, and business management perspectives, which often differ in methodologies, terminologies, and priorities. For instance, divergent approaches and misaligned goals can lead to cognitive dissonance, while structural limitations and logistical hurdles impede seamless teamwork. Despite these obstacles, students emphasized the value of mutual learning and innovative problem-solving as major benefits of interdisciplinary collaboration. Addressing these barriers is essential for creating an environment that fosters equitable and effective teamwork.

To bridge these gaps, the proposed Interdisciplinary Sustainability Collaboration Program (ISCP) offers a strategic framework designed to mitigate these challenges. Through targeted workshops, mentorship initiatives, and structured project-based learning, the ISCP aims to build essential collaboration skills, align diverse goals, and create equitable dynamics among participants. This program not only addresses the specific challenges identified in this study but also aligns with global educational efforts to prepare students for complex, sustainability-oriented

problem-solving. By grounding these recommendations in the Philippine educational context, this research contributes valuable insights to both local and international discourse on sustainability education and interdisciplinary collaboration.

Acknowledgments

The authors would like to express their sincere gratitude to Jose Rizal University President, **Dr. Vicente K. Fabella** for the facilities and resources that are critical to the successful completion of this research. They wish to extend gratitude to the Research Director, **Dr. Auxencia Limjap**, for her guidance and mentoring sessions while doing this study. Also, to their enthusiastic Dean of the College of Education, Arts and Sciences, **LTC Dr. Don Vicente Real** for his words of encouragement in completing this research endeavor. Furthermore, they are thankful to the Vice President of Academic Affairs, **Dr. Miguel Carpio** for his unreserve support during the conduct of this study. Moreover, they also thank sincerely their student-respondents from the Education Program, Engineering and Business Management Departments for their tremendous inputs and assistance, which formed an essential part of this research. Finally, they thank with sincere appreciation the support of their family members and friends who gave them inspiration and motivation to finish this study.

References

Ajzen, I. (1991). The theory of planned behavior. *Organizational Behavior and Human Decision Processes*, 50(2), 179–211. [https://doi.org/10.1016/0749-5978\(91\)90020-T](https://doi.org/10.1016/0749-5978(91)90020-T)

Braßler, M., & Block, M. (2017). Interdisciplinary teamwork on sustainable development—the top ten strategies based on experience of student-initiated projects. *Handbook of Theory and Practice of Sustainable Development in Higher Education: Volume 4*, 65-77.

Cairns, R., Hielscher, S., & Light, A. (2020). Collaboration, creativity, conflict and chaos: doing interdisciplinary sustainability research. *Sustainability Science*, 15(6), 1711-1721.

Freeth, R., & Caniglia, G. (2020). Learning to collaborate while collaborating: advancing interdisciplinary sustainability research. *Sustainability science*, 15(1), 247-261.

Klein, J. T. (1990). *Interdisciplinarity: History, theory, and practice*. Wayne State University Press.

Podgórska, M., & Zdonek, I. (2024). Interdisciplinary collaboration in higher education towards sustainable development. *Sustainable Development*, 32(3), 2085-2103.

Strachan, S. L., & Block, M. K. (2020). Approaching Interdisciplinary Teaching. *YC Young Children*, 75(4), 38-45

Konrad, T., Wiek, A., & Barth, M. (2021). Learning to collaborate from diverse interactions in project-based sustainability courses. *Sustainability*, 13(17), 9884

Authors' Biographies

Dr. Margie U. Alcaide is a recipient of a Fulbright scholarship program, the *International Leaders in Education Fellowship Program* (ILEP) which was fully funded by the government of United States. In this faculty exchange program, she was assigned at Arizona State University. Her research presentations *included*, the 21st Annual CAMTESOL in Cambodia in February, 2025, the 64th Philippine Association for Language Teaching (PAL) National Conference in December, 2024, the Academy of International Business (AIB) Southeast Asia Regional Conference in Cebu City, Philippines in 2019, the 3rd Women in TESOL International Conference in Bali, Indonesia in 2018, among others. Moreover, she was the program coordinator in an awarded research grant by the Commission on Higher Education (CHED) in the Philippines to Jose Rizal University (JRU) for a year's teacher training research project. She is the former Dean of the College of Education, Arts, and Sciences (EAS) at JRU. Currently, she is a full-time associate professor and a Student Internship Program Coordinator in EAS College, JRU.

Dr. Aloha Rosario V. Aguirre

She is a licensed teacher who finished her Doctor of Education at Laguna State University. She has taught in Thailand for five years, navigating the educational system of other country; thereby, obtaining versatile teaching opportunities. She has been teaching for two decades already.

She is currently a professor in the History and Social Sciences Department, at the College of Education, Arts and Sciences in Jose Rizal University, Philippines.