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Abstract: The evaluation of contact angle (CA) of air-solid composite surface is growing in its
importance in membrane separation technology. The reason is that the super-hydrophobic property of
the surface allows self-cleaning of membrane surface in various membrane separation processes and
also mitigates pore wetting, which is considered the serious disadvantage of membrane distillation.
The Cassie-Baxter equation is currently considered one of the best tools to evaluate CA of the air-
solid composite surface. However, most of the experimental works of CA measurement were carried
out by the sessile drop method, in which the size of the droplet is limited to micro- or submicrometer
range, and it is not known how CA is affected by the air content of the air-solid composite surface
especially when the droplet size is in a range of millimeter. In this work, the meniscus shape of a large
water droplet with a size greater than the capillary length (2.713 mm) was calculated for different air
contents at the air-solid surface by solving the Young-Laplace differential equation. It was concluded
that the effect of f; (fraction of solid surface) on CA does not depend significantly on the droplet size,
even though the droplet flattens considerably as the droplet size increases.
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1. Introduction

The enhancement of CA on a rough surface has attracted much attention in recent years. For
example, the self-cleaning property of the plant leaves, called lotus effect [1], is being
mimicked in the design of synthetic membranes.

It is also well known the air trapped in the grooves of a rough membrane surface makes the
surface ultra-hydrophobic and prevents water from entering the membrane pore. This
phenomenon is utilised to mitigate pore wetting of membranes for membrane distillation [2].

The surface of any rough solid has a greater CA than a smooth surface, meaning that the
experimentally measurable CA, called the apparent CA, is greater than the ideal CA, called
Young CA, which applies to smooth solid surfaces. The Young equation was adapted by
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Wenzel and then Cassie-Baxter to relate these two CAs with each other, depending on the
state of surface wetting (Figure 1) [3,4].

Wenzel proposed the following equation (1) [3], where » is a unitless surface roughness
factor that expresses the degree of surface heterogeneity [5]. 8y and &, are, respectively, the

Young and apparent contact angle (°).

cosd,, = rcost, (1)

Cassie and Baxter, on the other hand, attempted to extend Wenzel’s analysis to rough porous
surfaces [6]. The simplified version of their model for water is given by the following
equation (2) [3]:

cosB.gz = f.(cosf, + 1) -1 (2)

where Ocp is the apparent CA (°) and f; is the fraction of solid surface which is in contact with
the liquid water.

In the Cassie and Baxter model, water contacts only the solid surface, and the grooves (pores)
are completely water-free and filled with air. Since air is superhydrophobic with a CA of 180°,
the CA of the air-solid composite surface becomes greater than the CA of the solid.

(@) (b) (©) (d)

Figure 1. Schematic of surface wettability on ideal or rough surfaces according to the (a) Young, (b) Wenzel, (c)
intermediate, and (d) Cassie-Baxter equations, adapted and redrawn from [3].

Due to the growing importance of the surface modification to prevent the surface wetting,
there is continued interest in revisiting the Cassie-Baxter equation to propose new ways of its
derivation or modifications [7,8]. An overview of the Cassie-Baxter equation is also available
in [9].

It should also be reminded that the experimental measurement of CA is carried out in most
cases by the sessile drop method where droplets of micrometer or semi-micrometer size are
used to avoid the gravity effects, and under such circumstances, the droplet shape is
approximately spherical. A question will then arise, how CA is affected by the surface
morphology when the droplet size is so large that its meniscus shape is no longer spherical
under the gravity effect. This question is crucial, as droplets in millimeter or even centimeter
range are frequently observed in real life.

Although the effect of gravity on the CA has been discussed in some studies [10-12], these
works did not consider the influence of surface morphology. Tang et al. [13] is the only one
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that addresses both surface morphology and gravity effects on CA. However, the pillar size
used in their paper as the parameter for the microstructure is limited to nanometer range.

The objective of this work is to examine how CA is affected by the air content of the air-solid
composite surface especially when the droplet size is as large as few millimeters. To this end,
the Young-Laplace differential equation is solved to draw computationally the shape of the
water droplet on a rough surface and then determine the CA at the edge of the droplet. For
water, it is generally accepted that droplets larger than the capillary length of 2.713 mm have
a non-spherical shape [14]. In this work, meniscus widths is stretched to more than five times
the capillary length, and the CA of such large droplet is determined computationally.

2. Materials and Methods

2.1 Using Circular Geometry: Applicable only when the size of the droplet is much smaller
than capillary length | = 2.713 mm

When the size of the water droplet is smaller than the capillary length, the droplet can be
assumed as a sphere cap (or a circular segment in 2D) as shown in Figure 2.

A (area)

) «—— p —»

Figure 2. Droplet (blue colored) shape as a circular segment

In the figure:
¢ =28 3)
R =rsinf 4)
H=r(1—rcos#) (5)

The area of the circular segment, A4, is:
:":

A=—(p —sing) (6)
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Using these relationships, the contact angle, &, as a function of solid fraction, f;, is calculated

by the following steps:

a. A setof R(1)and (1) for a circular segment on a 100 % solid surface (f; =1) is chosen.
b. H(1) and A(1) of the above circular segment are calculated as follows:

(=300 g
From equation (5) and (6): ?

H(1) = ;5 po5 (1 —cos8(1)) ®)
and )

A(1) = %(Bi‘:'ﬁ:’ﬂ]' (26(1) — sin 26(1) ) ©9)

c. When there is no solid on the floor (f; = 0), the floor is formed only with air, whose
contact angle 8(0) is 180°. Then, the water droplet becomes a sphere (a circle in 2D).
The circle’s area, A(0) is now set equal to A(1), and the height of the circle, H(0), is
calculated by:

H(0) = Ew'lﬁ (10)

w

d. H(f.) for a given value of £, (0 < f, < 1) is now calculated as a weighted average of
H(1) and H(0):

H(f) = fH(1) +(1— f)H(0) (11)
A(f.) remains equal to A(1).

Then, similar to equations (8) and (9):

H(f,) = s (1= cos6(£.)) (12)
A(F) = 4() = (L) (26(5) - sin26(£,)) (13)

By solving equations (12) and (13) simultaneously, R(f.) and &(f.) can be obtained as a

function of f..

2.2 Solving the Young-Laplace Differential Equation

It is known that the shape of a sessile droplet on a horizontal plate can be obtained by solving
the Young-Laplace equation:

@h an .,
|;|'-5_ _ _:I_ dr —7 I - (14)
(1+{3—f} } ;--IIH[E—E} } g ~E}
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Where r and / are the distance from the origin in » and 4 coordinate (see Figure. 3). @, p and

g are the surface tension of water, density of water and gravity constant, and b is equal to
1/(d*h/dr?) (atr = 0) [15].

hA

0

-
»

«— R—» r

Figure 3. The shape of a sessile drop on a horizontal plate
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Figure 4. A segment of water droplet formed above an air filled pore and a piece of solid material

We assume a porous plate where infinitesimally small length, dx, in which air-filed pore and
solid plate are placed side by side (see Figure. 4). Then, the weight of the water pillar on the
air-filled pore is supported by the capillary pressure formed by the meniscus at the bottom of
the water pillar and does not contribute to the balance between surface tension and weight of
the water pillar. On the other hand, the weight of the liquid pillar above the solid plate, given
by pgh contributes fully to the balance.

When the fraction of the solid plate is f. , the gravitational force f,pgh is balanced by the

surface tension in segment dx. Then, the following equation applies instead of equation (14):

&1 a o
n:r5" BT a_’r TR -= (15)
(@) @) ° &
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where b =1/(d%h/dr?) (atT =0) 15)

By normalising:

dx? + dx _

(1“{%}:}”: x(1+[%}:};;3

=fy (16)

[

Where x and y are x = r/fl and y = h/l (see Figure 3 for r and #), respectively, and b is
equal to 1/(d*y/dx") (atx=0) .1 = Jo/pg =2.713x107 m is called the capillary length,

as mentioned earlier.

CA for a given f, , O(f,) is obtained as follows:

a. A set of R(1)// and 6(1) for a 100 % solid surface (f; =1) is chosen. (see Figure 2 for R
and 6)
b. Equation (16) is solved with the boundary conditions :

%: 0 atx=0 (17)
% = —tan ¥ atx=R(1)/1 (18)

The Bézier curve method is used to solve the differential equation [10,11] as shown in
Appendix.

H(1)/I can be obtained as the height of the drawn meniscus and the area, A(1)/2, is

calculated by
R{1)/1

AQ)/ir=2] ydx (19)
c.  H(0)/l1s calculated by equation (20), similar to equation (10).

——
[A(1y /i

H(0)/1= N (20)

d. For a given f;, (0 < f. < 1) H(fs)/l is calculated by the following equation (21) and
A(f5)/ P2 is set eqal to A(1)/2.
H(f)/l= fH()/1+ (1 - £)H(0)/] 21)

f.  Equation (16) is solved by the Bézier curve method, but this time the boundary
conditions are

Z=o0 atx=0 (22)
y =25 atx =0 23)

with the restriction
AR =275 ydx = A1) (24)
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From the drawn meniscus shape, R(f.)/[ and 6(f.,) are obtained as a function of f,. The

computation was prrformed using Microsoft Excel.
3. Results and Discussion
3.1. Using Circular Geometry

a. R(1)and 6(1) were chosen as 1.1747 x 10~ m and 60°, respectively.
H(1) and A(1) were calculated by equations (8) and (9) as 0.6783 x 10™* m and 1.1302
X 107 m?, respectively.
c. H(0) is calculated by equation (10) as 1.1996 x 107 1
H(f.) becomes
H(f.) = f.x0.6783 x107®+(1—£) x1.1996 x10°m
A(f) = A(1)=1.130210"°m?
0(fs) and R( f.) were calculated for various values of f, and the results are shown in

in the 2" column of Table 1 and 2.

Table 1. & versus f obtained by different methods

5', degree
f 5 Circular geometry Solving Young-Laplace equation Cassi e-B. axter
R(1)/1=0.433 R)/I=5 equation

1.0 60 60 60 60

0.8 78 72.9 72.4 78.5

0.5 107.2 104 103.2. 104.5

0.3 128.3 116 120.2 123

0.0 180 180 180 180

Table 2. R(f.)/I versus f obtained by different methods

RN
f 5 Solving Young-Laplace equation
Circular geometry®
R(1)/1=0.433 RQ)I=5

1.0 0.433 0.433 5
0.8 0.356 0.364 4.11
0.5 0.254 0.247 2.98
0.3 0.186 0.186 2.31

0 0 0 0

aR(f.) was divided by / (= 2.713 x 10-* m) and shown as R(}.)/L
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The meniscus so obtained is shown for each £, in Figure 5.

(a) (b)
0.35
0.3
0.3
0.25 —— - T
0.2 i
#n15 = 0.15
0.1 0.1
0.05 0.05
1] 0
0 n.2 0.4 0.6 0 01 p.2 0.3 DA
X X
(© d)
0.4 0.45
0.35 p—— 0.4

0.25 02'5
> 0.2 > 'Dq

0.15 \ 0.15

}‘
0.1 0.1
0.05 ) 0.02 /

0 0.1 0.2 0.3 0 0.1 0.2 0.3

Figure 5. Meniscus shape for f, = a) 1.0, b) 0.8, ¢) 0.5 and d) 0.3 (Circular geometry)

3.2. Solving the Young-Laplace Differential Equation

3.2.1 When R(1)/I <1

®

R(1)/I and 6(1) for a 100 % solid surface (f; =1) were chosen to be 0.433 and 60°,

respectively. Note that R(1)/] is less than 1; therefore the droplet shape is approximated

by a sphere (a circle for 2D).

b. Solving the Young-Laplace equation, H(1)// and A(1)/F were obtained as 0.250 and
0.079677.

c. H(0)/I was calculated using equation (20) to be 0.45.

d.  H(f.)/lis calculated by:

H(f)/1= f. %0250+ (1—£) X 0.450

Af) A

7 B =0.079677

8
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e. The differential equation (16) was solved for different values of f. with boundary

conditions (22) and (23), with the restriction of equation (24). From the meniscus shape,
O(f.) and R(f.)/l were obtained, and the results are reported in the 3rd column of Tables

1 and 2.
3.2.2 When R(1)/l > 1

a. R(1)/land 6(1) for a 100 % solid surface (f; =1) were chosen to be 5 and 60°, respectively.
Note that R(1)// is more than 1, therefore the droplet shape cannot be approximated by a
sphere (a circle for 2D).

b. Solving the Young-Laplace equation, H(1)// and A(1)//° were obtained as 1.20 and
4.563797.

c. H(0)/I was calculated using equation (20) to be 2.4106.

d. H(f.)/lis calculated by

H(f)/l= f.x 120+ (1—£) x 24106

e. The differential equation (16) was solved for different values of f. with boundary

conditions (22) and (23) with the restriction of equation (24). From the meniscus shape,
O(f.) and R(f.)/l were obtained, and the results are reported in the 4th column of Tables

1 and 2.

The meniscus shapes obtained for each f, are shown in Figure 6.

3.3 By Cassie-Baxter Equation

6 which is now called 8.5, is calculated by equation (2), and the results are shown in the last

column of Table 1.
3.4 Discussions

Looking into Table 1, the results from the circular geometry are mathematically rigorous.
When these results are compared with those of Cassie-Baxter equation, CA was 2.7° higher
for f;= 0.5 and 5.3° higher for f; = 0.3.

The results for R(1)/ = 0.433 should agree with those for circular geometry since the droplet
size is smaller than the capillary length / in this case. However, the former values are lower
than the latter, with a deviation as high as 12.3° at f; = 0.3, indicating inaccuracy of the
solution of the differential equation by the cubic Bésier function. Perhaps accuracy could be
improved by employing a higher order Bésier function.

Interestingly, the CA for R(1)/l = 5 is much closer to the results for the Cassie-Baxter
equation, with a maximum deviation of of 6.1°at £, =0.8.
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Figure 6. Meniscus shape for f; = a) 1.0,b) 0.8,c) 0.5 and d) 0.3 (When R(1)/I = 5)

When all the CA data were plotted versus f; in Figure 7, a single line was drawn with small
scatters the along the line. On the other hand, when Figures 5 and 6 are compared, the
circular segments shown in Figure 5 are considerably flattened in Figure 6 due to the gravity
effect on the large droplet.

From these figures, it can be concluded that the effect of f; (fraction of solid surface) on CA
does not depend significantly on the droplet size, even though the droplet flattens
considerably as the droplet size increases. It should be noted that the effect of the droplet size

10
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on CA is known in the literature, i.e. CA changes with size due to the gravity effect [16].
However, we are reporting the first theoretical study concerning the effect of f; on CA for
different droplet sizes, which needs to be experimentally validated.

200
180 W

160

140

120 9

100 . W Cassie-Baxter
Approximation by sphere

0, degree

@ Small droplet

60 [ ] ® Large droplet
40
20

0
0 0.2 0.4 0.6 0.8 1 1.2

fs

Figure 7. & versus f; obtained by various methods

Further looking into Table 2, R(f.)/l values for the circular geometry and those for R(1)/] =

0.433 are almost the same. This indicates that CA is more sensitive to errors caused by the
approximation in solving the differential equation than R(f.)/ L

4. Conclusions

From this work the following conclusions are drawn:

1. In this study, a third-order Bésier curve was used to solve the Young-Laplace equation. It
is known that the approximation of the third-order Bésier curve is not precise enough to
calculate the meniscus of a sessile droplet on a horizontal surface. It is, therefore,
desirable to use the Bésier curve of the higher-order.

2. It could not be concluded that CAs calculated for the water droplets with sizes larger
larger than the capillary length differ from those calculated for the circular segment or
those derived using the Cassie-Baxter equation. The effect of f; (fraction of solid surface)
on CA does not depend significantly on the droplet size, even though the droplet flattens
considerably as its size increases.
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Appendix

The functions for the cubic Bézier curve and its first and second derivatives are given as

B(t)=(1—1t)%P,+3(1—t)*tP, + 3(1 — t)t*P, + t*P, (A1)
B'(t)=3(1—t)*(P, —Py) +6(1—t)t(P,— P,) + 3t*(P; — P,) (A2)
B"(t) =6(1—t)(P,— 2P, +P,) + 6t(P, — 2P, + P,) (A3)

In terms of (x, y) on the rectangular coordinate,

x(t) =(1—1)3x, + 3(1 —t)%tx, + 3(1— t)t3x, + t3x, (A4)

y(t) = (1 =ty +3(1 —8)%ty, +3(1 — )%y, + %y, (AS5)

X'(8) == = 3(1 - )%(xy — x5) + 6(1 — Dt(x, — x,) + 3% (xr; — x,) (A6)
V(0 = =301 - 0%, — o) + 6(1 =) t(y; — ) + 3t (35 — ¥,) (A7)
x"(0) =2 = 6(1 — ) (x, — 23, + x5) + 6t(x5 — 23, +7,) (A8)

V() = =6(1 - (3, — 2y, +3) + 6t(35 — 23, + ¥) (A9)

o dy dy .
Further, the derivatives d—:" and d—i can be written as
X x

5,
L

dy

HEE

@ _ : (A10)
) dxy (Y edpyfdtx
ﬂzl::dr}lidrz} [u’r}liu'r:} (A1)

da? {%‘}“

Thus, for a given set of parameters (x4 xy,%5, X3,V V.V, and ¥3) , we can obtain

x, }r,%and 22 via equations (A4) —(All) at each ¢, that is changed from 0 to 1. y as a

de®
function of x is obtained by finding the parameters that can make the left side of equation
(16), as close to zero as possible at any .

It should be noted that among the 8 parameters, 4 parameters are fixed by the boundary

conditions and do not subject to the change in the optimization process. Therefore, only
remaining 4 parameters are considered as the adjustable parameters for optimization.

13


https://doi.org/10.51200/susten.v2i1.5052

	It is also well known the air trapped in the groov
	The surface of any rough solid has a greater CA th
	[10]M Liu, ZQ Wu, and DC Yin. Measurement of cont

	[11]A 

