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Abstract: After a severe disaster, some places may be unreachable for rescue operations due to bridge 

destruction. A scissor-type deployable bridge is a novel rescue technology that enables a lifeline to be 

quickly recovered during a catastrophic event. Several structural analysis approaches have been used 

to predict the structural behavior of deployable bridges, yet none of the prior studies have used 

Artificial Neural Networks (ANNs) to predict the structural behavior of scissor-type deployable 

bridges. This research explores the potential of ANNs to predict the performance of a scissor-type 

deployable bridge. The study aims to leverage the capabilities of ANNs in modeling complex 

relationships to forecast key parameters related to the bridge's functionality. ANNs can assist 

engineers in optimizing the design parameters of scissor-type deployable bridges by predicting how 

different configurations affect total deformation and stress levels. The analysis involves training the 

neural network with relevant data to learn and generalize patterns, enabling more informed 

predictions for diverse scenarios. Lastly, the application of ANNs in simulating bridge behavior 

contributes to advancing research in structural engineering, particularly in the field of deployable 

structures, by providing insights into complex structural responses that are challenging to model 

analytically. 
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1. Introduction

One of the most important aspects contributing to nations' quick growth and stability is the 

development of their transportation infrastructure networks. Bridges are the primary 

components of the infrastructure transportation network, and they are frequently regarded as 

lifelines for connecting communities and regions [1]. Natural and human-caused calamities, 

including tsunamis, hurricanes, earthquakes, floods, and inadequate designs, have seriously 

threatened bridge infrastructure safety in recent decades. Statistical studies predict a five-

times rise in severe natural disasters over the next 50 years [2]. For example, Typhoon 

Morakot in 2009 triggered 88 floods in Taiwan, damaging over 200 bridges and destroying 

over 100 [3]. In the Philippines, the October 2013 earthquake in Bohol is regarded as the 

strongest and most catastrophic natural event to hit the nation, costing over Php 2 billion in 

infrastructure losses [4] and resulting in 41 bridges being reported destroyed. 
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To survive calamities like these, we need to create a new rescue structure. We must examine 

how to repair a damaged structure or establish a new sort of rescue system as quickly as 

possible after a disaster because time is of the essence when trying to save lives. A temporary 

or mobile bridge is a structure that allows a lifeline to be quickly recovered after a tragedy 

[5]. The mobility, adaptability, and standard of a mobile bridge are more demanding than 

those of a regular bridge, and the bridge must be delivered and erected quickly. In addition, a 

bridge must be built to support the weight applied across its width.  

The design and production of emergency bridges began in the 1940s. The Bailey Bridge, 

which is made up of modular panels and was created by British engineer Donald Sie Bailey, 

is the most noteworthy. It is still in use in many places of the world and is particularly 

significant due to its military tactical status and performance [6]. As technology evolves, 

emergency response bridges are foldable and may expand to a fixed size; the extended 

construction is strong enough to withstand loads [7]. One of the notable research that focuses 

on the Mobile Bridge (MB), a specific type of emergency response bridge, explored its 

design and application for natural disaster response. A scissor-type mechanism is the 

fundamental component of the bridge's design that enables rapid deployment. Many test MBs 

of different sizes were constructed and evaluated. The moveable bridge was successfully 

deployed over the real river in less than an hour, with no technical problems, and the 

simulation results demonstrated that it was operational and could be utilized by vehicles [8]. 

Moreover, a study on deployable scissor-type bridges used numerical models based on Finite 

Element (FE) analysis to approach a simpler design. The experimental strain variations are 

found to be compatible with the FE numerical model, with deviations of less than 5% on the 

safe side. The method is considered reliable [9]. Furthermore, influence line diagrams and 

equilibrium equations were used in another study to provide a unique design approach for 

scissor-type bridges. By examining changes in the live load distribution on the structure, the 

suggested methods could precisely calculate each member's size and provide the minimum 

and maximum values of the influence line border when carrying light vehicles [10]. 

However, no research has examined using Artificial Neural Networks (ANNs) for predicting 

scissor-type deployable bridge performance through structural analysis. ANNs can assist 

engineers in optimizing the design parameters of scissor-type deployable bridges by 

predicting how different configurations affect total deformation and stress levels. 

ANNs have been applied in structural engineering to address diverse issues and provide novel 

solutions. One related research conducted is the structural reliability assessment of steel four-

bolt unstiffened extended end plate connections using ANNs [11]. Another study utilized an 

ANN as the basis for creating a prediction capacity model and seismic fragility estimation for 

reinforced concrete (RC) bridges. The capability measures were trained, validated, and tested 

using an ANN model, yielding an excellent agreement between experimental data and 

predicted results, as demonstrated by the high correlation [12]. Hence, this proves that ANNs 

could serve as a better alternative in structural analysis, as they are more convenient to design 

and implement with enough training data. 
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2. Materials and Methods 

This research will review the potentiality and reliability of Artificial Neural Network (ANN) 

to predict the performance of scissor-type deployable bridges. The datasets needed for 

training the ANN model will be based on the chosen reference scissor-type deployable bridge 

from recent studies. The deployable bridge model will be then subjected to Finite Element 

Analysis (FEA) using ANSYS static structural function. The numerical results gathered from 

FEA will be utilized for the development of ANN. Accordingly, the datasets will be trained 

using a back-propagation algorithm in a feed-forward architecture. The design of the ANN 

architecture will define the number of inputs, outputs, neurons, and hidden layers. The input 

datasets include the length, width, height, deck thickness, Gross Vehicle Weight Rating 

(GVWR), modulus of elasticity, density, Poisson’s ratio, yield strength, and ultimate tensile 

strength, whereas, the output datasets are the maximum deformation and maximum stresses.   

The design and training of the ANN for the scissor-type deployable bridge will be done using 

the Neural Network Fitting Tool in MATLAB. In the field of neural network modeling, the 

Neural Network Fitting Tool in MATLAB, known as the “nftool” is a valuable resource for 

beginners and professionals, providing an extensive range of functionalities for the design, 

training, and validation of neural networks for data fitting applications. During the training 

process of the network, the Levenberg-Marquardt Algorithm (LMA) will be implemented. 

When solving non-linear least squares problems, the LMA, sometimes referred to as the 

Damped Least-Squares (DLS) approach, is an effective numerical optimization technique. It 

works especially well for fitting least squares curves, where the objective is to determine a 

model curve's parameters that minimize the sum of the squares of the discrepancies between 

the observed data points and the model predictions. If the error percentage of the trained 

ANN is not acceptable, the trained ANN will be optimized and retrained, continuing in a loop 

until the least possible error percentage is achieved. Mean Squared Error (MSE) will be used 

to check how close estimates or forecasts are to actual values. The value ranges from 0 or 

greater, with lower values indicating higher model accuracy. Finally, the coefficient of 

determination, often known as R-squared, quantifies the fraction of the variance in the 

dependent variable that can be explained by the independent variable. It quantifies the extent 

of diversity within the provided dataset, with R-squared values ranging from 0 to 1, 

indicating the extent to which the dependent variable can be predictable. 

After developing and training the ANN model, the final phase is the prediction of the 

outcome based on the input datasets. The model will continuously carry out iterative 

procedures until the ANN gives the predicted output, which includes the maximum 

deformation and maximum stresses. These output parameters are essential for evaluating the 

safety and structural performance of the scissor-type deployable bridge, which helps 

engineers make well-informed decisions for optimization and improvement. Subsequently, 

the effectiveness of the developed ANN model is examined by comparing the model's 

predicted outputs with the outcomes derived from FEA. 

The proposed methodological process in this study is presented in Figure 1. 
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Figure 1. Flowchart of Artificial Neural Network (ANN) as a Predictive Tool in the Performance of Scissor 

Type Deployable Bridge 

 

3. Results and Discussion 

This section of the research paper gives a summary of previous research and literature that is 

pertinent to concerns about disaster operations by developing a rescue system in the form of 

deployable bridges as a solution. This paper will address several kinds of deployable 

emergency response bridges and their uses, materials for scissor-type bridges, and the use of 

Artificial Neural Networks (ANNs) for predictive modeling in structural analysis of bridges. 

 

3.1 Structural Forms of Deployable Bridges. 

Modern post-disaster rescue equipment, such as emergency deployable bridges, makes it 

possible to access the disaster site, which will facilitate rescue efforts and resulting in the 

saving of more lives [14]. A deployable structure's ability to exist in two distinct stable 

states—the fully folded state and the fully unfolded one—is its most distinctive characteristic. 

The deployable structure is smaller and convenient to transport and store when it is fully 

folded. The structure is durable and capable of supporting weights when completely extended 

[15]. Likewise, to facilitate launching, retracting, transporting, and storing, a lightweight 

bridging system is required [16]. 
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3.1.1 Arch Type Deployable Bridge. 

In the course of the deployment procedure, deployable structures show inconsistencies in the 

member lengths at intermediate geometric configurations. The corresponding snap-through 

event "locks" the structures in their deployed position by generating second-order strains and 

stresses. To take on this limitation, a geometric design approach that takes into consideration 

the discrete joint size and is suitable for deployable arches with any curvature has been 

proposed. The semi-elliptical arch's geometric design has been successfully implemented 

using this type of approach. A preliminary structural design shows that the “arch” is generally 

feasible for light loads and short to medium-span structures [17]. Recent studies demonstrate 

the advantages of deployable arch bridges, such as it is built with a simple configuration and 

may be deployed quickly. The deployable arch bridge has good adaptability; depending on 

the need, the number of bridge span modules can be increased or decreased to fulfill the 

needs of crossing various obstacles. It is very convenient to transport and unfold the arch 

bridge design [15]. However, the increased number of joints may increase the amount of 

maintenance required. Long vehicles with low clearances (such as tractor-trailers) may be 

unable to cross due to the arch's curvature, which might be solved by constructing ramps to 

lessen the slope at the extremities. Finally, when the arch's height is combined with 

significant wind loads, the arch may overturn in the transverse direction [18]. 

 

3.1.2 Scissor Type Deployable Bridge. 

The scissor mechanisms are most commonly used in the field of temporary dome 

architecture. Organizing the scissor units as a geodesic grid or maximizing the scissor 

components' sectional area improves their strength and stability. To enable safe passage for 

people and vehicles, an emergency bridge's design must ensure construction speed and 

structural strength [19]. 

 

The idea of multi-folding microstructures and earlier research on deployable structures have 

led to the proposal of a novel kind of emergency bridge known as a Mobile Bridge (MB) 

[20]. Although the upper and lower chords are the primary elements that resist sectional 

stresses in a typical truss bridge, the MB lacks chords but can be carried and built rapidly 

utilizing a scissor mechanism [21].  In its most basic form, the scissors mechanism is made 

up of two straight linear elements. A pivot connects the pieces at their centers, forming a 

hinge connection. The two members are in the shape of the character “X” in the fully 

deployed state. As seen in Figure 2, two hinges connect one unit to the next. The structure 

can be deployed and has a big length-to-width ratio from the expanded to the folded state. 

There are two types of compacts: non-deployed and deployed. In its current state, the 

construction is easily transportable and may be kept for future use. In this way, this method is 

particularly effective for systems that need to be moved and kept in a small amount of space 

at a time [8]. 

 

 
Figure 2. Basic Concept of Scissor-Type Bridge 
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When the scissors mechanism is successfully applied to the bridge structure, the structure 

should have the following features: it should be easier to deploy and fold with just one 

control force, have a shorter transport time than a more conventional temporary bridge, and 

be more efficient in terms of size when comparing its deployed and folded states. The scissor-

type mobile bridge has a smaller live load capacity and span than other bridge types due to 

the lack of upper and lower chord elements, which, when present, resist bending forces. As a 

result, the lighter bridge may be erected more rapidly and its components carried in a light 

vehicle [9]. Although it offers several advantages, research studies have identified drawbacks 

with the scissor-type bridge mechanism. Due to the coupled stiffness of these bridges, the 

vibration of scissors-type movable bridges is more sensitive in the horizontal rather than 

vertical direction [22]. 

 

3.2 Materials Used in a Scissor-Type Deployable Bridge. 

The selection of materials for the building of scissor bridges is a complex procedure that 

involves considering several elements, such as the length of the span, environmental 

circumstances, load-bearing capacity of the bridge, and financial limitations. Pursuing ideal 

materials has emerged as a catalyst for innovation in scissor bridge building, as engineers and 

researchers persistently explore novel design possibilities.   

 

3.2.1 Structural Steel. 

The selection of structural steel for bridges should take into account the required material 

attributes or stress state, the construction site's environmental factors, the corrosion protection 

system, and the building method [23]. The fundamental factors involved in designing and 

constructing steel bridges are the physical attributes of structural steel, which include 

strength, ductility, toughness, weldability, weather resistance, chemical composition, shape, 

size, and surface features [24]. One of the research studies explores the use of A36 structural 

steel as the main material for scissor-type deployable bridges. The deployable bridge is 

designed to fit in the trunk of a 4 × 4 pick-up truck; therefore, its overall dimensions are  

2.2 m (width), 2 m (height), and 14m (length). Stress analysis is simulated using ANSYS 

Workbench's static structural function. It was discovered that one of the limitations of the 

steel deployable bridge design is the overall weight of the bridge. An emergency deployable 

bridge should be as lightweight as possible without losing strength to be easily transported 

and deployed during a natural disaster. Therefore, research and analysis on bridge weight 

reduction techniques involving the use of lightweight materials may take into consideration 

the significance of material selection in further studies [25]. 

 

3.2.2 Fiber Reinforced Polymer (FRP). 

Although composite materials are less ductile than traditional materials like structural steel in 

applications, they have several advantages, such as high specific stiffness and strength, 

lightweight material, excellent corrosion resistance, and low maintenance costs, which make 

them very appealing for use in the construction industry in certain circumstances. These 

benefits have prompted the examination of Fiber Reinforced Polymer (FRP) as a bridge-

building option. The following applications have been taken under consideration thus far: (a) 

bridge component repair and upgrade retrofitting schemes; (b) design of replacement bridge 

components; and (c) design and construction of new bridge structures for pedestrian or 

highway use [26]. However, the disadvantages of using FRP in a composite bridge 



https://doi.org/10.51200/susten.v1i1.5219 

 62 

application are as follows: (a) a large deflection of the structure caused by the low modulus of 

materials (compared to steel) and low stiffness of the FRP components; (b) the need to 

simplify the joints and connections; and (c) the high cost of composite materials necessitates 

the solution of cost-effective problems [3].  

 

In general, carbon fiber is the most desirable reinforcing due to its extremely high strength 

compared to other fibers. Due to its high modulus of elasticity, carbon fiber reinforced 

polymer (CFRP) is the material most suitable for deployable bridges. The less material 

deflects, the higher the modulus of elasticity. This attribute is necessary to guarantee that the 

bridge will not deflect excessively. Fiber-reinforced composite (FRP) is highly beneficial for 

building deployable bridges [27]. A study was conducted to analyze the mechanical 

properties of a lightweight FRP scissor-type bridge using the finite element method to 

identify its strength and durability [28]. The findings indicate that FRP scissor bridges can be 

designed to withstand the same loads as traditional steel scissor bridges. The results suggest 

that FRP composites are a better choice for bridge construction than traditional materials 

[29]. 

 

3.2.3 Aluminum Alloy. 

As a lightweight material, aluminum alloy provides an alternative for deployable bridges. 

Additionally, experiments conducted in a research laboratory have shown that aluminum 

alloy has superior corrosion resistance, eliminating the need for any protective coating [30]. 

According to theoretical and practical research, it was reported that aluminum alloy has the 

best mechanical and anticorrosive qualities. This might be very advantageous for applications 

involving bridges, such as the restoration of bridge decks, deployable bridges, and military 

bridges [31]. 

 

According to a current study, a scissor-type Mobile Bridge (MB 4.0) made of aluminum alloy 

with improved mobility, functionality, and a lighter weight was created. Consequently, the 

MB4.0 is now more easily transportable and can be set up at temporary construction sites 

without requiring heavy machinery or foundation work. It is therefore also far more 

economical [8]. However, experimental findings reveal that vibrations in the horizontal 

direction are significantly more pronounced than those in the vertical direction. Reinforcing 

elements added to the bridge's upper level resulted in higher horizontal and vertical 

eigenvalue frequencies compared to the unreinforced bridge. This suggests that reinforcing 

components enhance the stiffness of the MB4.0 bridge, thereby reducing the influence of 

bending moments on the primary structural members. The application of appropriate 

reinforcement can improve both the bridge's stability and safety [32]. 

 

3.3 The Artificial Neural Networks (ANNs) Capabilities 

Artificial Neural networks (ANNs) are capable of producing extremely accurate predictions 

when provided with a substantial quantity of training data. Neural networks can be emulated 

in digital systems, even though they are more frequently connected to analog computers. 

They use a series of algorithms that are inspired by the structure of the human brain [33]. 

These algorithms involve an array of numerical learning methods and consist of a large 

number of nonlinear computational units, known as network nodes, which are interconnected 

by weighted links. ANNs can effectively solve a wide range of complex problems, from 
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small to large scale. This is due to their massively parallel distributed structure, which allows 

them to learn and generalize. Additionally, they can produce reasonably accurate outputs for 

inputs not used during the learning phase, also known as “training” [34]. 

 

ANNs are used to predict how materials with similar properties will perform under different 

testing scenarios, based on experimental data. They are used as predictive tools, forecasting 

certain outputs based on input values. Engineering predictions are the main use for the 

backpropagation network model. One or more continuously valued outputs and several 

continuous-valued inputs can be connected through this efficient method to create nonlinear 

transfer functions. The network is named for the way it handles mistakes during training and 

essentially employs a multi-layer perception architecture [35].  

 

Feed Forward Neural Networks (FFNN) are the most widely utilized artificial neural network 

technique for dealing with various engineering limitations. A layer in the FFNN technique is 

entirely linked to the layer before it by weights [36]. The typical three-layer feed-forward 

type of an ANN is shown in Figure 3. Currently, this backpropagation architecture-based 

interactive network has gained popularity, value, and ease of learning, especially for complex 

models like multi-layered networks. The ability of ANNs to handle nonlinear solutions to 

indefinite problems is their greatest strength. There are three layers in the professional 

backpropagation network: input, output, and at least one hidden layer [37]. 

 

 
Figure 3. Three-layer Feed Forward Artificial Neural Network Schematic Representation [37] 

 

Nowadays, ANNs have garnered growing interest in civil engineering. They have been used 

to address numerous structural analysis and design problems. These types of problems are 

most suited for ANN applications: the problem domain is rich in examples or historical data; 

the data set is incomplete or contains errors; the function to find solutions is unknown; and 

applications are data-intensive and dependent on numerous criteria. The amount of research 

being done on using ANNs to solve civil engineering problems is expanding quickly. The 

application of ANNs in structural engineering has developed as a new paradigm for 

computing, despite its continued extreme limitations. It has been used in a variety of 
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applications, including finite element analysis, structural design, material behavior modeling, 

damage assessment, and structural analysis [38]. 

 

3.3.1 Application of Artificial Neural Networks (ANNs)on Bridge Performance. 

Artificial Neural Networks (ANNs) have been applied in structural engineering to address 

diverse issues and provide novel solutions [39]. The following applications of ANNs in 

structural analysis and design could be emphasized: topology optimization (based on the 

removal of ineffective structural members), joint location, size optimization of structural 

members, shape optimization of structural types (e.g., truss geometry), structural analysis of 

systems with large degrees of freedom, and maximum stress identification and location [40]. 

From past studies, numerous research findings confirmed the efficiency and accuracy of the 

proposed ANN models as a successful predictive modeling technique for assessing the 

structural behavior of structures, especially bridges. 

 

Table 1. Application of Artificial Neural Networks (ANNs) on Bridge Behaviour 

Application of ANNs on Bridges Research Methods and Findings Reference 

Estimation on Dynamic 

Displacements due to Dynamic 

Loads on Bridges 

 

- This study made recommendations on how to make perception 

of the limited data on individual girder points to understand the 

overall behavior of bridges.  

- To replicate real-world traffic scenarios, dynamic vehicle load 

assumptions using the Pearson Type III distribution of traffic 

theory were created.  

- Ultimately, the ANN allowed us to reasonably precisely estimate 

the vertical dynamic displacement, which had been influenced by 

FEM results from loads based on actual conditions. 

[41] 

Bridge Damage Identification 

- An ANN-based bridge behavior model was formed. By using 

this technique for damage identification and localization, bridge 

performance trends may be obtained, early inspections can be 

triggered, and inspectors can be directed toward the regions of the 

bridge that are most likely to sustain damage. 

- The study's initial findings show that engineers may find it 

useful in the future to quickly ascertain a bridge's baseline 

performance and obtain automated weekly updates on the bridge's 

condition. 

[42] 

Developing Bridge Deterioration 

Models 

- ANN models with diversified configurations were developed and 

used to provide predictions on the degradation of the 

superstructure, substructure, and bridge deck. 

- The National Bridge Inventory (NBI) database provided the 

information needed to create the deterioration models for bridge 

structures. 

- As a result of this study, a bridge deterioration model was 

created using the proposed ANN models to predict deterioration in 

all bridge systems. 

[43] 

Identification of Flexural Structural 

Damage in the Girders of a Vehicle 

Bridge 

- A Neural Network (NN) based model was created, performed, 

and assessed to identify flexural structural damage in the girders 

of a vehicle bridge. 

- Based on the findings of this study, it can be concluded that NN 

models trained using modal strain energy differences can be used 

to accurately determine the position and extent of damage in a 

bridge's girders. 

[44] 
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3.3.2 Training of Artificial Neural Network (ANN). 

Artificial Neural Networks (ANNs) can be worked with a variety of software programs. One 

of these is TensorFlow, a comprehensive open-source machine-learning platform that offers 

an extensive set of customizable tools, libraries, and community offerings [45]. When it 

comes to ANN software, one of the best in Neural Designer, a desktop tool for data mining 

that employs neural networks, a key machine learning paradigm; however, one of the 

drawbacks is its high cost [46]. The Neural Lab is another software used to construct models, 

which allows for the creation of custom ANN-based application by combining the C++ 

classes within its object-oriented implementation. This modeling tool was created and 

implemented using a variety of optimization methodologies. The model supports multi-layer 

feed-forward networks, as well as probabilistic neural networks, and it has been used in 

previous research due to its user-friendly coding and versatility [46]. Lastly, MATLAB is a 

program that gives an interactive environment where users may collaborate and visualize 

ideas in a variety of domains, including computational finance, communications, control 

systems, signal and image processing, and computational imaging. A collection of tools and 

applications for building, training, and modeling neural networks can be found in MATLAB's 

Neural Network Toolbox. Neural network development for tasks like clustering, pattern 

recognition, and data-fitting (including time-series data) is made simple by the software [47]. 

When using MATLAB to solve a problem, prototype solutions are typically produced more 

quickly than when employing other programming languages [48]. 

 

4. Conclusions 

Scissor-type deployable bridges are ideal for disaster operations due to their rapid 

deployment capabilities and simplified assembly processes, which require fewer personnel. 

Various structural analysis methods have been utilized to forecast the structural behavior of 

deployable bridges. These are the Coefficient Technique, Kutzbach Equation, ANSYS 

Workbench, well-known Finite Element Analysis (FEA), and Influence-Line based design. 

However, none of the previous studies utilized Artificial Neural Networks (ANNs) to predict 

the structural behavior of scissor-type deployable bridges. This technique has the potential to 

be a highly effective tool in predicting the structural behavior of scissor-type bridges. When 

dealing with complicated structures like scissor-type bridges, ANNs shine because of their 

ability to detect patterns and trends in data. ANNs can learn from new data and adapt as 

needed. This means that the ANN model can be updated and improved as additional 

information about the efficiency of scissor-type bridges becomes available. ANN has been 

applied to several bridge applications, such as the detection of bridge damage, flexural 

behavior, as well as deterioration. ANNs can assist engineers in optimizing the design 

parameters of scissor-type deployable bridges by predicting how different configurations 

affect total deformation and stress levels. Overall, leveraging ANNs for simulating 

deformation and stresses in scissor-type deployable bridges enhances both the understanding 

and management of their structural performance, leading to safer, more cost-effective, and 

resilient infrastructure solutions. 
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