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Abstract: 

Accurate elevation data are essential for effective oil palm plantation planning, hydrological 

modeling, and environmental management particularly in tropical regions characterized by 

complex topography and dense vegetation. While LiDAR-derived Digital Elevation Models 

(DEMs) offer high vertical precision, their acquisition costs often hinder adoption in resource-

limited settings. Open-source DEMs provide accessible alternatives but are frequently affected 

by vegetation interference and coarse resolution, leading to reduced vertical accuracy. This study 

proposes a hybrid correction framework that integrates a random forest (RF) machine learning 

algorithm and a geographically weighted regression (GWR) a spatially adaptive statistical 

method to enhance the vertical accuracy of open-source DEMs for terrain-sensitive applications. 

The study used 377 high-precision Ground Control Points (GCPs) and LiDAR data to evaluate 

and correct six global DEMs: Advanced Land Observing Satellite (ALOS), TerraSAR-X add-on 

for Digital Elevation Measurement (TanDEM-X), Copernicus GLO-30, Shuttle Radar 

Topography Mission (SRTM), Forest And Buildings removed Copernicus DEM (FABDEM), 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM, and a 

high-resolution drone-derived DEM. RF was used to identify key topographic predictors, 

including aspect, slope, curvature, Topographic Position Index (TPI), and Terrain Ruggedness 

Index (TRI), while GWR applied spatially adaptive corrections to the RF residuals. The 

integrated RF–GWR model significantly improved the vertical accuracy across all DEMs. The 

post-correction R² values reached 0.914 for TanDEM-X, 0.910 for ALOS, and increased from 

0.608 to 0.914 for Copernicus, with the residual standard deviations reduced by up to 75% and 

near-zero mean bias. These results highlight the model’s ability to correct both systematic and 

spatially varying elevation errors. The framework presents a scalable and alternative to LiDAR 

for use in precision agriculture, flood risk modeling, and infrastructure planning. Future work 

should explore integration with deep learning to improve the temporal responsiveness and 

operational scalability. 

 

Keywords: Digital Elevation Models, Machine Learning, Random Forest, Geographically 

Weighted Regression, Vertical Accuracy. 

 

1. INTRODUCTION 

Accurate terrain data are fundamental to informed land-use planning, hydrological modeling, and 

precision agriculture, particularly in tropical environments characterized by dense vegetation, 

high rainfall, and complex topography. In the context of oil palm plantation development, 

reliable elevation models are critical for the design of efficient drainage systems, optimization of 
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plantation infrastructure, and mitigation of erosion and flooding risks. DEMs play a central role 

in these applications, yet their utility depends heavily on vertical accuracy, which varies 

considerably across different data sources and landscape conditions (Chai et al., 2022; Karlson et 

al., 2021). LiDAR-derived DEMs are widely regarded as the benchmark for high-precision 

topographic representation, often achieving sub-meter vertical accuracy and fine spatial 

resolution. However, the high financial and logistical costs associated with LiDAR acquisition 

and processing limit their widespread adoption, especially in large-scale or resource-constrained 

agricultural operations (Mohamed, 2020; Tavares da Costa et al., 2019). As a result, freely 

available open-source DEMs such as ALOS AW3D30, ASTER GDEM, Copernicus GLO-30, 

FABDEM, SRTM, and TanDEM-X are commonly utilized due to their global coverage and ease 

of access. Nevertheless, these datasets frequently exhibit vertical inaccuracies caused by 

vegetation interference, coarse resolution, and limitations in sensor technology issues that are 

especially pronounced in tropical plantation landscapes (MARTINEZ, 2020; Tabunshchik et al., 

2023). 

 

Although numerous studies have assessed the accuracy of global DEMs, several critical gaps 

persist in the literature. First, existing evaluations are often generalized at the national or 

continental scales, thereby overlooking the fine-resolution accuracy requirements necessary for 

plantation-level terrain modeling and hydrological planning (Huang et al., 2023). Second, there 

is a notable lack of DEM correction frameworks specifically tailored for complex tropical 

terrain, where elevation errors are amplified by heterogeneous landforms and dense canopy 

cover (Brock et al., 2020; Chang et al., 2019). Third, while machine learning algorithms such as 

RF and spatial regression methods like GWR have independently demonstrated value in refining 

DEM accuracy, few studies have explored their integrated application despite their 

complementary capabilities. RF is particularly effective at capturing the non-linear relationships 

between the terrain attributes and the elevation error but lacks spatial sensitivity. Conversely, 

GWR offers location-specific adaptability by modeling spatial heterogeneity in residuals but is 

limited in predictive generalization (Kakavas & Nikolakopoulos, 2021; Zhang & Yu, 2022).  

 

To address these limitations, the present study proposes a hybrid DEM correction framework that 

integrates the global predictive power of RF with the spatial adaptability of GWR to enhance the 

vertical accuracy of multiple open-source DEMs in a tropical plantation setting. The specific 

objectives of this research are to: (i) evaluate the vertical accuracy of various open-source DEMs 

relative to LiDAR-derived elevation data in a complex oil palm plantation environment; (ii) 

develop and validate an integrated RF-GWR framework for correcting elevation errors; and (iii) 

identify the most influential terrain-derived predictors associated with vertical discrepancies 

across diverse topographic conditions. 

 

2. MATERIALS AND METHODS 

2.1 Study Area and Gauge Data 

This study was conducted in a 39-hectare tropical oil palm plantation in Beluran, Sabah, 

Malaysia, a region characterized by a tropical rainforest climate with an average annual rainfall 

of 2,800 mm and temperatures ranging from 25°C to 32°C. The study area features flat 
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undulating to moderately steep (0o – 24o degrees), making it an ideal environment for evaluating 

DEM accuracy across varying terrain conditions. To ensure precise elevation validation, 377 

GCPs with an average of 9 to 10 GCPs per Hectare were strategically placed across different 

topographic features, including lowlands, slopes, and ridgelines. GCPs were collected using a 

CHC i83 GPS GNSS receiver, which provides a horizontal accuracy of 8 mm ± 1 part per 

million (ppm) and a vertical accuracy of 15 mm ± 1 ppm. The reliability of these GCPs was 

ensured through differential GPS corrections and cross-validation with LiDAR-derived reference 

points, minimizing measurement errors before integrating them into the DEM accuracy 

assessment. 

 

 
Figure 1: Location of the study area (a) and ground control points (GCPs) (b) 

 

2.2 Open-Source DEMs 

This study evaluated the vertical accuracy of several open-source Digital Elevation Models 

(DEMs) to determine their suitability for terrain analysis in oil palm plantation planning. The 

DEMs assessed included ALOS World 3D (AW3D30), TanDEM-X, ASTER GDEM, SRTM, 

Copernicus GLO-30, FABDEM, and a high-resolution Drone RGB-derived DEM obtained via 

aerial photogrammetry. TanDEM-X and ALOS AW3D30 offer comparatively high vertical 

accuracy (±2–10 m), whereas ASTER GDEM and SRTM are more susceptible to elevation 

discrepancies due to vegetation interference and sensor limitations (Rabby et al., 2020). 

Although Copernicus and FABDEM provide wide global coverage and improved surface 

representation, their accuracy in complex, heterogeneous terrain remains insufficiently validated 

(Pareta & Pareta, 2024). The Drone RGB DEM, derived from aerial photogrammetry, delivers a 

fine spatial resolution but is prone to elevation error caused by surface reflectance and vegetation 

cover (Scott Watson et al., 2019). For consistency, all DEMs were resampled to a 10 m × 10 m 

resolution and reprojected to the UTM Zone 50N. Their vertical accuracy was evaluated against 

both LiDAR-derived elevation data and a set of 377 GCPs. To ensure the reliability of the GCPs, 

measurements were collected using a CHC i83 GNSS receiver, which offers a horizontal 

accuracy of ±8 mm ± 1 ppm and a vertical accuracy of ±15 mm ± 1 ppm. Differential GPS 

corrections and cross-validation with LiDAR reference points were applied to minimize 

positioning errors, ensuring a robust ground-truth dataset for DEM validation. 
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Table 1. General information of the DEMs 

DEM 

Source 

Acquisition 

Period 

Sensor Type / 

Processing 

Method 

Vertical 

Accuracy 
Resolution Datum Reference 

SRTM v3 2000 
Radar (C-band 

InSAR) 
±10–16 m 30 m 

EGM96 / 

WGS84 

(Uuemaa et 

al., 2020) 

ASTER 2000–2013 
Optical (Stereo 

Imagery) 
±8–15 m 30 m 

EGM96 / 

WGS84 

(Rabby et al., 

2020) 

Copernicus 2011–2015 
X-band Radar 

(Reprocessed) 
±4–5 m 30 m 

EGM2008 

/ WGS84 

(Pareta & 

Pareta, 2024) 

FABDEM 2011–2015 

SRTM & 

Copernicus, with 

surface object 

removal 

±5–10 m 30 m 
EGM2008 

/ WGS84 

(Brochado & 

Rennó, 2024) 

ALOS 2006–2011 
Panchromatic 

Stereo Imagery 
±5–10 m 30 m 

EGM96 / 

WGS84 

(Tabunshchik 

et al., 2023) 

TanDEM-X 2010–2014 

X-band Synthetic 

Aperture Radar 

(SAR) 

±2–10 m 30 m 
EGM96 / 

WGS84 

(Shen et al., 

2023) 

Drone DEM Varies 

Photogrammetry 

(DJI Mavic 3 

Enterprise RTK) 

±5–20 cm <5 m 
GNSS 

GPS 

(Scott 

Watson et al., 

2019) 

LiDAR 

DEM 
Varies Airborne LiDAR ±5–10 cm <5 m 

GNSS 

GPS 

(Chai et al., 

2022) 

 

2.3 Terrain Attribute Extraction and Feature Selection 

To support the DEM correction, several topographic and terrain-derived attributes were extracted 

from each dataset. These include elevation, slope, aspect, curvature, TPI and TRI. These 

variables were chosen based on their proven relevance in influencing elevation error across 

various terrains, particularly in vegetation-dense and undulating regions. Feature selection was 

performed using the RF algorithm, which ranks variable importance using two established 

methods: Mean Decrease in Impurity (MDI) and Mean Decrease in Accuracy (MDA). MDI 

quantifies the reduction in variance caused by a variable across decision tree splits, while MDA 

evaluates the decrease in model accuracy when a specific variable is permuted. This dual-ranking 

approach allowed for a robust identification of the predictors most associated with vertical 

discrepancies. Across all models, TPI, slope, and curvature consistently emerged as the top 

contributors to the elevation error. To ensure consistency and comparability across all DEM 

datasets, the same RF regression parameters were applied throughout the analysis. 

  

2.4 Random Forest and Geographically Weighted Regression (GWR) Models 

The JASP open-source software used to run the Random Forest (RF) algorithm was configured 

with 500 trees (ntree = 500) and three variables randomly selected at each split (mtry = 3). 

Models were trained on 80% of the ground control point dataset (n = 2,863) and validated on the 

remaining 20% (n = 715), with out-of-bag (OOB) error used as the internal validation metric. 

The predictive performance was quantified by the coefficient of determination (R²) and the root 
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mean square error (RMSE), representing the explanatory power and predictive accuracy, 

respectively. To ensure a robust assessment of the variable importance, a permutation-based 

mean “dropout loss” was computed over 100 permutations. These hyperparameter settings and 

validation procedures were applied uniformly across all DEM-difference models to maintain the 

direct comparability of performance metrics and variable-importance rankings. While RF 

effectively captured the nonlinear relationships between geospatial predictors and elevation 

error, it did not account for spatial heterogeneity, limiting its capacity to correct location-specific 

discrepancies. To introduce spatial adaptability, GWR was implemented as a post-processing 

step. GWR allows regression coefficients to vary across space, thereby modeling localized 

terrain‐error patterns (Kakavas & Nikolakopoulos, 2021; Liu et al., 2020). Residuals from the RF 

predictions were used as the dependent variable in the GWR framework, enabling locally tuned 

corrections informed by the landscape’s spatial structure. By integrating RF’s global predictive 

strength with GWR’s local adaptability, the hybrid approach delivered more accurate and 

spatially consistent DEM corrections. The final outputs were evaluated against LiDAR‐derived 

elevations and independent GCP measurements to assess the improvements in the vertical 

accuracy across the DEM sources. 

 

2.5 Methodology 

2.5.1 Study Area and Ground Data Collection 

The study was carried out within a 39-hectare oil palm plantation in Beluran, Sabah, Malaysia, a 

region characterized by a tropical rainforest climate with annual rainfall of approximately 2,800 

mm and temperatures between 25°C and 32°C. The terrain ranges from flat to moderately steep 

(0°–24°), offering a suitable gradient for evaluating DEM performance across varying landforms. 

A total of 377 Ground Control Points (GCPs) were distributed across geomorphological zones 

including lowlands, slopes, and ridgelines to ensure spatial representativeness. Elevation 

measurements were obtained using a CHC i83 GNSS receiver (±8 mm horizontal and ±15 mm 

vertical accuracy), corrected via differential GPS (DGPS) and validated against a LiDAR-

derived DEM to ensure high positional accuracy. 

 

2.5.2 Digital Elevation Models (DEMs) and Preprocessing 

Seven DEMs were evaluated: ALOS AW3D30, ASTER GDEM v3, Copernicus GLO-30, 

FABDEM, SRTM v3, TanDEM-X, and a high-resolution drone-derived DEM from aerial 

photogrammetry. A LiDAR-based DEM served as the benchmark due to its sub-meter vertical 

accuracy. To ensure spatial consistency, all datasets were resampled to a 10 m × 10 m grid and 

projected to UTM Zone 50N. Vertical accuracy was assessed by comparing elevation values 

against both the LiDAR DEM and the 377 GCPs. Metadata and characteristics for each DEM, 

including resolution, source, and reported accuracy, are summarized in Table 1. 

2.5.3 Terrain Attribute Extraction and Feature Selection 

To support the elevation error modeling, six terrain attributes including slope, aspect, curvature, 

Topographic Position Index (TPI), Terrain Ruggedness Index (TRI), and roughness—were 

derived from the DEMs for use in elevation error modeling. Selection was informed by prior 

studies highlighting their influence on DEM accuracy in complex terrains. Random Forest (RF) 

was used to assess predictor importance using Mean Decrease in Impurity (MDI) and Mean 
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Decrease in Accuracy (MDA). Model hyperparameters, including the number of trees, maximum 

depth, and minimum samples per leaf, were optimized through grid search and five-fold cross-

validation, using RMSE and R² as performance metrics. 

 

2.5.4 DEM Error Modeling Using the RF and RF-GWR Hybrid 

A two-stage hybrid model was implemented for DEM error correction. In the first stage, RF 

regression modeled elevation errors based on terrain attributes, with data split into 80% training 

and 20% testing subsets. While RF effectively captured non-linear terrain-error relationships, it 

lacked spatial sensitivity. To address this, GWR was applied in the second stage to model RF 

residuals, using a Gaussian kernel with adaptive bandwidth selected via corrected Akaike 

Information Criterion (AICc). This spatially adaptive correction improved the model's ability to 

reflect local elevation variations, resulting in enhanced vertical accuracy across all DEMs. 

 

2.5.5 Model Evaluation and Accuracy Assessment 

Model performance was evaluated using standard metrics: the coefficient of determination (R²) 

to assess variance explained, root mean square error (RMSE) for prediction accuracy, and 

residual sum of squares (RSS) for model fit. The spatial kernel bandwidth in GWR was 

optimized using AICc. Validation was conducted against both the LiDAR DEM and GCP dataset 

to ensure robustness across varying topographic conditions. In addition to statistical evaluation, 

spatial residual maps and elevation profiles were generated to visualize model improvements and 

assess local terrain consistency post-correction. 

 

 
Figure 2: Methodology workflow of the research 
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Figure 3: (a) Top-down view of the Digital Elevation Model (DEM), (b) 3D DEM view, and a 

comparison of the cross-section profile before and after GCPs (c & d) 

 

3. RESULTS 

3.1 Influence of Ground Control Points (GCPs) on DEM Accuracy 

The initial evaluation revealed substantial discrepancies in the vertical accuracy across 

uncorrected DEMs, particularly in forested and topographically complex areas. Elevation 

deviations ranged from 10 to 80 meters when compared with the LiDAR reference, with 

significant spatial artifacts such as abrupt terrain shifts and slope distortion (Figure 4). These 

inconsistencies were most pronounced in the steep terrain, where open-source sensors struggled 

with vegetation occlusion and spatial resolution limitations. Following the integration of 377 

high-precision GCPs, the vertical accuracy improved markedly. Post-GCP calibration, the 

elevation errors were reduced to between 2 and 60 meters across all DEMs. The terrain profiles 

became smoother, and the elevation transitions were more realistic (Figure 5). This underscores 

the essential role of ground-truth data in mitigating systematic vertical biases, aligning with the 

findings of Uuemaa et al., (2020) and demonstrating that even globally available DEMs can be 

significantly refined with localized calibration. 
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Figure 4: Pre-correction Digital Elevation Models (DEMs) 

 

 

 
Figure 5: Post-GCP Integrated DEMs 

 

3.2 Random Forest Model Performance in Predicting Elevation Errors 

This study provides a comparative assessment of seven DEMs using a Random Forest regression 

approach to predict elevation errors based on terrain-derived features. The analysis reveals that 

macro-topographic variables, particularly TPI and curvature, are the most influential predictors 

of elevation discrepancies across all DEMs. In contrast, aspect consistently contributed the least, 

underscoring its limited role in error modeling at broader spatial scales. As show in table 2 

below, Copernicus DEM emerged as the best overall performer (R² = 0.608), while ALOS 

achieved the highest accuracy (lowest RMSE = 0.722). Conversely, ASTER GDEM showed 

significantly weaker predictive capability, reaffirming known issues with vegetation-induced 
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distortions. The results demonstrate that while Random Forest models effectively reduce broad-

scale elevation biases, they require augmentation with additional environmental variables (e.g., 

land cover, canopy height) to capture fine-scale variation. This emphasizes the need for hybrid 

approaches that integrate the DEM structure with contextual surface data for robust elevation 

error correction. 

 

Table 2: Comparative performance of DEMs in predicting elevation errors using random forest 

and geospatial feature predictors 

DEM R2 RMSE Predictors (Most Predictive to Least Predictive) 

ALOS 0.589 0.722 TPI, Curvature, TRI, Roughness, Slope, Aspect 

ASTER 0.521 1.125 TPI, Curvature, TRI, Roughness, Slope, Aspect 

Copernicus 0.608 0.786 TPI, Curvature, Roughness, TRI, Slope, Aspect 

Drone 0.569 0.815 TPI, Curvature, TRI, Roughness, Slope, Aspect 

FABDEM 0.572 0.857 TPI, Curvature, TRI, Slope, Roughness, Aspect 

SRTM 0.571 0.897 TPI, Curvature, TRI, Roughness, Slope, Aspect 

TanDEM-X 0.588 0.820 TPI, Curvature, TRI, Roughness, Slope, Aspect 

 

3.3 Performance of the Hybrid RF–GWR Models Across DEMs 

In this study, a hybrid modeling framework was employed by integrating RF prediction with 

GWR. The residuals (or predictions) from the RF model served as the dependent variable in the 

GWR, enabling the spatial dissection of the terrain to influence the prediction performance. This 

approach allowed for both high-accuracy predictions via machine learning and spatial 

diagnostics through geographically localized regression. Table 3 summarizes the diagnostic 

metrics of the hybrid RF+GWR models across seven DEMs. The models varied in performance 

based on AIC, corrected AIC (AICc), residual sum of squares (RSS), and R² statistics. 

 

Table 3: Comparing the hybrid RF+GWR model results across the different DEM using the 

Random Forest prediction 

DEM AIC AICc RSS R² Adj. R² 
Top GWR Predictor (by 

Median Coefficient) 

TanDEM-X 1999.50 2476.73 329.16 0.914 0.898 TPI (Median = 2.063) 

SRTM 2625.04 3282.26 379.92 0.913 0.892 TPI (Median = 2.153) 

FABDEM 2477.94 2955.48 376.23 0.906 0.889 TPI (Median = 2.121) 

DRONE 1753.73 2220.05 307.93 0.910 0.894 TPI (Median = 1.817) 

COPERNICUS 1852.73 2330.51 315.90 0.914 0.898 TPI (Median = 1.940) 

ASTER 3643.63 4300.00 505.12 0.905 0.883 TPI (Median = 2.122) 

ALOS 1065.85 1539.07 253.75 0.910 0.894 TPI (Median = 1.932) 

* AIC = Akaike Information Criterion & * AICc = Akaike Information Criterion corrected 

 

The ALOS-based hybrid model demonstrated the best overall performance, achieving the lowest 

AIC (1065.85), lowest AICc (1539.07), and smallest RSS (253.75), with a high adjusted R² value 

of 0.8940. These results suggest that the terrain derivatives derived from the ALOS data are 
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particularly effective in explaining the spatial variation in the RF residuals. Close contenders 

included the DRONE and COPERNICUS-based models, which also achieved high adjusted R² 

values of 0.8943 and 0.8988, respectively, and maintained relatively low AIC scores. In contrast, 

the ASTER-based hybrid model exhibited the weakest performance, with the highest AICc 

(4300.00), the largest RSS (505.12), and the lowest adjusted R² (0.8830) among all DEMs. These 

results may reflect the known limitations of ASTER in terms of vertical accuracy and resolution, 

which likely affect the reliability of its derived terrain metrics in localized spatial analysis. 

Across all hybrid models, the TPI consistently emerged as the most influential topographic 

predictor, based on the median GWR coefficients. The SRTM model recorded the highest TPI 

median value (2.153), followed closely by ASTER (2.122), FABDEM (2.121), and TanDEM-X 

(2.063). Even in models with lower overall performance, the TPI retained its dominant influence. 

This consistent pattern indicates that landscape position features (e.g., valleys, ridges, flat zones) 

have the strongest and most stable spatial correlation with the RF prediction outcomes, 

regardless of the DEM source. TPI’s prominence suggests it captures critical geomorphological 

variations that strongly influence the spatial structure of model errors or predictions. Other 

variables, such as curvature, slope, roughness, and TRI, showed more variability across the 

DEMs and had lower median coefficients. The curvature was typically negative, suggesting that 

concave or convex terrain forms may negatively impact the RF prediction accuracy. Roughness 

and TRI contributed moderately but inconsistently across the models. 

 

3.4 Residual Error Analysis Across Modeling Approaches 

Table 4 presents the descriptive statistics of the residual errors for the seven digital elevation 

models (DEMs), evaluated using three modeling approaches: (i) uncorrected residuals from the 

raw DEMs, (ii) residuals from the random forest (RF) regression, and (iii) residuals from a 

hybrid model combining the random forest with the geographically weighted regression 

(RF+GWR). Residuals were computed as the difference between the DEM-predicted elevations 

and the GCPs benchmark elevations. 

 

Table 4: Residual error statistics for the raw, RF, and RF+GWR Models 

DEM Mean Std. Deviation Minimum Maximum 

Residual ALOS 0.041 1.135 -5.134 7.163 

Residual ASTER 0.050 1.627 -8.564 10.55 

Residual COPERNICUS 0.019 1.272 -6.185 6.284 

Residual DRONE -0.008 1.216 -7.550 6.314 

Residual FABDEM 0.053 1.334 -5.735 8.124 

Residual SRTM 0.074 1.399 -5.858 8.792 

Residual TAN DEM-X 0.030 1.293 -5.686 8.343 

Residual RF ALOS 0.043 0.901 -3.417 4.459 

Residual RF ASTER 0.057 1.225 -5.768 7.524 

Residual RF COPERNICUS 0.019 1.015 -4.500 4.033 

Residual RF DRONE -0.003 0.979 -4.447 3.714 

Residual RF FABDEM 0.058 1.062 -3.966 5.028 
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Residual RF SRTM 0.078 1.106 -4.168 5.630 

Residual RF TanDEM-X 0.034 1.035 -3.85 4.950 

Residual RF+GWR ALOS -97.81 0.266 -1.246 1.119 

Residual RF+GWR ASTER -0.001 0.376 -1.784 1.966 

Residual RF+GWR Copernicus 0.002 0.306 -1.747 1.169 

Residual RF+GWR DRONE 0.002 0.293 -1.827 1.17 

Residual RF+GWR FABDEM -52.16 0.324 -1.547 1.402 

Residual RF+GWR SRTM -0.002 0.326 -1.533 1.711 

Residual RF+GWR TanDEM-X 0.001 0.303 -1.344 1.321 

 

Across all DEMs, the raw residuals exhibited the highest variability, with standard deviations 

ranging from 1.135 (ALOS) to 1.627 (ASTER). Most DEMs also showed positive mean 

residuals, indicating a tendency to overestimate elevation. For instance, the ASTER model had a 

mean residual of 0.050 m and a maximum residual of over 10.5 m, suggesting a significant 

vertical error and high spread. Applying the Random Forest regression led to a substantial 

improvement in the model performance. All DEMs showed a marked reduction in the standard 

deviation, indicating enhanced precision. For example, the standard deviation of the FABDEM 

residuals decreased from 1.334 to 0.972. The mean residuals also approached zero, suggesting a 

reduced bias. The RF model consistently outperformed the raw DEMs, demonstrating its 

effectiveness in learning terrain-related error patterns. The hybrid RF+GWR model further 

refined the residual accuracy. It consistently achieved the lowest standard deviations (e.g., 0.303 

for TanDEM-X, 0.306 for Copernicus) and mean residuals nearly equal to zero, indicating 

minimal spatial bias and high local accuracy. Notably, the hybrid approach reduced the standard 

deviation of the FABDEM residuals from 0.972 (RF-only) to 0.324, underscoring the value of 

incorporating spatial heterogeneity through the GWR. In summary, the hybrid RF+GWR 

approach outperformed both the raw DEMs and the RF-only models, producing the most 

accurate and spatially consistent elevation estimates. These findings support the integration of 

spatial regression into machine learning workflows to enhance DEM correction and surface 

modeling accuracy. 

 

4. DISCUSSION 

The integration of RF and GWR provides a robust framework for enhancing the vertical 

accuracy of DEMs in a complex tropical landscape. The findings demonstrate that the RF–GWR 

model effectively reduces systematic and spatially variable elevation errors, resulting in 

substantial improvements across all evaluated DEM products. The hybrid model yielded 

particularly strong performance in TanDEM-X and ALOS datasets, with post-correction R² 

values exceeding 0.91 approaching the precision of LiDAR-derived elevation models. Similarly, 

the Copernicus GLO-30 DEM exhibited the greatest relative enhancement, with R² improving 

from 0.608 to 0.914 These results affirm the suitability of the RF–GWR approach for terrain-

sensitive applications and support previous findings that emphasize the importance of combining 

data-driven learning with spatially adaptive techniques to correct elevation biases (Dong et al., 

2020; Yu et al., 2021; Zhang & Yu, 2022). 
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The model's success can be further contextualized within a wider framework of literature that 

highlights the role of local terrain attributes in shaping DEM error patterns. The consistent 

identification of topographic predictors particularly TPI, slope, and curvature aligns with prior 

studies on elevation modeling in forested and mountainous terrain (Mishra et al., 2021; Zhang & 

Yu, 2022). While the RF model effectively captured the nonlinear relationships between these 

predictors and elevation error, its inability to account for spatial autocorrelation in complex 

terrain was addressed through the incorporation of GWR. The spatial variation of regression 

coefficients in the GWR model enabled more nuanced, location-specific corrections, leading to 

smoother residual patterns and improved local accuracy (Amelia et al., 2023; Li, 2022).  

 

Notwithstanding its strengths, several limitations should be acknowledged. First, the framework 

is reliant on high-quality GCPs for calibration and validation. In regions where such data are 

sparse or difficult to acquire, model accuracy may be compromised. This constraint presents 

logistical and financial challenges for large-scale deployment or community-led mapping 

initiatives (Mehra & Swain, 2024; Yu et al., 2021). Second, the GWR component is 

computationally intensive, potentially limiting real-time scalability and cloud-based 

implementation without further optimization (Al-Nasrawi et al., 2021; Ganju et al., 2020). 

Lastly, the model is temporally static and does not account for landscape dynamics such as 

seasonal vegetation shifts, land-use changes, or erosion, which may affect DEM accuracy over 

time (Hu et al., 2024). 

 

Future research should therefore prioritize several directions. The integration of advanced 

machine learning algorithms such as Extreme Gradient Boosting (XGBoost) or Convolutional 

Neural Networks (CNNs) may further improve predictive accuracy and computational efficiency 

(Dumarevskaya & Parent, 2025). In parallel, geostatistical interpolation methods such as kriging 

could be incorporated to complement the RF–GWR model, offering finer control over spatial 

prediction (Idrissi et al., 2023). Finally, the development of cloud-based, real-time correction 

workflows leveraging open-access Earth observation data would support operational use cases 

such as flood forecasting, terrain planning, and precision agriculture, particularly in geospatially 

constrained environments (Baldarelli et al., 2024; Zamora-Espinoza et al., 2024). 

 

5. CONCLUSION 

This study presents a hybrid modeling framework that integrates RF with GWR to correct 

elevation inaccuracies in open-source DEMs within a tropical oil palm plantation context. Using 

a robust dataset of 377 high-precision GCPs and LiDAR-derived reference surfaces, the 

framework was applied to six global DEM products and one drone-derived model. The results 

demonstrated significant improvements in vertical accuracy, with post-correction R² values 

reached 0.914 for TanDEM-X, 0.910 for ALOS, and a notable increase for Copernicus GLO-30 

from 0.608 to 0.914. These findings underscore the effectiveness of combining machine learning 

with spatial regression to address both systematic and localized elevation errors in complex 

landscapes. The model offers a scalable, cost-effective alternative to LiDAR for elevation 

modeling tasks in resource-constrained settings and provides practical value for precision 

agriculture, hydrological planning, and environmental monitoring. The proposed framework not 

only improves prediction performance but also captures spatial heterogeneity more effectively 

than single-method approaches. It is recommended that future research extend this framework 

through the integration of temporal datasets, enabling dynamic monitoring of terrain changes. 
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Additionally, deploying the model in cloud environments and incorporating newer machine 

learning algorithms can further enhance its operational scalability. These advancements will be 

instrumental in supporting real-time decision-making and adaptive land management across 

diverse and data-limited geographies. In summary, the RF–GWR hybrid model constitutes a 

valuable contribution to the field of digital terrain analysis, offering both methodological 

innovation and practical applicability in enhancing the accuracy of globally accessible elevation 

datasets. 
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