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Abstract 
 

The growth of aquaculture can cause different environmental impacts, from the use of large amounts of water to the excessive 
release of effluent. Shrimp farming can be done in different systems: extensive, semi-intensive, intensive and super-intensive. 
Extensive systems with low productivity (<500 kg ha-1 year-1), exhibit low technological levels and less control of 
environmental conditions. The semi-intensive system requires food supplementation, reasonable natural productivity, biomas 
yield of 3,000 - 5,000 kg ha-1 year-1) and water change (5 to 10 % day-1). To increase production, different culture systems are 
used, such as photoheterotrophic, heterotrophic and mixotrophic, with minimal water exchange (0.5 to 3 % day-1), providing 
greater biomass yield (intensive 10 to 20 ton ha-1 cycle-1 and super-intensive 20 up to 40 ton ha-1 cycle-1). These can be 
developed in nursery or grow-out tanks, but with high operating costs, high technological levels, disease control and better 
control of environmental conditions. However, intensive and super-intensive systems accumulate nitrogen, phosphorus and 
solid waste that can be transformed into biomass in multi-trophic aquaculture systems. In this review, we will discuss the 
effects of these systems on water quality and productivity of marine shrimp. The photoheterotrophic, mixotrophic and multi-
trophic systems are interesting alternatives to the photoautotrophic systems in shrimp production, demonstrated by the higher 
zootechnical performance, as well as the environmental quality, since these models promote the minimum exchange of water 
and the transformation of nutrient residues in biomass. 
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Introduction 
 

With declining fishing resources due to unsustainable 
fishing, fisheries production has been relatively stagnant 
since the 80’s, making aquaculture an alternative to fish 
production. In 2016, according to data from FAO (2018), 
global aquaculture production reached 110.2 million tons, of 
which 7.9 million tons came from crustacean production. 
 

Shrimp farming is one activity that is showing a 
significant development in several countries. In Brazil, it 
developed in the mid-70’s when cultures started at 
experimental levels, but only in the 90’s, the activity began to 
be economically viable (Rocha, 2011). The success of 
Brazilian shrimp farming was achieved with the introduction 
of the exotic species, Litopenaeus vannamei, native to the 
Pacific coast. This species has a high tolerance to 
environmental conditions such as temperature, pH and 
salinity among others. It has good zootechnical performance,  
and a well-developed technological package allowed a great 
boost to this activity (Vinatea-Arana, 2004). 
 

In shrimp farming, culture can be grown in different 
systems: extensive, semi-intensive, intensive, and super-
intensive. Extensive systems are considered an important 
source of aquaculture production, especially in developing 
countries. In this system, maintaining water quality is 
essential for the development of the natural ecosystem, of 
primary (photoautotrophic) and secondary producers, that 

are a source of crustacean live food (Tacon et al., 2004; 
Wasielesky et al., 2006). They are developed with low 
biomass (<500 kg ha-1 year-1), being able to support animals 
with little aeration, presenting low operating costs, low 
technological levels, without controlling diseases and 
environmental conditions (Southgate and Lucas, 2019).  
 

The semi-intensive system is between extensive and 
intensive cultivation, requires food supplementation, but still 
depends on natural productivity, with biomass production of 
3,000 to 5,000 kg ha-1 year-1 and water renewal of 5 -10 % 
per day-1, presenting low operating costs, intermediate 
technological levels, intermediate control of environmental 
conditions and greater spread of diseases (Southgate and 
Lucas, 2019). In this system, most of the nutrients originated 
from formulated diets, thus feeding strategies must be 
optimized considering the chemical fluxes, water quality and 
shrimp production (Casillas-Hernández et al., 2007).   
 

In intensive and super-intensive systems all the 
nutrients for the farmed stock come from introduced feeds, 
requiring highly balanced diet and providing higher yields 
per unit area or volume (intensive 10 to 20 ton ha-1 cycle-1 
and super-intensive 20 to 40 ton ha-1 cycle-1), with minimal 
exchange of water (0.5 to 3 % day-1) (Avnimelech, 2009). 
The stocking density depends upon being able to maintain 
the water quality conditions required by the organism, in the 
shrimp culture the biomass could be 1 to 2 kg m-3 
(Avnimelech, 2009; Southgate and Lucas, 2019). These 
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systems can be developed in nursery or grow-out tanks, 
presenting high operating costs, high technological levels, 
high energy inputs (power, aeration, filtration, pumping), 
without energy recycling, low energy losses with feeding and 
disease control and environmental conditions (Southgate 
and Lucas, 2019).  
 

However, in recent years, with the aim of reducing the 
environmental and economic impacts generated by the 
activity, studies have been initiated using other types of 
culture methods with minimal water exchange. These 
systems can be classified as heterotrophic, 
photoheterotrophic and mixotrophic, according to the 
energy sources used by the producing organisms. The 
heterotrophic system is characterized by the use of organic 
compounds as an energy source in the absence of light, being 
classified as photoheterotrophic when it occurs in the 
presence of light, while the mixotrophic system is 
characterized by the use of light, inorganic and organic 
compounds as energy sources (Pérez-García and Bashan, 
2015). Combined or not with these systems is the use of the 
multi-trophic system, where species of different trophic 
levels take advantage, as a source of energy, compounds that 
would be rendered useless by cultivating only a single 
species (Troell et al., 2009).  
 

Photoautotrophic (algal based systems) 
 
Algal based systems, also known as traditional or 
conventional culture systems, usually built on land, consist 
of culture systems that have as primary base the 
development of systems based on phytoplankton.These are 
photosynthetic microorganisms that absorb carbon dioxide 
and supply oxygen from nutrient assimilation. They play an 
important role in the water quality of the system where the 
dynamics of oxygen production and nutrient cycle occurs but 
maintains a balance between photosynthetic activity and 
cellular respiration, varying seasonally due to temperature, 
light, and concentration of these nutrients in the substrate 
(Hargreaves, 2006). In such systems, the phosphorus and 
nitrogen are the most important limiting nutrients. The 
development of phytoplankton may require concentrations 
of 0.01 to 0.1 mg L-1 soluble inorganic phosphorus and 0.1 to 
0.75 mg L- 1 inorganic nitrogen (Boyd, 2015). 
 

Phytoplanktons, represented by microalgae, have a 
rich species diversity and are adapted to different 
environments, including freshwater, saltwater or even the 
sediment (Nigam and Singh, 2011). They also have the 
abilities of rapid multiplication and increasing the biomass 
(Martínez-Córdova et al., 2015). In addition to the important 
role played in the water quality of photoautotrophic systems, 
the phytoplankton is also a nutritional source for cultured 
animals, since it is rich in lipids, carbohydrates, vitamins, 
pigments, and minerals, whose content varies according to 
species (Abdelnour et al., 2019; Sahni et al., 2019).  
 

 

Phytoplankton production is mainly stimulated 
through system fertilization, such as the use of agricultural 
residues or inorganic and mineral fertilizers, which also 
contribute to the development of zooplankton and benthic 
species that can be directly consumed by farmed animals 
(Hargreaves, 2006). Swine, cattle, and poultry waste are are 
the commonly used organic manures (Martínez-Córdova et 
al., 2015), constituting sources of Carbon (C), Nitrogen (N), 
and Phosphorus (P), but this organic material can be 
nutritionally inadequate and unpalatable to the animals.  
 

When only chemical (inorganic) fertilizers are used, 
carbon is derived from photosynthetic processes (Boyd and 
Tucker, 1998), which is highly recommended. Inorganic 
fertilizers commonly used in agricultural crops include urea, 
sodium nitrate, ammonium nitrate, triple superphosphate, 
and ammonium phosphate (Lin et al., 1997).  As for the ratio 
of nitrogen and phosphorus (N:P), this can be established 
between 5:1 and 10:1, varying with site specificities (Boyd, 
1997). According to Biró (1995) the optimal amount of 
fertilizer addition depends on water and soil characteristics, 
and for organic fertilizer amounts are around 100 - 200 kg 
ha-1. As for the inorganic fertilizer, Lin et al. (1997) considers 
the application rate of 28 - 56 kg ha-1 of N and 7 - 14 kg ha-1 

of P, often every two weeks. In practice, the ponds are 
usually treated with liming materials to reduce acidity, 
increase total alkalinity and improve the system’s 
fertilization response (Diana et al., 1997).  
 

Phytoplankton biomass can also be generated by 
assimilating unconsumed nutrients from inert feed and 
animal excretion (Martínez-Córdova et al., 2015). Fertilizer 
use should be established at appropriate levels as dense 
phytoplankton limit light penetration in water (Schroeder, 
1978), and the seasonal variation of these organisms due to 
environmental conditions and ecological successions is 
emphasized. Its presence highly depends on aquaculture 
type, intensification level, cultivated species, and food 
management practices (Moriarty, 1997). 
 

Phytoplankton is distributed among the Cyanophyta, 
Chlorophyta, Heterokontophyta, Pyrrophyta and 
Euglenophyta divisions. The "blooms" give the water its 
characteristic color, and the highest growth rates usually 
occur during spring and summer and are slower in colder 
periods (Boyd, 2015). The presence of diatoms 
(Heterokontophyta) and green algae (Chlorophyta) is 
considered desirable, especially for the feeding of most 
aquatic invertebrates, and fish and shrimp larvae. When 
growing in outdoor farms with enough light and natural 
photoperiod, it may be the dominant community (Yusoff et 
al., 2002; Godoy et al., 2012). The presence of cyanobacteria 
(Cyanophyta) and dinoflagellates (Pyrrophyta) reflects poor 
water quality and eutrophication, where a reduction in 
diatom populations can be observed under these conditions 
(Yusoff et al., 2002). The presence of these two groups is 
considered undesirable due to toxin production and taste 
alteration, besides their potential to generate mortality in 
the culture (Boyd, 2015; Souza et al., 2012). 
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Conventional culture can be developed in different 
production systems. When established in still water it 
presents low yield, with less than 10 pl m-2, equivalent to the 
production of less than 700 kg ha-1 year-1, using the refined 
feed, whose residues can be assimilated by natural recycling 
(Joffre et al., 2018). As the stocking density of shrimp and the 
shrimp biomass increase, more feed is used, generating an 
increase in the production of metabolites such as carbon, 
nitrogen and phosphorus, because 75 % of N and P are not 
used and these remain as residues in water. This requires 
high water exchange rates (5-20 %) because phytoplankton 
have a limited rate of carbon assimilation in such ponds, on 
the order of 2 - 10 g of carbon / m2 per day (Avnimelech, 
2009). Thus, to control waste, this effluent is released into 
adjacent water bodies. Some studies have shown improved 
shrimp zootechnical performance with exchange of water 
(Green et al., 1999; Mohanty et al., 2015). However, these 
nutrient loads (N, P and organic carbon) were equivalent to 

6.79 - 71.9 kg of inorganic N, 0.63 - 14.3 kg of P and 13.04 kg 
of total OC per ton of shrimp (Sahu et al., 2013; Boyd and 
Queiroz, 2001; Jackson et al. 2003).  
 

In traditional semi-intensive culture system, with 
densities of 10 - 29 shrimp m- 2 and production of 3.5 tons 
ha-1 ciclo-1 (Table 1), nutrition and good zootechnical 
performance results become dependent on diet 
supplementation with inert food (Martínez-Cordova et al., 
2015; Joffre et al., 2018). In the case of penaeid, Nunes et al. 
(1997) estimated that 29.7 % of the carbon present in 
shrimp muscle comes from inert food and the others from 
natural productivity, highlighting the importance of its 
establishment in aquaculture. In intensive culture, especially 
shrimp larviculture, there is also a predominance of 
photoautotrophic conditions, because microalgae rich in 
polyunsaturated fatty acids are daily addition (Lorenzo et al., 
2015). 

 

Table 1. Zootechnical performance of marine shrimp reared in photoautotrophic systems (algal based systems). 
 

Shrimp specie Phase 
Stocking 
density 

(shrimp) 
Yield 

Final 
weight 

(g) 

Survival 
(%) 

Time 
(days) 

Reference 

L. vannamei N 108 m-2 0.095 kg m-2 1.20 73.3 32 Ogle (1992) 

P. monodon N 288 m-3 0.218 kg m-3 0.78 97 30 Rodriguez et al. (1993) 

L. vannamei N 1,521 m-3 2.699 kg m-3 1.9 93.4 42 Otoshi et al. (2001) 

P. semisulcatus N 180 m-3 0.111 kg m-3 0.67 77.4 35 Nour et al. (2004) 

L. vannamei N 6,250 m-3 2.408 kg m-3 0.428 90 42 Silva et al. (2009) 

L. vannamei N 250 m-3 0.475 kg m-3 0.87 68.0 63 Becerra-Dorame et al. (2012) 

L. schimitti N 50 m-2 0.244 kg m-3 5.38 90.8 105 Márquez et al. (2012) 

L. vannamei N 1,500 m-3 0.378 kg m-3 - 60 30 Supono et al. (2014) 

L. vannamei N 1,100 m-3 0.719 kg m-3 0.82 79.7 20 Lara et al. (2016) 

L. vannamei N 67,000 m-3 0.07 kg m-3 0.0014 94.4 13 Schveitzer et al. (2017) 

L. vannamei G 10 m-2 0.130 kg m-3 18.1 72 77 Wyban et al. (1987) 

L. vannamei G 20 m-2 0.126 kg m-3 9.69 65 84 Freeman et al. (1992) 

L. vannamei G 30 m-2 0.334 kg m-3 15.97 69.8 133 Martinez-Cordova et al. (1998) 

L. vannamei G 16 m-2 0.179 kg m-3 12.93 88.8 112 Martinez-Cordova et al. (2002) 

P.monodon G 25 m-2 0.424 kg m-3 16.8 84 56 Smith et al. (2002) 

L. vannamei G 15 m-2 0.181 kg m-3 12.52 96.6 102 Peixoto Jr et al. (2003) 

F. paulensis G 15 m-2 0.148 kg m-3 11.17 88.3 102 Peixoto Jr et al. (2003) 

L. vannamei G 35 m-2 0.207 kg m-3 8.5 69.7 131 Brito et al. (2006) 

L. vannamei G 37.5 m-2 0.445 kg m-3 12.29 96.7 88 Silva et al. (2008) 

F. subtilis G 16 m-2 0.124 kg m-3 8.49 91.7 87 Souza et al. (2009) 
N: Nursery phase; G: Grow-out phase.  
 

Despite the emphasis on the importance of 
phytoplankton domain in this system, there are certain 
disadvantages present in the photoautotrophic condition, 
such as diurnal variations in pH, ammonia and oxygen levels, 
mainly due to bloom (Burford et al., 2003; Ebeling et al., 
2006). There is a net increase in dissolved oxygen and a net 
reduction in carbon dioxide during the day and vice versa at 
night, becoming a stressor, causing mortality as a result of 
the formation of oxygen-free layers and accumulation of 
toxic compounds such as ammonia, nitrite and hydrogen 
sulfide (Yusoff et al., 2002). The greater the abundance of 
phytoplankton, the greater the magnitude of the daily 

variation of these factors (Boyd, 2015). Therefore, adequate 
management of the system is recommended, especially in 
water quality and control of the phytoplankton community 
(Souza et al., 2012). Measurements for phytoplankton 
abundance evaluation can be done through microscopic 
analysis or indirect methods such as determination of 
particulate organic matter, chlorophyll a and Secchi disc 
analysis (Boyd, 2015). This control can lead to improved 
growth, optimizing productivity and financial return for 
farms (Moriarty, 1997). 
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Photoheterotrophic System 
 
Photoheterotrophic systems are characterized by the use of 
organic compounds and light as energy sources (Pérez-
García and Bashan, 2015). Among the variations of this type 
of culture is the biofloc system (BFT). Studies on BFT  were 
initiated in the 70’s by Ifremer - COP (French Research 
Institute for Sea Exploration, Pacific Ocean Center), where 
different species of marine shrimp such as Litopenaeus 
stylirostris and L. vannamei were examined (Hopkins, 1994; 
Emerenciano et al., 2013b). Already in the 80’s, Ifremer 
started a French scientific program called “Ecotron” to better 
understand the system (Serfling, 2006). Several studies have 
contributed to a comprehensive approach to the biofloc 
system and clarified the interrelationships within the 
system, such as water and bacteria, as well as nutrition and 
physiology (Avnimelech, 2007). Already in the late 80’s and 
early 90’s, USA (Waddell Mariculture Center) and Israel 
conducted research with the biofloc system using L. 
vannamei and Tilapia, respectively, and the main motivations 
for starting studies were limitation costs, land acquisition 
costs, and concerns about environmental impact (Serfling, 
2006; Avnimelech, 2009). 
 

The biofloc system is a super-intensive system with 
high stocking densities (300 to 1500 shrimp m-²) where the 
strong aeration and zero or minimal water exchange make 
possible the formation of microbial floc. The development of 
the system occurs through the manipulation of the carbon: 
nitrogen ratio (C:N) in the cultivation environment, thus 
stimulating the growth of a microbial community, where the 
floc is formed by a heterogeneous mixture of bacteria, 
phytoplankton, zooplankton, remains of food and feces, 
exoskeletons and other invertebrates, predominantly the 
heterotrophic and aerobic biota (De Schryver et al., 2008; 
Avnimelech, 2009; Samocha et al., 2017). The floc formed in 
the system has a high protein content (Khatoon et al., 2016), 
which can be an alternative food for the organisms, 
improving the zootechnical performance and decreasing the 
feed conversion rate (Avnimelech, 2009). 
 

This culture system can be implemented in small 
areas, favoring the good use of the area and greater 
productive efficiency, since one of the obstacles to the 
development of aquaculture is the availability and cost of the 
land. In addition to the low use of water, it is feasible to 
construct cultivation units both near and far from the 
coastline, enabling the interiorization of farms using low 
salinity waters (Samocha et al., 2012). Another advantage 
presented by the system is the possibility of reusing water 
for several production cycles without a negative impact on 
crop yield (Krummenauer et al., 2014). 
 

The biofloc system was developed mainly to control 
the nitrogenous compounds (ammonia) that accumulate and 
when in high concentrations, they are toxic to aquaculture 
organisms (Avnimelech et al., 2007). The main nitrogen 

cycling processes in closed culture systems are made by 
microalgae that absorb nitrogen and bacteria responsible for 
the nitrification process (Hargreaves, 1998). The 
heterotrophic bacteria present in the biofloc system can also 
act on nitrogen removal in water, both organic (free and 
combined amino acids) and inorganic (ammonia and nitrate) 
forms, in addition to being involved in the decomposition 
process (Wheeler and Kirchman, 1986). 
 

However, in order for bacteria to be able to synthesize 
organic carbon from proteins and ammonia, it is necessary 
that C:N ratio is suitable in the water for use, as they do not 
have good efficiency in decomposing organic material when 
there are high levels of carbon or nitrogen. With a C:N ratio 
of approximately 10-20:1 (weight-based ratio) digestion is 
relatively easy (Chamberlain et al., 2001; Hargreaves et al., 
2006; De Schryver et al., 2008; Avnimelech, 2009).  
 

The stabilization of bacteria in the biofloc system can 
be divided into two phases: In the first, there is a 
predominance of heterotrophic bacteria in the system. This 
is because they are fast-growing, and in the second phase 
there is a predominance of autotrophic bacteria, as they have 
slower growth (Avnimelech, 2009). The autotrophic bacteria 
begin to stabilize between 2nd and 3rd weeks after the 
carbon source introduction (Wasielesky et al., 2013).  These 
bacteria work in the system, converting nitrogen compounds 
to nitrate (Krummnenauer et al., 2014).  
 

According to Wasielesky et al. (2006), the presence of 
bacteria at the beginning of culture is of great importance in 
preventing the development and competition for the 
substrate with the bacteria responsible for ammonia 
oxidation. Bacteria responsible for the oxidation of ammonia 
to nitrite, a highly toxic compound, may cause harm to the 
producer by reducing animal growth and increasing 
mortality. The complexity and dynamics of this system 
require intensive management and should always be aware 
of the physicochemical and biological parameters of water 
(Wasielesky et al., 2006).  
 

Several studies related to this type of system have 
been carried out in the last years, aiming to improve the 
zootechnical performance of the culture animals, as well as 
to better understand the functioning of the system. Brito et 
al. (2015) got satisfactory results when post-larvae of L. 
vannamei were cultured in a biofloc system in terms of the  
zootechnical performance of the animals with the average 
final weight of 0.68 g; the survival was 71.3 % and yield was 
1.21 kg m-³ for 35 days of culture. Marinho et al. (2014) 
cultured the post-larvae of the same species and obtained a 
final weight of 0.24 g, 41.5 % of survival and weight gain of 
0.22 g, at 20 days of culture. Abreu et al. (2019) also had 
good zootechnical results for post-larvae of L. vannamei 
cultured in the biofloc system, which reached a final average 
weight of 0.69 g, survival 93 % and yield of 1.95 kg m-³, in 42 
days of culture (Table 2). 

 
 



Borneo Journal of Marine Science and Aquaculture              

Volume: 04 | Dec 2020, 36 - 51 

                                                            

40 
 

Table 2. Zootechnical performance of marine shrimp reared in photoheterotrophic systems. 
 

Shrimp specie Phase 
Stocking 
density 

(shrimp) 
Yield 

Final 
weight 

(g) 

Survival 
(%) 

Time 
(days) 

Reference 

F. brasiliensis N 500 m-2 0.15 kg m-2 0.3 94 30 Fóes et al. (2011) 

F. brasiliensis N 1000 m-3 0.02 kg m-3 0.24 67 30 Emerenciano et al. (2012) 

L. vannamei N 1500 m-2 0.65 kg m-2 0.45 96.3 30 Wasielesky et al. (2013) 

L. vannamei N 2500 m-3 0.25 kg m-3 0.24 41.5 20 Marinho et al. (2014) 

L. vannamei N 250 m-3 3.22 kg m-3 14.47 89.2 49 Jatobá et al. (2014) 

F. brasiliensis N 750 m-3 0.622 kg m-3 1.03 80.5 30 Souza et al. (2014) 

L. vannamei N 2500 m-3 1.21 kg m-3 0.68 71.3 35 Brito et al. (2015) 

L. vannamei N 1200 m-2 1.44 kg m-2 1.22 98.6 35 Serra et al. (2015) 

L. vannamei N 2500 m-3 0.46 kg m-3 0.205 91.3 20 Marinho et al. (2017) 

L. vannamei N 3000 m-3 1.95 kg m-3 0.69 93.6 42 Abreu et al. (2019) 

F. duorarum G 38 m-2 0.32 kg m-2 13.3 63 210 Emerenciano et al. (2013a) 

L. vannamei G 238 m-3 1.0 kg m-3 6.2 70.6 34 Schveitzer et al. (2013) 

L. vannamei G 300 m-2 0.586 kg m-2 2.17 90 42 Silva et al. (2013) 

P. monodon G 21 m-3 0.132 kg m-3 6.6 95 60 Anand et al. (2014) 

L. vannamei G 425 m-3 1.30 kg m-3 5.42 56 28 Brito et al. (2014a) 

P. monodon G 100 m-3 0.622 kg m-3 7.5 83 75 Kumar et al. (2015) 

L. vannamei G 130 m-3 0.674 kg m-2 5.97 86.9 60 Rajkumar et al. (2016) 

L. vannamei G 300 m-3 2.83 kg m-3 9.99 95.5 42 Xu et al. (2016) 

L. vannamei G 250 m-3 1.7 kg m-3 11.1 69 55 Ray et al. (2017) 

L. vannamei G 300 m-3 2.48 kg m-3 8.75 96.7 35 Xu et al. (2018) 
N: Nursery phase; G: Grow-out phase.  
 

Table 3. Zootechnical performance of marine shrimp reared in mixotrophic systems. 
 

Shrimp specie Phase 
Stocking 
density 

(shrimp) 
Yield 

Final 
weight 

(g) 

Survival 
(%) 

Time 
(days) 

Reference 

F. paulensis N 300 m- 2 0.206 kg m-2 0.72 95.4 30 Ballester et al. (2007) 

P. monodon N 40,000 m- 3 - - 56.3 19 Khatoon et al. (2009) 

F. paulensis N 250 m- 2 0.151 kg m-2 0.68 89 45 Ballester et al. (2010) 

F. paulensis N 10,000 m-3 0.325 kg m-3 0.068 47.8 15 Emerenciano et. al 2011 

L. vannamei N 1000 m-3 1.077 kg m-3 1.11 97 43 Godoy et al., 2012 

L. vannamei N 2500 m-3 0.84 kg m-3 0.348 96 20 Marinho et al., 2014 

L. vannamei N 390 m- 2 0.943 kg m-2 2.43 99.5 30 Martins et al., 2014 

L. vannamei N 2500 m-3 2.46 kg m-3 1.08 91.7 35 Brito et al., 2015 

L. vannamei N 2500 m-3 0.67 kg m-3 0.27 98.3 20 Marinho et al., 2017 

L. vannamei N 3000 m-3 2.42 kg m-3 0.86 93.6 42 Abreu et al., 2019 

L.  stylirostris G 20 m-2 1,886 kg ha-1 15.16 66.5 140 Cordova et al., 2002 

L. vannamei G 130 m-2 21,001 kg ha-1 18.4 88 90 Taw & Chandaeng, 2005 

L. vannamei G 550 m-2 51,893 kg ha-1 13.8 66 57 Taw & Chandaeng, 2005 

P. monodon G 5000 m-3 1.11 kg m-3 0.9 60.6 49 Arnold et al., 2009 

L. vannamei G 115 m-2 16,300 kg ha-1 16.7 85 113 Avnimelech et al., 2009 

L. vannamei G 403 m-3 9.59 kg m-3 25.22 94 38 Samocha et al., 2010 

L. vannamei G 130 m-2 22,514 kg ha-1 18.78 89.2 90 Taw et al., 2011 

F. paulensis G 60 m-2 0.287 kg m-2 5.98 93.3 75 Wasielesky Jr et al., 2012 

L. vannamei G 224 m-3 2.219 kg m-3 10.70 92.6 30 Xu & Pan, 2014 

L. vannamei G 300 m-3 2.81 kg m-3 9.84 97.3 42 Xu et al., 2016 
N: Nursery phase; G: Grow-out phase.  
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Mixotrophic system  
 

The mixotrophic system is a variant of the heterotrophic and 
photoautotrophic while using light and organic compounds 
as energy sources, and both respiratory and photosynthetic 
metabolism operating concurrently (Perez-García and 
Bashan, 2015). This type of system has been widely used in 
aquaculture, whether for the cultivation of microalgae, 
crustaceans or fish, with good yield results (Perez-García and 
Bashan, 2015; Brito et al., 2015).  
 

Shrimp culture using biofloc technology in 
mixotrophic system had been reported to have achieved 
better growth rates, yield, and FCR,  benefitting from 
microalgae dominance (Marinho et al., 2014; Marinho et al., 
2017), association of microalgae and rotifers (Brito et al., 
2015) or bacteria (Xu et al., 2016). The addition of 
microalgae contributes to the good performance of 
Litopenaeus vannamei when cultured in the biofloc system, 
as shown by Marinho et al. (2014, 2017). When added to 
microalgae Navicula sp., a final weight of 0.348 g, yield of 
0.84 kg m-3 and FCR of 0.9 after 20 days of culture were 
achieved, while the addition of three diatom species 
(Chaetoceros calcitrans, Navicula sp. and Phaeodactylum 
tricornutum) resulted in a final weight of 0.27 g, yield of 0.67 
kg m-3 and FCR of 0.61. Values higher than the treatment 
without the addition of microalgae amounting to a final 
weight of 0.27 and 0.18 g, yield of 0.63 and 0.59 kg m-3 and 
FCR of 0.64 and 1.2 were obtained for both the experiments, 
respectively (Table 3). Because of the good results with 
Navicula, research was carried out with the different 
concentrations of this microalga: 25,000, 50,000 and 
100,000 cells mL-1, where it was verified that concentrations 
of 50,000 and 100,000 cells mL-1 achieved the best results for 
the final weight (0.80 and 0.86 g, respectively) and the SGR 
(15.92 and 16.08 % day-1, respectively), but all the 
treatments had good results with Navicula, with a yield of 
2.19 to 2.42 kg m-3 and FCR of 0.77 to 0.82 (Abreu et al., 
2019). In addition, it is also observed that the diatoms, C. 
calcitrans and P. tricornutum, were outside the biofloc while 
the Navicula sp. was part of biofloc (Marinho et al., 2017). 
Abreu et al. (2019) found that biofloc plus Navicula had 
concentrations of 50,000 and 100,000 cells mL-1 achieved 
high concentrations of PUFA, mainly DHA and the shrimp 
presented a high amount of fatty acids when used Navicula 
since it had the high concentration of PUFA, mainly EPA and 
DHA (Khatoon et al., 2009). 
 

The biochemical composition of microalgae varies 
according to the species and cultivation conditions used, 
such as temperature, pH, salinity, luminosity, culture 
medium and culture system (George et al., 2014). Cultivation 
can be done in an autotrophic system, when using inorganic 
carbon and light as energy sources; heterotrophic by 
inserting organic carbon and source of organic energy in the 
absence of light; and mixotrophic, in the presence of organic 
and inorganic carbon, light and organic compounds as 
energy sources (Perez-García and Bashan, 2015). Some 
species are able to grow under all these conditions, and there 
may even be an increase in biomass and the production of 

organic molecules when grown in heterotrophic and 
mixotrophic systems (Perez-García and Bashan, 2015). 
Among the compounds produced by these microorganisms, 
lipids have a large participation, being polyunsaturated fatty 
acids that are important for shrimp larvae nutrition of 
(Martins et al., 2014).  Thus, diatoms are preferred due to 
their high content of PUFAs (Ju et al., 2009). 
 

Another way to offer microalgae and provide better 
utilization of their nutritional content is through 
bioencapsulation in a zooplankton organism, such as rotifers. 
Rotifers are important food for larvae of fish and crustacean 
in aquaculture. Their biochemical composition is influenced 
by the microalgae used in their production and can be 
manipulated according to the larvae nutritional 
requirements (Hoff and Snell, 2001). Brito et al. (2015) 
reported good results by adding Navicula sp. (50,000 cells 
mL-1) and the Brachionus plicatilis rotifer (30 ind mL-1) in a 
biofloc for L. vannamei where a final weight of 1.08 g, yield of 
2.46 kg m-3 and FCR of 0.92 were observed after 35 days of 
cultivation, while control treatment (without addition of 
organisms) resulted in a final weight of 0.68 g, yield of 1.2 kg 
m -³, and FCR of 1.9 (Table 3).  
 

These results confirmed that the combination of 
Navicula plus rotifer represents an excellent natural diet for 
the shrimp post-larvae, as they provide important 
nutritional compounds such as essential amino acids and 
highly unsaturated fatty acids that are important for the 
proper development of shrimp (Martins et al., 2014). The 
addition of these organisms also contributes to improving 
the biofloc composition and digestive enzyme activity, given 
the high protein content of shrimp and the highest protein 
efficiency ratio (2.73) (Brito et al., 2015). The biochemical 
composition of diatoms and rotifers may change under 
different cultural conditions.  
 

According to Lavens and Sorgellos (1996), 
mixotrophic systems have a characteristic of being self-
sustaining due to the formation of algae and also because 
they are less subject to deficiencies, such as food shortages. 
But water quality variables may be less subject to controls 
due to system dynamics. In these systems, added diatoms act 
by controlling the proliferation of cyanobacteria, and 
absorbing nitrogen and phosphate compounds from the 
environment, which can be detrimental to cultivation 
(Khatoon et al., 2009; Marinho et al., 2014, 2017). Also, there 
is the action of bacteria in the autotrophic nitrification 
process, where ammonia is transformed into nitrite and 
nitrite into nitrate (Ebeling et al., 2006), besides the 
absorption of ammonia by heterotrophic bacteria provided 
by the increased C/N ratio, with the addition of 
carbohydrates (Crab et al., 2007). However, the rapid 
increase in total suspended solids (TSS) and volatile 
suspended solids (VSS) caused by high growth of microbial 
biomass may impair nutrient uptake by microalgae as a 
result of reduced light conditions, affecting water quality and 
shrimp production, particularly when the nitrification 
process is not well established (Ray et al., 2010; Gaona et al., 
2017). In addition, high energy inputs and critical power 
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failures (maximum one hour at any time) are intrinsic to this 
system (Taw and Chandaeng, 2005).  
 

Thus, the main advantages of mixrotrophic systems 
are: minimal or zero water exchange, high biosecurity (from 
water), production 5-10 % better than photoautotrophic 
(algae based systems), shrimp size bigger by about 2.0 g than 
photoautotrophic systems, FCR low (1.0 - 1.3), production 
cost lower by around 15-20 %.  In grown phase of L. 
vannamei farming, when using densities of 130 and 550 
shrimp m-2, the production can reach 22,514 and 51,893 kg 
ha-1, with shrimp weight of 18.78 and 13.8 g, respectively 
(Taw and Chandaeng, 2005; Taw et al., 2011).  
 

Multi-trophic system 
 

Integrated multi-trophic aquaculture (IMTA) is based on the 
use of two or more species belonging to different trophic 
levels where metabolic wastes by one species are used by 
other organisms as a source of energy (Troell et al., 2009). 
Success of the IMTA system depends on the choice of species 
that will be integrated into the culture and other factors. It is 
necessary to assess the function that each organism plays in 
the system and to take into account the economic and 
commercial potential of each stocked species (Troell et al., 
2009; Barrington et al., 2010). The use of IMTA enables a 
reduction of solid waste and better utilization of dissolved 
nutrients (Granada et al., 2016), resulting in an improvement 
in the water quality in the culture system. Although initially 
the concept of IMTA was developed to minimize 
environmental damage in offshore cultivation (Troell et al., 
2009), it is possible to use its guidelines to improve water 
quality in systems that promote degradation of water quality 
throughout cultivation, as occurs in systems with minimal 
water exchange. 
 

Characteristic water management of the BFT system 
such as minimal water exchange and the reuse of different 
proportions of liquid effluent from previous culture provides 
the accumulation of dissolved nutrients in the water 
(Burford et al. 2003; Krummenauer et al., 2014). These 
compounds are derived from the dissociation of uneaten 
food and by-products of animal metabolic reactions (Viadero 
et al., 2005). Silva et al. (2013) documented that over 60 % 
of nitrogen and phosphate compounds used for feeding are 
not assimilated by the shrimp, and these are in the form of 
ammonia, nitrite, nitrate, and phosphate. Maximum values 
for concentrations of phosphate compounds are not known 
in marine shrimp under super-intensive systems, unlike 
nitrogen compounds, which negatively influence the growth 
and survival of L.vannamei due to their toxicity to these 
animals (Ebeling et al., 2006; Samocha et al., 2017). 
Moreover, the use of a high C:N ratio favors the development 
of heterotrophic bacteria. This community has higher 
nutrient conversion rates in bacterial biomass than nitrifying 
bacteria, thus contributing to the formation of particles 
called bioflocs (Ebeling et al., 2006), where rich 
concentrations of these suspended solids present in water 
can affect the development of marine shrimp (Schveitzer et 
al., 2013). 

Given this problem, some studies have been 
conducted to evaluate the bioremediation potential, through 
integrating several organisms that are able to assimilate 
compounds dissolved in water such as mollusks (Petersen et 
al., 2017), fish (Shpigel et al., 2016), microalgae (Magnotti et 
al., 2016) and marine macroalgae (Brito et al., 2013, 2014a, 
2014b; Samocha et al., 2015), integrating them into the 
culture of marine shrimp, offering good productive results 
(Table 4). 

 

Among these organisms, macroalgae have a high 
potential for use in integrated systems in aquaculture due to 
their bioremediation action. In addition, according to Attasat 
et al. (2013), an increase in shrimp biomass of 15 % is 
possible by using an integrated system between these and 
macroalgae. Besides enabling this increase, it has high 
efficiency in removing nitrate and phosphate compounds 
from the environment in which they are inserted. Decreases 
in ammonia concentrations from 35 to 100 % (Castelar et al., 
2015; Rahardjo et al., 2018), nitrite 26 to 84 % (Rahardjo et 
al., 2018; Brito et al., 2018a), nitrate 17 to 99 % (Castelar et 
al., 2015; Rahardjo et al., 2018), in addition to the removal of 
25 to 63.1 % of phosphate compounds have been reported 
(Macchiavello and Bulboa, 2014; Brito et al., 2018a) (Table 
5). In addition, the improvement in water quality resulting 
from the use of the macroalgae can be seen through the 
influence on the microbiological and phytoplanktonic 
community of the culture systems, due to the growth of 
beneficial microalgae for the shrimp culture in the system 
where the macroalgae are used (Elle et al., 2017). 
 

Macroalgae, besides contributing to their 
bioremediation potential, may also favor the zootechnical 
performance of the animals, as they can be used as a food 
source in the culture of aquatic animals (Fleurence et al., 
2012), and may contribute in the form of substrate for 
biofilm formation when stored in the culture units or acting 
as a supplementary food source. This is because of  their rich 
amounts of protein, lipids, and essential amino acids among 
other nutrients. (Tabarsa et al., 2012). The macroalgae of the 
genus Gracilaria sp. may have 6.4 to 37.6 % of protein and 
0.2 to 12.9 % of lipid (Haslun et al., 2012; Øverland et al., 
2019), serving not only as a source of high nutritional value 
but also as a functional ingredient due to their probiotic or 
antioxidant properties (Niu et al., 2019). 
 

In assessing the effect of the presence of several 
organisms, the benefits are related not only to water quality 
parameters but also their contribution to the marine shrimp 
zootechnical performance indexes (Table 6). Furthermore,  it 
is even possible to reduce the amount of feed protein in the 
nursery phase by virtue of  the presence of these organisms 
in the system. Thus, integrating two or more organisms with 
super-intensive culture is a promising strategy for reducing 
nutrient concentrations in the farming effluents, and 
contributing through food supplementation directly (used as 
a food source) or indirectly (used as adhesion substrate) for 
the growth and condition of the stocked species of the 
shrimp. 
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Table 4. Zootechnical performance of marine shrimp reared in multi-trophic systems. 
 

IMTA System Shrimp specie Phase 
Stocking 
density 

(shrimp) 
Yield 

Final 
weight 

(g) 

Survival 
(%) 

Time 
(days) 

Reference 

Sargassum 
plagyophyllum 

P. monodon N 50 m-3 563 kg ha-1 1.33 85 30 
Izzati (2011) 

Gracillaria  
verrucosa 

P. monodon N 50 m-3 740 kg ha-1 1.66 89 30 

Caulerpa 
sertularioides 

F. californiensis N 28 m-2 0.18 kg m-2 - 98 60 
Portillo-Clark et al. 

(2012) 

G. birdiae L. vannamei N 500 m-3 1.96 kg m-3 4.12 95 42 Brito et al. (2014b) 

G. birdiae L. vannamei N 500 m-3 1.71 kg m-3 3.87 93 42 Brito et al. (2018b) 

Ulva lactuca L. vannamei N 10 m-3 0.02 kg m-3 2.08 96 28 
Elizondo-Gonzalés 

et al. (2018) 

G. dichotoma L. vannamei N 300 m-3 1.12 kg m-3 3.9 96 30 
Anaya-Rosas et al. 

(2019) 
G.  vermiculophylla L. vannamei N 300 m-3 1.13 kg m-3 4.0 94 30 

G. tenuistipitata L. vannamei N 3000 m-3 2719 ind m-3 0.31 91 30 Anh et al. (2019) 

Crassostrea gigas L. vannamei N 200 m-2 0.51 kg m-2 2.73 94 30 Omont et al. (2020) 

Mugil liza L. vannamei N 2500 m-3 3.34 kg m-1 1.37 98 41 Borges et al. (2020) 

U. lactuca L. vannamei G 132 m-2 3.72 kg m-2 7.04 93 28 Brito et al. (2013) 

G. birdiae L. vannamei G 425 m-3 1.4 kg m-3 6.57 50 28 
Brito et al. (2014a) 

G. domingensis L. vannamei G 425 m-3 1.37 kg m-3 5.75 56 28 

G. tikvahiae L. vannamei G 92 m- 2 3.2 kg m-2 26.7 100 67 
Samocha et al. 

(2015) 

G. corticata L. vannamei G 50 m-2 0.47 kg m-2 13.4 71 45 
Fourooghifard et al. 

(2017) 

U. clathrata F. californiensis G 30 m-2 0.28 kg m-2 12.0 79 126 
Peña‐Rodríguez et 

al. (2017) 

U. prolifera L. vannamei G 500 m-3 4.78 kg m-3 10.2 93.8 35 Ge et al. (2018) 

Mugil cephalus L. vannamei G 60 m-3 0.40 kg m-3 10.7 63 75 Hoang et al. (2018) 

C.cuttackensis + 
Entreromorpha  

P. monodon G 30000 ha-1 781 kg ha-1 35.9 - 150 Biswas et al. (2019) 

Oreochromis  
niloticus 

L. vannamei G 10 m-2 0.12 kg m-2 15.1 78 106 
Juárez-Rosales et 

al. (2019) 
O. niloticus +  
S. ambigua 

L. vannamei G 312 m-3 3.9 kg m-3 14.6 88 57 Poli et al. (2019) 

N: Nursery phase; G: Grow-out phase.  
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Table 5. Nutrient uptake by macroalgae in IMTA systems. 
 

Species 
Ammonia 

(%) 
Nitrite 

(%) 
Nitrate 

(%) 
Phosphate 

(%) 
Reference 

Ulva lactuca 94 - - 40 Alencar et al. (2010) 

Ulva fasciata 50 31 70 - Ramos et al. (2010) 

Gracilaria manilaensis 83 33 68 - Shukri and Surif (2011) 

Gracilaria vermiculophyla 90 - - 82 
Skriptsova and Miroshnikova (2011) 

Undaria pinnatifida 72 - - 74 

Gracilaria caudata 23 57 70 - Marinho-Soriano et al. (2011) 

Gracilaria vermiculophylla 100 - 58 - Abreu et al. (2011) 

Gracilaria verrucosa 54 50 76 49 Huo et al. (2011) 

Gracilaria verrucosa 61 48 47 58 Huo et al. (2012) 

Ulva lactuca 83 - - 41 
Al-Hafedh et al. (2012) 

Gracilaria arcuata 80 - - 41 

Hydropuntia cornea 88 23 - - Robledo et al. (2012) 

Ulva lactuca 88.2 - - - Ben-Ari et al. (2014) 

Gracilariopsis longissima 97 87 87 77 He et al. (2014) 

Gracilaria edulis 70 - - - 
Lavania-Baloo et al. (2014) 

Ulva lactuca 45 - - - 

Ulva lactuca 100 - 83 65 
Macchiavello and Bulboa (2014) 

Gracilaria chilensis 100 - 88 38 

G. birdiae + Ulva spp. 98 87 98 62 Castelar et al. (2015) 

Macrocystis pyrifera 75 - - - Hadley et al. (2015) 

Gracilaria sp. 36 11 - 27 18 - 

Rahardjo et al. (2018) Caulerpa sp.  25 4 - 21 12 - 

Eucheuma sp.  12 1 - 25 9 - 
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Table 6. Zootechnical performance of marine shrimp reared in IMTA systems and monoculture. 
 

Shrimp specie Phase 
Monoculture / 
IMTA system 

Final 
weight 

(g) 

SGR  (% 
d-1) 

Yield 
Survival 

(%) 
Reference 

P. monodon N 

Monoculture 1.25 - 445 kg ha-1 71 

Izzati (2011) S. plagyophyllum 1.33 - 563 kg ha-1 85 

G. verrucosa 1.66 - 740 kg ha-1 89 

F. californiensis N 
Monoculture - - 0.09 kg m-2 84 Portillo-Clark et al. 

(2012) C. sertularioides - - 0.18 kg m-2 98 

L. vannamei N 
Monoculture 3.12 5.42 1.41 kg m-3 90 

Brito et al. (2014b) 
G. birdiae 4.12 5.86 1.96 kg m-3 95 

L. vannamei N 
Monoculture 3.21 - 1.39 kg m-3 83 

Brito et al. (2018b) 
G. birdiae 3.87 - 1.71 kg m-3 93 

L. vannamei N 
Monoculture 1.82 6.42 0.02 kg m-3 83 Elizondo-Gonzalés et 

al. (2018) U. lactuca 2.08 6.91 0.07 kg m-3 96 

L. vannamei N 

Monoculture 3.9 - 1.17 kg m-3 100 
Anaya-Rosas et al. 

(2019) 
G.  vermiculophylla 4.0 - 1.13 kg m-3 94 

D.  dichotoma 3.9 - 1.12 kg m-3 96 

L. vannamei N 
Monoculture 0.31 3.86 2178 ind m-3 72.6 

Anh et al. (2019) 
G. tenuistipitata 0.31 3.89 2719 ind m-3 90.6 

L. vannamei N 
Monoculture 1.5 5.17 3.75 kg m-1 98.7 

Borges et al. (2020) 
Mugil liza 1.37 4.96 3.34 kg m-1 97.2 

L. vannamei N 
Monoculture 2.47 6.2 0.46 kg m-2 94 

Omont et al. (2020) 
C. gigas 2.73 6.48 0.51 kg m-2 94 

L. vannamei G 
Monoculture 6.55 0.98 3.56 kg m-3 96 

Brito et al. (2013) 
U. lactuca 7.04 1.38 3.72 kg m-3 93 

L. vannamei G 

Monoculture 5.42 1.56 1.3 kg m-3 56 

Brito et al. (2014a) G. birdiae 6.57 2.12 1.4 kg m-3 50 

G. domingensis 5.75 1.81 1.37 kg m-3 56 

L. vannamei G 
Monoculture 12.5 1.7 0.32 kg m-2 51 Fourooghifard et al. 

(2017) G. corticata 13.4 1.85 0.47 kg m-2 71 

L. vannamei G 
Monoculture 10.1 - 0.38 kg m-3 62 

Hoang et al. (2018) 
Mugil cephalus 10.7 - 0.40 kg m-3 63 

L. vannamei G 
Monoculture 5.1 3.0 0.71 kg m-2 81 Laramore et al. 

(2018) U. lactuca 5.2 3.2 0.69 kg m-2 83 

P. monodon G 
Monoculture 32.4 - 662 kg ha-1 - 

Biswas et al. (2019) C. cuttackensis + 
Entreromorpha spp. 

35.9 - 781 kg ha-1 - 

L. vannamei G 
Monoculture 14.8 3.0 0.10 kg m-2 69 Juárez-Rosales et al. 

(2019) O. niloticus 15.1 3.0 0.12 kg m-2 78 

L. vannamei G 
Monoculture 14.1 - 3.9 kg m-3 89.3 

Poli et al. (2019) O. niloticus + S. 
ambigua 

14.6 - 3.9 kg m-3 88 

N: Nursery phase; G: Grow-out phase; SGR: Specific Growth Rate.  
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Conclusions 
 
Photoheterotrophic, mixotrophic and multi-trophic culture 
systems are interesting alternatives to conventional 
(photoautotrophic) systems for marine shrimp production. 
The good zootechnical performance and environmental 
benefits provide models that promote the minimum 
exchange of water and the best utilization of the nutrients 
available in the environment, thereby reducing the effluent 
generation. It should be mentioned that the algal biomass 
obtained can be used in food preparation technologies for 
aquafeed. On the other hand, it will be possible to explore the 
presence of biomolecules produced by the dominant algae 
that could be of application in nutraceutical and 
pharmaceutical industries. Of course, this will require 
investment in research and development for purposeful 
outcomes. 
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