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Abstract 
 

Dinoflagellates are photosynthetic protists commonly distributed in marine and freshwater environments and can be found in 
symbiotic associations. They are a significant primary producer and play a fundamental role in the functioning of aquatic 
ecosystems – especially for coral reefs. Dinoflagellates can produce a wide variety of secondary metabolites, and their toxins 
can affect fish, birds and mammals.  In recent years these toxins have been found to have potential cytotoxic, anticancer, 
antibiotics, antifungals activities. This mini review covers the main genera of dinoflagellates, and challenges and advances in 
their cultivation in addition to prospects for development of dinoflagellates-based products. 
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Background 
 

Interest in microalgae has increased considerably in recent 
decades, mainly due to demand for sustainable biomass and 
bioprocesses, such as aquaculture, where microalgae play 
essential roles as live food for molluscs, and larvae of 
crustaceans and fish (Muller-Fuega, 2000; Garrido-Cardenas 
et al., 2018). Besides other applications, these 
photosynthetic microorganisms have also aroused interest 
in wastewater treatment and production of high commercial 
value molecules (eg., fatty acids, carotenoids and amino acids 
) and biofuels (Daroch et al., 2013; Salama et al., 2017; 
Oliveira et al., 2020a). According to Garrido-Cardenas et al. 
(2018), even with various species of microalgae isolated, 
global production of and research on microalgae are limited 
to a small number of taxa, such as Arthrospira of Spirulina 
group, that are intended mainly for human food or as a 
dietary supplement (Pan-Utai et al., 2018); Chlorella spp. for 
being a potential producer of β-1,3-glucan, an active 
immunostimulator with antioxidant capacity (Carballo et al., 
2019); Dunaliella salina, as a source of β-carotene (Ben-
Amotz, 2004) and; Haematococcus pluvialis, for astaxanthin 
extraction (Panis & Carreon, 2016).  
 

Dinoflagellates are a eukaryotic group of microalgae 
common in marine, estuarine and freshwater environments. 
Besides the species diversity (around 6,000 species), 
dinoflagellates have various structural shapes (amoeboid, 
coccoid, palmelloids, etc.), habitats (planktonic, benthic and 
epicontinental) and nutritional modes (photoautotrophic, 
heterotrophic, mixotrophic and phagotrophy). They play a 
significant role as primary producers and contribute to the 
functioning of aquatic ecosystems, especially coral reefs. The 
ecological activities of coral reefs heavily depend on the 
symbiosis between reef-building corals and zooxanthellae 
(reviewed in Jephcott et al., 2016 and Suggett et al., 2017).  

In addition, dinoflagellates also receive interest in research 
because some of their species produce toxins and they also  
cause harmful algal blooms (HABs) (Gravinese et al., 2018). 
Despite their great diversity, about 90 species have been 
reported as potential toxin producers (Burkholder et al., 
2008; González-Rodríguez et al., 2010; Speight & Henderson, 
2010; Saldarriaga & Taylor, 2017).  
 

Toxins from dinoflagellates can affect human and 
ecosystem health and, for a long time, this was the main 
reason for interest in their studies. However, in recent years 
dinoflagellate toxins have been found to have potential 
pharmaceutical applications (i.e. cytotoxic, anticancer, 
antibiotics, antifungals activities). In this context, this mini 
review reveals key information about dinoflagellates 
cultivation. The discussion also takes into account the major 
challenges, new insights and potential of the biomass 
production of dinoflagellates. 
 

Dinoflagellate Genera  
 

Specific dinoflagellate genera have been studied as a source 
of bioactive molecules (secondary metabolites): Alexandrium, 
Amphidinium, Gymnodinium, Karlodinium and Symbiodinium 
(Wang & Hsieh, 2002; Parker et al., 2002; Band-Schmidt et al., 
2014; Benstein et al., 2014; Lage et al., 2014; Molina-Miras et 
al., 2018; Langenbach & Melkonian, 2019).  
 
2.1 Alexandrium  
 
The genus Alexandrium is one of the major harmful algal 
bloom genera. Three different families of toxins were 
reported in this genus: saxitoxins (STX), goniodomins and 
spirolides; but they have not been fully characterized (Balech, 
1989; Touzet et al., 2008; reviewed in Anderson et al., 2012). 
Alexandrium spp. are considered opportunistic in relation to 
nutrition - different species have been found in both nutrient-
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rich (Spatharis et al., 2007) and nutrient-poor waters (Collos 
et al., 2014). In addition, bacteria and microalgae 
(dinoflagellate, Amphidinium carterae) have been observed to 
contain food vacuoles (reviewed in Jeong et al., 2010). 
Moreover, growth under the mixotrophic nutritional mode 
has also been reported for Alexandrium catenella (Legrand & 
Carlsson, 1998). 
 
2.2 Amphidinium 
 
Amphidinium spp. are toxic dinoflagellates found in coastal 
waters and tempered tropical estuaries (Steidinger & Jangen, 
1996). It is known for HABs that may produce mainly 
ichthyotoxins (Huang et al., 2009) and hemolytic substances 
(Echigoya et al., 2005). Abundance of peridinin (an 
apocarotenoid), located in the photosynthetic complex of 
most dinoflagellates, has been extensively studied in 
Aphidinium carterae (Hofmann et al., 1996); this 
apocarotenoid possesses strong antioxidant properties and 
can act against the tumors (Nishino, 1998; Barros et al., 
2001). Recently, amphidinols (APDs), secondary metabolites 
produced by this genus, have aroused a growing interest by 
presenting potential antifungal, antibacterial, antioxidant and 
antitumor agents (Satake et al., 2017; Iwamoto et al., 2017; 
Martínez et al., 2019). Although the structure of APDs is well-
documented (Satake et al., 2017), several factors related to 
the biosynthesis of these molecules are still not well 
understood. 
 
2.3 Gymnodinium 
 
Gymnodinium catenatum is the only dinoflagellate species of 
this genus that produces paralytic shellfish poisoning (PSP) 
and its greatest relevance is due to the fact that it can affect 
human health with neurological and gastrointestinal 
disorders, usually as a result of the consumption of 
contaminated shellfish (Band-Schmidt et al., 2008; Martínez 
et al., 2016). This species is widespread in temperate and 
tropical waters in many regions of the world (Hallegraeff et 
al., 2012) and the toxin profile may vary according to 
environmental factors (Negri et al., 2001; Oliveira-Proença et 
al., 2001; Holmes et al., 2002; Oh et al., 2010). As for the other 
dinoflagellates, studies on G. catenatum have mainly involved 
the ecophysiological approach for understanding the 
influence of environmental factors on the production of 
toxins. 
 
2.4 Karlodinium 
 
In the genus Karlodinium, a cosmopolitan species of 
temperate regions that has been more thoroughly studied is 
Karlodinium veneficum (García-Camacho et al., 2007; 
Gallardo-Rodríguez et al., 2012; López-Rosales et al. 2015). K. 
veneficum is a producer of karlotoxins (KmTxs) and it can 
feed by ingesting diatoms and copepods (Bachvaroff et al., 
2009; Waters et al., 2010; Place et al., 2012). The KmTxs can 
be easily isolated, and like APDs, it has hemolytic and 
ichthyotoxic activity. KmTxs are also more likely to function 

as anti-grazing and allelopathic. Investigations have shown 
that K. veneficum is able to reconfigure its cellular metabolic  
machinery and regulate dynamic protein expressions to cope 
with the stress caused by excess light. This is an interesting 
strategy for intensive cultivation to produce biomass (Cui et 
al., 2017). For this reason, K. veneficum proves to be a 
promising species for production of biomolecules. 
 
2.5 Symbiodinium (family Symbiodiniaceae) 
 
Symbiodinium spp. were recognized by arbitrary letters (e.g., 
A, B, C) that became referred to as "clades". Recently, in short, 
the genus Symbiodinium, based on genetics and ecology data, 
was split into seven new genera belonging to family 
Symbiodiniaceae, (LaJeunesse et al. 2018). Regardless of 
taxonomic classification, they are commonly approached for 
their endosymbiotic association with coral reefs (but they can 
also be associated with some species of anemones, jellyfish, 
sponges and others) (reviewed in Stat et al., 2006; Krueger & 
Gates, 2010). For these associations, most studies have 
sought to investigate the effect of environmental parameters 
on endosymbiosis with coral reefs and to clarify the main 
causes involved in coral bleaching events (McIlroy et al., 
2016; Grégoire et al., 2017; Bernasconi et al., 2019). However, 
peridinin and toxins contents have also aroused, albeit 
simple, interest in cultivation aimed at the biotechnological 
applications of Symbiodinium spp. biomass (Benstein et al., 
2014; Langenbach & Melkonian, 2019; Tsirigoti et al., 2020). 
 

Biomass Production  
 
Difficulties in reaching high biomass concentrations in 
cultures of dinoflagellates limit the commercial applications. 
This is mainly due to the sensitivity of many dinoflagellates to 
shear forces. Recently, the application of twin-layer porous 
substrate bioreactor (TL-PSBR) has been investigated in the 
laboratory. However, although projections are commonly 
made for large TL-PSBR (g m-2), operation of this bioreactor 
on an industrial scale is still doubtful (Langenbach & 
Melkonian, 2019). In addition to the TL-PSBR, bubble column 
photobioreactors (BC-PBR) have been used successfully for 
the biomass production of dinoflagellates (López-Rosales et 
al. 2016, 2017). The BC-PBR also controls shear stress, 
ensuring healthy growth of dinoflagellate cells. Moreover, the 
BC-PBR is likely to be more productive than the TL-PSBR 
because they have a larger photosynthetically active area 
than the biofilm of TL-PSBR. The improvement of 
photobioreactors for the intensive cultivation of 
dinoflagellates is still a basic process necessary for the 
development of this production chain.  
 

Potential Aplications in Aquaculture and Future 
Directions 
 

Due to the production of allelopathic compounds and the 
ability to grow under mixotrophic nutritional mode the 
dinoflagellates have a great potential to treat wastewaters. 
The microalgae, because of their use in wastewater 
treatment, have attracted increasing attention; they can 
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convert inorganic compounds into polyunsaturated fatty 
acids (PUFA), carotenoids, amino acids and others 
biomolecules, in addition to the secondary metabolites (Zeller 
et al., 2013; Oliveira et al. 2020b). This potential has not been 
sufficiently explored (Molina-Miras et al. 2020). In the case of 
PUFA, particularly docosahexaenoic acid (DHA) and 
eicosapentaenoic acid (EPA), exhibit biological activities and 
are considered in the treatment of heart disease, cancer, type 
1 diabetes and others (reviewed in Mendes et al., 2009). 
Hitherto, fish oil is the most widely used product of this 
category in the market even with some negative 
characteristics (e.g. distracting odor, allergic reactions, high 
refinery costs etc.). In addition, this use amounts to 
unsustainable exploitation of wild prey fish in aquaculture of 
fish and shrimp feed (Naylor et al., 2000). Based on this 
potential, a simplified model for production of dinoflagellate 
biomass using aquaculture wastewater is shown in Figure 1. 
 
 

Figure 1. Simplified integrated model for the production of 
dinoflagellate biomass using aquaculture wastewater. 
 
Recent interest in the cultivation of dinoflagellates has 
already resulted in substantial improvements and 
technological advances in the production processes. 
Limitation on commercial application of pigments and 
secondary metabolites produced by dinoflagellates is due to 
the lack of a reliable natural source of these macromolecules, 
since industrial-scale cultivation of dinoflagellates still faces 
barriers. Addressing some of these constraints will be a 
significant step towards the large-scale development of new 
inputs and drugs.  
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