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Abstract:

Accurate elevation data are essential for effective oil palm plantation planning, hydrological
modeling, and environmental management particularly in tropical regions characterized by
complex topography and dense vegetation. While LiDAR-derived Digital Elevation Models
(DEMs) offer high vertical precision, their acquisition costs often hinder adoption in resource-
limited settings. Open-source DEMs provide accessible alternatives but are frequently affected
by vegetation interference and coarse resolution, leading to reduced vertical accuracy. This study
proposes a hybrid correction framework that integrates a random forest (RF) machine learning
algorithm and a geographically weighted regression (GWR) a spatially adaptive statistical
method to enhance the vertical accuracy of open-source DEMs for terrain-sensitive applications.
The study used 377 high-precision Ground Control Points (GCPs) and LiDAR data to evaluate
and correct six global DEMs: Advanced Land Observing Satellite (ALOS), TerraSAR-X add-on
for Digital Elevation Measurement (TanDEM-X), Copernicus GLO-30, Shuttle Radar
Topography Mission (SRTM), Forest And Buildings removed Copernicus DEM (FABDEM),
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM, and a
high-resolution drone-derived DEM. RF was used to identify key topographic predictors,
including aspect, slope, curvature, Topographic Position Index (TPI), and Terrain Ruggedness
Index (TRI), while GWR applied spatially adaptive corrections to the RF residuals. The
integrated RF-GWR model significantly improved the vertical accuracy across all DEMs. The
post-correction R? values reached 0.914 for TanDEM-X, 0.910 for ALOS, and increased from
0.608 to 0.914 for Copernicus, with the residual standard deviations reduced by up to 75% and
near-zero mean bias. These results highlight the model’s ability to correct both systematic and
spatially varying elevation errors. The framework presents a scalable and alternative to LiDAR
for use in precision agriculture, flood risk modeling, and infrastructure planning. Future work
should explore integration with deep learning to improve the temporal responsiveness and
operational scalability.

Keywords: Digital Elevation Models, Machine Learning, Random Forest, Geographically
Weighted Regression, Vertical Accuracy.

1. INTRODUCTION

Accurate terrain data are fundamental to informed land-use planning, hydrological modeling, and
precision agriculture, particularly in tropical environments characterized by dense vegetation,
high rainfall, and complex topography. In the context of oil palm plantation development,
reliable elevation models are critical for the design of efficient drainage systems, optimization of
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plantation infrastructure, and mitigation of erosion and flooding risks. DEMs play a central role
in these applications, yet their utility depends heavily on vertical accuracy, which varies
considerably across different data sources and landscape conditions (Chai et al., 2022; Karlson et
al., 2021). LiDAR-derived DEMs are widely regarded as the benchmark for high-precision
topographic representation, often achieving sub-meter vertical accuracy and fine spatial
resolution. However, the high financial and logistical costs associated with LiDAR acquisition
and processing limit their widespread adoption, especially in large-scale or resource-constrained
agricultural operations (Mohamed, 2020; Tavares da Costa et al., 2019). As a result, freely
available open-source DEMs such as ALOS AW3D30, ASTER GDEM, Copernicus GLO-30,
FABDEM, SRTM, and TanDEM-X are commonly utilized due to their global coverage and ease
of access. Nevertheless, these datasets frequently exhibit vertical inaccuracies caused by
vegetation interference, coarse resolution, and limitations in sensor technology issues that are
especially pronounced in tropical plantation landscapes (MARTINEZ, 2020; Tabunshchik et al.,
2023).

Although numerous studies have assessed the accuracy of global DEMs, several critical gaps
persist in the literature. First, existing evaluations are often generalized at the national or
continental scales, thereby overlooking the fine-resolution accuracy requirements necessary for
plantation-level terrain modeling and hydrological planning (Huang et al., 2023). Second, there
is a notable lack of DEM correction frameworks specifically tailored for complex tropical
terrain, where elevation errors are amplified by heterogeneous landforms and dense canopy
cover (Brock et al., 2020; Chang et al., 2019). Third, while machine learning algorithms such as
RF and spatial regression methods like GWR have independently demonstrated value in refining
DEM accuracy, few studies have explored their integrated application despite their
complementary capabilities. RF is particularly effective at capturing the non-linear relationships
between the terrain attributes and the elevation error but lacks spatial sensitivity. Conversely,
GWR offers location-specific adaptability by modeling spatial heterogeneity in residuals but is
limited in predictive generalization (Kakavas & Nikolakopoulos, 2021; Zhang & Yu, 2022).

To address these limitations, the present study proposes a hybrid DEM correction framework that
integrates the global predictive power of RF with the spatial adaptability of GWR to enhance the
vertical accuracy of multiple open-source DEMs in a tropical plantation setting. The specific
objectives of this research are to: (i) evaluate the vertical accuracy of various open-source DEMs
relative to LiDAR-derived elevation data in a complex oil palm plantation environment; (ii)
develop and validate an integrated RF-GWR framework for correcting elevation errors; and (ii1)
identify the most influential terrain-derived predictors associated with vertical discrepancies
across diverse topographic conditions.

2. MATERIALS AND METHODS

2.1 Study Area and Gauge Data

This study was conducted in a 39-hectare tropical oil palm plantation in Beluran, Sabah,
Malaysia, a region characterized by a tropical rainforest climate with an average annual rainfall
of 2,800 mm and temperatures ranging from 25°C to 32°C. The study area features flat
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undulating to moderately steep (0° — 24° degrees), making it an ideal environment for evaluating
DEM accuracy across varying terrain conditions. To ensure precise elevation validation, 377
GCPs with an average of 9 to 10 GCPs per Hectare were strategically placed across different
topographic features, including lowlands, slopes, and ridgelines. GCPs were collected using a
CHC 183 GPS GNSS receiver, which provides a horizontal accuracy of 8§ mm + 1 part per
million (ppm) and a vertical accuracy of 15 mm =+ 1 ppm. The reliability of these GCPs was
ensured through differential GPS corrections and cross-validation with LiDAR-derived reference
points, minimizing measurement errors before integrating them into the DEM accuracy
assessment.

Figure 1: Location of the study area (a) and ground control points (GCPs) (b)

2.2 Open-Source DEMs

This study evaluated the vertical accuracy of several open-source Digital Elevation Models
(DEMs) to determine their suitability for terrain analysis in oil palm plantation planning. The
DEMs assessed included ALOS World 3D (AW3D30), TanDEM-X, ASTER GDEM, SRTM,
Copernicus GLO-30, FABDEM, and a high-resolution Drone RGB-derived DEM obtained via
aerial photogrammetry. TanDEM-X and ALOS AW3D30 offer comparatively high vertical
accuracy (£2-10 m), whereas ASTER GDEM and SRTM are more susceptible to elevation
discrepancies due to vegetation interference and sensor limitations (Rabby et al., 2020).
Although Copernicus and FABDEM provide wide global coverage and improved surface
representation, their accuracy in complex, heterogeneous terrain remains insufficiently validated
(Pareta & Pareta, 2024). The Drone RGB DEM, derived from aerial photogrammetry, delivers a
fine spatial resolution but is prone to elevation error caused by surface reflectance and vegetation
cover (Scott Watson et al., 2019). For consistency, all DEMs were resampled to a 10 m x 10 m
resolution and reprojected to the UTM Zone 50N. Their vertical accuracy was evaluated against
both LiDAR-derived elevation data and a set of 377 GCPs. To ensure the reliability of the GCPs,
measurements were collected using a CHC 183 GNSS receiver, which offers a horizontal
accuracy of £8 mm + 1 ppm and a vertical accuracy of +15 mm + 1 ppm. Differential GPS
corrections and cross-validation with LiDAR reference points were applied to minimize
positioning errors, ensuring a robust ground-truth dataset for DEM validation.
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Table 1. General information of the DEMs

. S Type/ .
DEM Acquisition ensor 2ype Vertical .
. Processing Resolution Datum Reference
Source Period Accuracy
Method
Radar (C-band EGM96/  (Uuemaa et
+ |
SRTM v3 2000 InSAR) 10-16 m 30m WGSs4 al., 2020)
Optical (Stereo EGMY96/  (Rabby etal.
_ +8— >
ASTER 2000-2013 Imagery) 8-15m 30 m WGS84 2020)
. X-band Radar EGM2008 (Pareta &
_ 44—
Copernicus 2011-2015 (Reprocessed) 4-5m 30m / WGS84  Pareta, 2024)
SRTM &
Copernicus, with EGM2008  (Brochado &
_ +5_
FABDEM 2011-2015 surface object >-10m 30m / WGS84  Renno, 2024)
removal
Panchromatic EGM96/  (Tabunshchik
- +5_
ALOS 2006-2011 Stereo Imagery 5-10m 30m WGS84 et al., 2023)
X-band Synthetic
TanDEM-X  2010-2014 Aperture Radar +2-10m 30 m EGM96/  (Shen etal,
WGS84 2023)
(SAR)
Photogrammetry GNSS (Scott
Drone DEM Varies (DJI Mavic 3 +5-20 cm <Sm GPS Watson et al.,
Enterprise RTK) 2019)
LiDAR . . . GNSS (Chai et al.
+5— )
DEM Varies Airborne LiDAR 5-10 cm <5m GPS 2022)

2.3 Terrain Attribute Extraction and Feature Selection

To support the DEM correction, several topographic and terrain-derived attributes were extracted
from each dataset. These include elevation, slope, aspect, curvature, TPI and TRI. These
variables were chosen based on their proven relevance in influencing elevation error across
various terrains, particularly in vegetation-dense and undulating regions. Feature selection was
performed using the RF algorithm, which ranks variable importance using two established
methods: Mean Decrease in Impurity (MDI) and Mean Decrease in Accuracy (MDA). MDI
quantifies the reduction in variance caused by a variable across decision tree splits, while MDA
evaluates the decrease in model accuracy when a specific variable is permuted. This dual-ranking
approach allowed for a robust identification of the predictors most associated with vertical
discrepancies. Across all models, TPI, slope, and curvature consistently emerged as the top
contributors to the elevation error. To ensure consistency and comparability across all DEM
datasets, the same RF regression parameters were applied throughout the analysis.

2.4 Random Forest and Geographically Weighted Regression (GWR) Models

The JASP open-source software used to run the Random Forest (RF) algorithm was configured
with 500 trees (ntree =500) and three variables randomly selected at each split (mtry = 3).
Models were trained on 80% of the ground control point dataset (n = 2,863) and validated on the
remaining 20% (n=715), with out-of-bag (OOB) error used as the internal validation metric.
The predictive performance was quantified by the coefficient of determination (R?) and the root
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mean square error (RMSE), representing the explanatory power and predictive accuracy,
respectively. To ensure a robust assessment of the variable importance, a permutation-based
mean “dropout loss” was computed over 100 permutations. These hyperparameter settings and
validation procedures were applied uniformly across all DEM-difference models to maintain the
direct comparability of performance metrics and variable-importance rankings. While RF
effectively captured the nonlinear relationships between geospatial predictors and elevation
error, it did not account for spatial heterogeneity, limiting its capacity to correct location-specific
discrepancies. To introduce spatial adaptability, GWR was implemented as a post-processing
step. GWR allows regression coefficients to vary across space, thereby modeling localized
terrain-error patterns (Kakavas & Nikolakopoulos, 2021; Liu et al., 2020). Residuals from the RF
predictions were used as the dependent variable in the GWR framework, enabling locally tuned
corrections informed by the landscape’s spatial structure. By integrating RF’s global predictive
strength with GWR’s local adaptability, the hybrid approach delivered more accurate and
spatially consistent DEM corrections. The final outputs were evaluated against LiDAR-derived
elevations and independent GCP measurements to assess the improvements in the vertical
accuracy across the DEM sources.

2.5 Methodology

2.5.1 Study Area and Ground Data Collection

The study was carried out within a 39-hectare oil palm plantation in Beluran, Sabah, Malaysia, a
region characterized by a tropical rainforest climate with annual rainfall of approximately 2,800
mm and temperatures between 25°C and 32°C. The terrain ranges from flat to moderately steep
(0°-24°), offering a suitable gradient for evaluating DEM performance across varying landforms.
A total of 377 Ground Control Points (GCPs) were distributed across geomorphological zones
including lowlands, slopes, and ridgelines to ensure spatial representativeness. Elevation
measurements were obtained using a CHC 183 GNSS receiver (8 mm horizontal and £15 mm
vertical accuracy), corrected via differential GPS (DGPS) and validated against a LiDAR-
derived DEM to ensure high positional accuracy.

2.5.2 Digital Elevation Models (DEMs) and Preprocessing

Seven DEMs were evaluated: ALOS AW3D30, ASTER GDEM v3, Copernicus GLO-30,
FABDEM, SRTM v3, TanDEM-X, and a high-resolution drone-derived DEM from aerial
photogrammetry. A LiDAR-based DEM served as the benchmark due to its sub-meter vertical
accuracy. To ensure spatial consistency, all datasets were resampled to a 10 m x 10 m grid and
projected to UTM Zone 50N. Vertical accuracy was assessed by comparing elevation values
against both the LIDAR DEM and the 377 GCPs. Metadata and characteristics for each DEM,
including resolution, source, and reported accuracy, are summarized in Table 1.

2.5.3 Terrain Attribute Extraction and Feature Selection

To support the elevation error modeling, six terrain attributes including slope, aspect, curvature,
Topographic Position Index (TPI), Terrain Ruggedness Index (TRI), and roughness—were
derived from the DEMs for use in elevation error modeling. Selection was informed by prior
studies highlighting their influence on DEM accuracy in complex terrains. Random Forest (RF)
was used to assess predictor importance using Mean Decrease in Impurity (MDI) and Mean
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Decrease in Accuracy (MDA). Model hyperparameters, including the number of trees, maximum
depth, and minimum samples per leaf, were optimized through grid search and five-fold cross-
validation, using RMSE and R? as performance metrics.

2.5.4 DEM Error Modeling Using the RF and RF-GWR Hybrid

A two-stage hybrid model was implemented for DEM error correction. In the first stage, RF
regression modeled elevation errors based on terrain attributes, with data split into 80% training
and 20% testing subsets. While RF effectively captured non-linear terrain-error relationships, it
lacked spatial sensitivity. To address this, GWR was applied in the second stage to model RF
residuals, using a Gaussian kernel with adaptive bandwidth selected via corrected Akaike
Information Criterion (AICc). This spatially adaptive correction improved the model's ability to
reflect local elevation variations, resulting in enhanced vertical accuracy across all DEMs.

2.5.5 Model Evaluation and Accuracy Assessment

Model performance was evaluated using standard metrics: the coefficient of determination (R?)
to assess variance explained, root mean square error (RMSE) for prediction accuracy, and
residual sum of squares (RSS) for model fit. The spatial kernel bandwidth in GWR was
optimized using AICc. Validation was conducted against both the LIDAR DEM and GCP dataset
to ensure robustness across varying topographic conditions. In addition to statistical evaluation,
spatial residual maps and elevation profiles were generated to visualize model improvements and
assess local terrain consistency post-correction.
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Figure 2: Methodology workflow of the research
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Open-source DEM before ground control points (GCP) adjustment
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(d) Open-source DEM after ground control points (GCP) adjustment
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Figure 3: (a) Top-down view of the Digital Elevation Model (DEM), (b) 3D DEM view, and a
comparison of the cross-section profile before and after GCPs (c & d)

3. RESULTS

3.1 Influence of Ground Control Points (GCPs) on DEM Accuracy

The initial evaluation revealed substantial discrepancies in the vertical accuracy across
uncorrected DEMs, particularly in forested and topographically complex areas. Elevation
deviations ranged from 10 to 80 meters when compared with the LiDAR reference, with
significant spatial artifacts such as abrupt terrain shifts and slope distortion (Figure 4). These
inconsistencies were most pronounced in the steep terrain, where open-source sensors struggled
with vegetation occlusion and spatial resolution limitations. Following the integration of 377
high-precision GCPs, the vertical accuracy improved markedly. Post-GCP calibration, the
elevation errors were reduced to between 2 and 60 meters across all DEMs. The terrain profiles
became smoother, and the elevation transitions were more realistic (Figure 5). This underscores
the essential role of ground-truth data in mitigating systematic vertical biases, aligning with the
findings of Uuemaa et al., (2020) and demonstrating that even globally available DEMs can be
significantly refined with localized calibration.
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Figure 4: Pre-correction Digital Elevation Models (DEMs)
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3.2 Random Forest Model Performance in Predicting Elevation Errors

This study provides a comparative assessment of seven DEMs using a Random Forest regression
approach to predict elevation errors based on terrain-derived features. The analysis reveals that
macro-topographic variables, particularly TPI and curvature, are the most influential predictors
of elevation discrepancies across all DEMs. In contrast, aspect consistently contributed the least,
underscoring its limited role in error modeling at broader spatial scales. As show in table 2
below, Copernicus DEM emerged as the best overall performer (R? = 0.608), while ALOS
achieved the highest accuracy (lowest RMSE = 0.722). Conversely, ASTER GDEM showed
significantly weaker predictive capability, reaffirming known issues with vegetation-induced
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distortions. The results demonstrate that while Random Forest models effectively reduce broad-
scale elevation biases, they require augmentation with additional environmental variables (e.g.,
land cover, canopy height) to capture fine-scale variation. This emphasizes the need for hybrid
approaches that integrate the DEM structure with contextual surface data for robust elevation
error correction.

Table 2: Comparative performance of DEMs in predicting elevation errors using random forest
and geospatial feature predictors

DEM R? RMSE  Predictors (Most Predictive to Least Predictive)
ALOS 0.589 0.722 TPI, Curvature, TRI, Roughness, Slope, Aspect
ASTER 0.521 1.125 TPI, Curvature, TRI, Roughness, Slope, Aspect
Copernicus 0.608 0.786 TPI, Curvature, Roughness, TRI, Slope, Aspect
Drone 0.569 0.815 TPI, Curvature, TRI, Roughness, Slope, Aspect
FABDEM 0.572 0.857 TPI, Curvature, TRI, Slope, Roughness, Aspect
SRTM 0.571 0.897 TPI, Curvature, TRI, Roughness, Slope, Aspect
TanDEM-X 0.588 0.820 TPI, Curvature, TRI, Roughness, Slope, Aspect

3.3 Performance of the Hybrid RF—-GWR Models Across DEMs

In this study, a hybrid modeling framework was employed by integrating RF prediction with
GWR. The residuals (or predictions) from the RF model served as the dependent variable in the
GWR, enabling the spatial dissection of the terrain to influence the prediction performance. This
approach allowed for both high-accuracy predictions via machine learning and spatial
diagnostics through geographically localized regression. Table 3 summarizes the diagnostic
metrics of the hybrid RF+GWR models across seven DEMs. The models varied in performance
based on AIC, corrected AIC (AICc), residual sum of squares (RSS), and R? statistics.

Table 3: Comparing the hybrid RF+GWR model results across the different DEM using the
Random Forest prediction

) Top GWR Predictor (b

DEM AIC  AICc RSS R Adj.R? 1\1/’[6 o Coefﬁciem()y
TanDEM-X  1999.50 247673 329.16 0914 0.898  TPI(Median = 2.063)
SRTM 2625.04 328226 379.92 0913 0.892  TPI(Median =2.153)
FABDEM 247794 295548 37623 0906 0.889  TPI(Median=2.121)
DRONE 175373 2220.05 307.93 0910 0.894  TPI (Median=1.817)
COPERNICUS 1852.73 2330.51 31590 0914 0.898  TPI(Median = 1.940)
ASTER 3643.63 4300.00 505.12 0.905 0.883  TPI(Median =2.122)
ALOS 1065.85 1539.07 25375 0910 0.894  TPI (Median=1.932)

* AIC = Akaike Information Criterion & * AICc = Akaike Information Criterion corrected

The ALOS-based hybrid model demonstrated the best overall performance, achieving the lowest
AIC (1065.85), lowest AICc (1539.07), and smallest RSS (253.75), with a high adjusted R? value
of 0.8940. These results suggest that the terrain derivatives derived from the ALOS data are
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particularly effective in explaining the spatial variation in the RF residuals. Close contenders
included the DRONE and COPERNICUS-based models, which also achieved high adjusted R?
values of 0.8943 and 0.8988, respectively, and maintained relatively low AIC scores. In contrast,
the ASTER-based hybrid model exhibited the weakest performance, with the highest AICc
(4300.00), the largest RSS (505.12), and the lowest adjusted R? (0.8830) among all DEMs. These
results may reflect the known limitations of ASTER in terms of vertical accuracy and resolution,
which likely affect the reliability of its derived terrain metrics in localized spatial analysis.
Across all hybrid models, the TPI consistently emerged as the most influential topographic
predictor, based on the median GWR coefficients. The SRTM model recorded the highest TPI
median value (2.153), followed closely by ASTER (2.122), FABDEM (2.121), and TanDEM-X
(2.063). Even in models with lower overall performance, the TPI retained its dominant influence.
This consistent pattern indicates that landscape position features (e.g., valleys, ridges, flat zones)
have the strongest and most stable spatial correlation with the RF prediction outcomes,
regardless of the DEM source. TPI’s prominence suggests it captures critical geomorphological
variations that strongly influence the spatial structure of model errors or predictions. Other
variables, such as curvature, slope, roughness, and TRI, showed more variability across the
DEMSs and had lower median coefficients. The curvature was typically negative, suggesting that
concave or convex terrain forms may negatively impact the RF prediction accuracy. Roughness
and TRI contributed moderately but inconsistently across the models.

3.4 Residual Error Analysis Across Modeling Approaches

Table 4 presents the descriptive statistics of the residual errors for the seven digital elevation
models (DEMs), evaluated using three modeling approaches: (i) uncorrected residuals from the
raw DEMs, (ii) residuals from the random forest (RF) regression, and (iii) residuals from a
hybrid model combining the random forest with the geographically weighted regression
(RF+GWR). Residuals were computed as the difference between the DEM-predicted elevations
and the GCPs benchmark elevations.

Table 4: Residual error statistics for the raw, RF, and RF+GWR Models

DEM Mean Std. Deviation Minimum Maximum
Residual ALOS 0.041 1.135 -5.134 7.163
Residual ASTER 0.050 1.627 -8.564 10.55
Residual COPERNICUS 0.019 1.272 -6.185 6.284
Residual DRONE -0.008 1.216 -7.550 6.314
Residual FABDEM 0.053 1.334 -5.735 8.124
Residual SRTM 0.074 1.399 -5.858 8.792
Residual TAN DEM-X 0.030 1.293 -5.686 8.343
Residual RF ALOS 0.043 0.901 -3.417 4.459
Residual RF ASTER 0.057 1.225 -5.768 7.524
Residual RF COPERNICUS 0.019 1.015 -4.500 4.033
Residual RF DRONE -0.003 0.979 -4.447 3.714
Residual RF FABDEM 0.058 1.062 -3.966 5.028
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Residual RF SRTM 0.078 1.106 -4.168 5.630
Residual RF TanDEM-X 0.034 1.035 -3.85 4.950
Residual RF+GWR ALOS -97.81 0.266 -1.246 1.119
Residual RF+GWR ASTER -0.001 0.376 -1.784 1.966
Residual RF+GWR Copernicus 0.002 0.306 -1.747 1.169
Residual RF+GWR DRONE 0.002 0.293 -1.827 1.17

Residual RF+FGWR FABDEM -52.16 0.324 -1.547 1.402
Residual RF+GWR SRTM -0.002 0.326 -1.533 1.711
Residual RF+GWR TanDEM-X 0.001 0.303 -1.344 1.321

Across all DEMs, the raw residuals exhibited the highest variability, with standard deviations
ranging from 1.135 (ALOS) to 1.627 (ASTER). Most DEMs also showed positive mean
residuals, indicating a tendency to overestimate elevation. For instance, the ASTER model had a
mean residual of 0.050 m and a maximum residual of over 10.5 m, suggesting a significant
vertical error and high spread. Applying the Random Forest regression led to a substantial
improvement in the model performance. All DEMs showed a marked reduction in the standard
deviation, indicating enhanced precision. For example, the standard deviation of the FABDEM
residuals decreased from 1.334 to 0.972. The mean residuals also approached zero, suggesting a
reduced bias. The RF model consistently outperformed the raw DEMs, demonstrating its
effectiveness in learning terrain-related error patterns. The hybrid RF+GWR model further
refined the residual accuracy. It consistently achieved the lowest standard deviations (e.g., 0.303
for TanDEM-X, 0.306 for Copernicus) and mean residuals nearly equal to zero, indicating
minimal spatial bias and high local accuracy. Notably, the hybrid approach reduced the standard
deviation of the FABDEM residuals from 0.972 (RF-only) to 0.324, underscoring the value of
incorporating spatial heterogeneity through the GWR. In summary, the hybrid RF+GWR
approach outperformed both the raw DEMs and the RF-only models, producing the most
accurate and spatially consistent elevation estimates. These findings support the integration of
spatial regression into machine learning workflows to enhance DEM correction and surface
modeling accuracy.

4. DISCUSSION

The integration of RF and GWR provides a robust framework for enhancing the vertical
accuracy of DEMs in a complex tropical landscape. The findings demonstrate that the RF-GWR
model effectively reduces systematic and spatially variable elevation errors, resulting in
substantial improvements across all evaluated DEM products. The hybrid model yielded
particularly strong performance in TanDEM-X and ALOS datasets, with post-correction R?
values exceeding 0.91 approaching the precision of LiDAR-derived elevation models. Similarly,
the Copernicus GLO-30 DEM exhibited the greatest relative enhancement, with R? improving
from 0.608 to 0.914 These results affirm the suitability of the RF-GWR approach for terrain-
sensitive applications and support previous findings that emphasize the importance of combining
data-driven learning with spatially adaptive techniques to correct elevation biases (Dong et al.,
2020; Yu et al., 2021; Zhang & Yu, 2022).
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The model's success can be further contextualized within a wider framework of literature that
highlights the role of local terrain attributes in shaping DEM error patterns. The consistent
identification of topographic predictors particularly TPI, slope, and curvature aligns with prior
studies on elevation modeling in forested and mountainous terrain (Mishra et al., 2021; Zhang &
Yu, 2022). While the RF model effectively captured the nonlinear relationships between these
predictors and elevation error, its inability to account for spatial autocorrelation in complex
terrain was addressed through the incorporation of GWR. The spatial variation of regression
coefficients in the GWR model enabled more nuanced, location-specific corrections, leading to
smoother residual patterns and improved local accuracy (Amelia et al., 2023; Li, 2022).

Notwithstanding its strengths, several limitations should be acknowledged. First, the framework
is reliant on high-quality GCPs for calibration and validation. In regions where such data are
sparse or difficult to acquire, model accuracy may be compromised. This constraint presents
logistical and financial challenges for large-scale deployment or community-led mapping
initiatives (Mehra & Swain, 2024; Yu et al.,, 2021). Second, the GWR component is
computationally intensive, potentially limiting real-time scalability and cloud-based
implementation without further optimization (Al-Nasrawi et al., 2021; Ganju et al., 2020).
Lastly, the model is temporally static and does not account for landscape dynamics such as
seasonal vegetation shifts, land-use changes, or erosion, which may affect DEM accuracy over
time (Hu et al., 2024).

Future research should therefore prioritize several directions. The integration of advanced
machine learning algorithms such as Extreme Gradient Boosting (XGBoost) or Convolutional
Neural Networks (CNNs) may further improve predictive accuracy and computational efficiency
(Dumarevskaya & Parent, 2025). In parallel, geostatistical interpolation methods such as kriging
could be incorporated to complement the RF-GWR model, offering finer control over spatial
prediction (Idrissi et al., 2023). Finally, the development of cloud-based, real-time correction
workflows leveraging open-access Earth observation data would support operational use cases
such as flood forecasting, terrain planning, and precision agriculture, particularly in geospatially
constrained environments (Baldarelli et al., 2024; Zamora-Espinoza et al., 2024).

5. CONCLUSION

This study presents a hybrid modeling framework that integrates RF with GWR to correct
elevation inaccuracies in open-source DEMs within a tropical oil palm plantation context. Using
a robust dataset of 377 high-precision GCPs and LiDAR-derived reference surfaces, the
framework was applied to six global DEM products and one drone-derived model. The results
demonstrated significant improvements in vertical accuracy, with post-correction R? values
reached 0.914 for TanDEM-X, 0.910 for ALOS, and a notable increase for Copernicus GLO-30
from 0.608 to 0.914. These findings underscore the effectiveness of combining machine learning
with spatial regression to address both systematic and localized elevation errors in complex
landscapes. The model offers a scalable, cost-effective alternative to LiDAR for elevation
modeling tasks in resource-constrained settings and provides practical value for precision
agriculture, hydrological planning, and environmental monitoring. The proposed framework not
only improves prediction performance but also captures spatial heterogeneity more effectively
than single-method approaches. It is recommended that future research extend this framework
through the integration of temporal datasets, enabling dynamic monitoring of terrain changes.
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Additionally, deploying the model in cloud environments and incorporating newer machine
learning algorithms can further enhance its operational scalability. These advancements will be
instrumental in supporting real-time decision-making and adaptive land management across
diverse and data-limited geographies. In summary, the RF-GWR hybrid model constitutes a
valuable contribution to the field of digital terrain analysis, offering both methodological
innovation and practical applicability in enhancing the accuracy of globally accessible elevation
datasets.
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