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Abstract: This project investigates the application of electrocardiogram (ECG) signal analysis 
in personalized neuromuscular rehabilitation and performance enhancement, focusing on the 
biceps brachii muscle. Using an oscilloscope, ECG data were captured through three-lead 
placement to examine the muscle's electrical activity under varying exertion conditions. Fast 
Fourier Transform (FFT) analysis in MATLAB provided detailed frequency domain insights 
into motor unit recruitment patterns. The findings establish correlations between ECG signal 
variations and muscle activation levels, offering implications for optimizing rehabilitation 
strategies, improving muscle training protocols, and enhancing neuromuscular performance.  
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1. Introduction 

An electrocardiogram (ECG) is a widely used diagnostic tool that records the electrical activity 
of the heart over time. It provides essential information about the heart's rhythm, electrical 
conduction, and possible abnormalities such as arrhythmias and ischemic conditions (Ashley, 
2020). ECG signals are typically measured using electrodes placed on the skin, which detect 
the tiny electrical impulses generated during each heartbeat. The standard ECG measurement 
involves three to twelve leads, with the most common being the three-lead system, which 
records electrical activity from different angles of the heart (CardiacDirect, 2023). These 
signals are analyzed in both the time and frequency domains to detect changes in cardiac and 
neuromuscular function (Aziz et al., 2022). 

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, accounting 
for approximately 17.9 million deaths annually (Mendis et al., 2021). Arrhythmias and other 
cardiac dysfunctions contribute significantly to these fatalities, with sudden cardiac arrest being 
a primary cause (Islam et al., 2020). Studies indicate that over 30% of these deaths occur due 
to undiagnosed or mismanaged heart conditions. ECG monitoring plays a crucial role in early 
detection and management of cardiac conditions, reducing morbidity and mortality through 
timely medical interventions (Peterson & Masoudi, 2021). 
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To accurately measure ECG signals, an amplifier circuit is necessary to enhance the weak 
electrical signals generated by the heart. The operational amplifier (op-amp) used in this study 
provided high-gain signal amplification while maintaining minimal distortion and noise 
interference (Moulahcene et al., 2022). The amplifier circuit was designed with a high 
common-mode rejection ratio (CMRR) to effectively remove unwanted noise, including power 
line interference and motion artifacts. The combination of active low-pass and high-pass filters 
further ensured accurate ECG signal acquisition (Goura & Reddy, 2023). The ability to amplify 
and filter ECG signals precisely is critical for ensuring reliable data analysis in medical 
applications. 

MATLAB offers a robust platform for ECG signal processing, featuring advanced tools for 
analyzing time-domain and frequency-domain characteristics of ECG data. The use of Fast 
Fourier Transform (FFT) in MATLAB enables the extraction of frequency components 
associated with cardiac and neuromuscular activity (Cheng et al., 2023). Additional signal 
processing techniques such as wavelet transform and power spectral density (PSD) analysis 
provide deeper insights into motor unit recruitment and muscle fatigue (Rahman et al., 2023). 
By leveraging MATLAB's automated processing and visualization capabilities, this project 
aims to enhance the efficiency and accuracy of ECG-based neuromuscular assessments, 
making it a viable tool for clinical and sports performance applications. 

Although ECG is traditionally used for cardiac diagnostics, its application in neuromuscular 
research is gaining traction. The ability to monitor muscle activation and motor unit recruitment 
through ECG signals opens new possibilities for rehabilitation and performance enhancement 
(Chang et al., 2023). By leveraging ECG signal analysis, this study aims to improve the 
understanding of motor unit recruitment patterns in the upper limb, provide a non-invasive 
method for assessing muscle activation and fatigue, and offer insights for personalized 
rehabilitation strategies, aiding in recovery and injury prevention and enhanced training 
protocols for athletes and individuals undergoing physical therapy. Understanding ECG signal 
variations in response to muscle activity can facilitate the development of more effective 
rehabilitation programs tailored to individual neuromuscular responses (Cheng et al., 2023). 
This study contributes to advancing the role of ECG in neuromuscular research and clinical 
applications. 

This project demonstrates that ECG analysis, particularly FFT-based frequency domain 
assessment, is a viable method for evaluating upper limb motor unit recruitment. The results 
indicate a strong correlation between ECG signal variations and motor unit activation levels, 
suggesting applications in neuromuscular rehabilitation, sports science, and clinical 
diagnostics. The integration of amplifier circuits and MATLAB-based signal processing 
enhances the efficiency and accuracy of ECG monitoring, providing an effective tool for both 
research and medical applications. The insights gained from this study contribute to advancing 
medical technology for personalized rehabilitation, injury prevention, and performance 
optimization. Further research should explore ECG signal variations across different muscle 
groups and patient populations, integrating machine learning for enhanced classification and 
real-time assessment in rehabilitation settings. 
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2. Methodology 

The study was conducted using ten healthy adult participants aged between 20 and 35 years, 
all of whom reported no history of neuromuscular or cardiovascular disorders. Prior to 
participation, written informed consent was obtained from each individual in accordance with 
institutional ethical standards. To examine variations in electrocardiogram (ECG) signals under 
different levels of physical exertion, the participants were subjected to a series of controlled 
activities in a laboratory setting. The experiment included three main conditions. In the first 
condition, referred to as the resting state, each participant remained seated in a relaxed position 
for five minutes while baseline ECG signals were continuously recorded. In the second 
condition, termed physical exertion, ECG signals were recorded following a sequence of 
activities: a five-minute walk at a consistent pace, weightlifting exercises involving 
incremental loads from 100 grams to 1000 grams in 200-gram intervals, and a combination of 
walking and lifting. In the third condition, ECG signals were recorded specifically from the 
area over the biceps brachii muscle before and after the exertional tasks to assess muscle-
specific signal changes. 

Signal acquisition was performed using a three-lead ECG system with surface electrodes 
positioned according to a modified limb lead configuration as shown in Figure 1. Lead I was 
placed across the chest to capture general cardiac electrical activity. Lead II was arranged along 
the arm to monitor electrical signals associated with the biceps brachii muscle. A ground 
electrode was positioned at the ankle to reduce movement artifacts during recording. The ECG 
signals were recorded using a calibrated data acquisition system with an appropriate sampling 
rate and bandwidth to ensure accurate and high-resolution capture of both cardiac and localized 
muscle electrical activity. 

 

Figure 1. ECG electrode placement using three-lead system (source: https://litfl.com/ecg-lead-positioning/) 

To ensure accurate detection of bioelectrical signals, an operational amplifier (op-amp) with 
high gain and a high common-mode rejection ratio (CMRR) was utilized to amplify the raw 
ECG signals while minimizing external interference. A bandpass filter with a frequency range 
of 0.5 to 100 Hz was implemented to eliminate baseline wander and suppress high-frequency 
noise, thereby enhancing signal quality. The filtered ECG signals were subsequently digitized 
using an analog-to-digital converter and stored in a data acquisition system for further analysis. 

Operational amplifiers are integral to ECG data acquisition systems because they enhance the 
weak electrical signals generated by the heart. The typical amplitude of ECG signals ranges 
from 0.5 to 4 mV, making them relatively small and susceptible to various types of interference 
and noise. Op-amps are essential for boosting these signals to levels that can be accurately 
recorded and analyzed.  
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Webster (2010) emphasizes that the primary function of an ECG amplifier is to increase the 
signal amplitude while maintaining the integrity of the original waveform. Op-amps provide 
high gain, which is necessary for amplifying the small amplitude of ECG signals. This high 
gain ensures that the signals are strong enough for further processing and analysis (Horowitz 
& Hill, 2015). Electrical activity from nearby muscles (electromyography) can overlap with 
the ECG signal. High-pass filtering and careful design of the op-amp circuitry are essential to 
reduce EMG noise (Sörnmo & Laguna, 2005). Figure 2 shows the circuitry for ECG signals 
data acquisition using op-amps and other elements of circuits (Dobrev et al., 2012). 

 

Figure 2. ECG signal data aqusitions circuitry using op-amps (source: Dobrev et al. 2012) 

The collected ECG signals were processed and analyzed using MATLAB through a series of 
structured steps. Initially, the preprocessing stage involved the removal of baseline drift, 
application of noise filtering techniques, and normalization of signal amplitudes to ensure 
consistency across recordings. Following preprocessing, time-domain analysis was conducted 
to evaluate waveform characteristics, including measurements of P-QRS-T intervals and 
variations in peak amplitudes, providing insights into temporal changes related to cardiac 
activity. Frequency-domain analysis was then performed using Fast Fourier Transform (FFT) 
to identify dominant frequency components associated with both cardiac and neuromuscular 
activity. In addition, Power Spectral Density (PSD) analysis was applied to differentiate the 
energy distribution between cardiac signals and muscle activation by examining frequency-
specific power levels. Finally, wavelet transform analysis was employed to decompose the 
ECG signals across multiple scales, enabling the distinction between neuromuscular activity 
and underlying cardiac rhythms through time-frequency localization. 

Each participant’s data were analyzed separately, and an averaged dataset was used to compare 
variations in ECG signal properties across different exertion levels. During the study, 
precautions were taken to ensure proper electrode placement and skin preparation to minimize 
noise and artifacts. The subjects’ safety was also ensured during weightlifting activities to 
prevent injury. The ECG circuit and amplification settings were kept consistent throughout the 
study to ensure accurate comparisons. 
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3. Results and Discussion 

3.1 Bicep Bracii ECG Data Acquisition 

 
Time Domain Frequency Domain 

 
 

 
 

  

Figure 3. ECG data pattern of time and frequency domain for lifting 100 g, 300 g, 500 g weight 

The ECG signal of the biceps brachii was recorded during an experiment where participants 
lifted weights of 100 g, 300 g, 500 g, 700 g, and 1000 g. In each trial, participants sat down 
and lifted the assigned weight using their biceps. ECG readings were collected for each weight 
and compared to analyze how muscle electrical activity changes with different levels of 
exertion. This study aimed to better understand the relationship between muscle activation and 
cardiovascular response during weightlifting. After collecting ECG data, MATLAB was used 
to apply Fast Fourier Transform (FFT), converting signals from the time domain to the 
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frequency domain for detailed analysis. Preprocessing removed noise and artifacts, ensuring 
accurate frequency spectrum calculations. This revealed key patterns in muscle contraction and 
relaxation, providing insights into how biceps brachii activity changes with different 
weightlifting loads. The ECG data analysis, as shown in Figure 3, reveals that at lower weights 
(100 g, 300 g, and 500 g), the time-domain signals exhibit stable waveforms with consistent 
amplitude and periodicity. In contrast, Figure 4 demonstrates that lifting heavier weights  
(700 g and 1000 g) results in increased amplitude and slight waveform variations, indicating 
greater muscle activation.  

The frequency-domain analysis presented in Figures 3 and 4 demonstrates a noticeable shift 
toward higher frequency components with increasing weight loads. This phenomenon is 
consistent with established physiological responses to muscle exertion, wherein higher 
intensity contractions necessitate the recruitment of larger and faster motor units, which are 
known to produce higher frequency electrical activity (Farina et al., 2004; De Luca, 1997). The 
presence of these higher frequency components in the ECG signal—particularly when 
monitored near active muscles such as the biceps brachii—can be attributed to the 
superimposition of electromyographic (EMG)-like activity onto the cardiac signal, especially 
under strenuous conditions. 

Furthermore, the Power Spectral Density (PSD) distribution shown in Figure 4 reinforces this 
interpretation. An increased presence of high-frequency power is indicative of elevated 
neuromuscular demand and motor unit firing rates (Merletti & Parker, 2004). It also correlates 
with the onset of muscular fatigue, as fatigue has been shown to cause shifts in spectral energy 
toward higher frequencies due to changes in muscle fiber conduction velocity and motor unit 
synchronization (Kupa et al., 1995). 

These findings establish a clear relationship between load intensity during weightlifting and 
the spectral characteristics of the ECG signal. By revealing how ECG frequency components 
vary with exertion level, this study contributes valuable insights for tailoring neuromuscular 
rehabilitation programs. Specifically, frequency-domain and PSD analysis of ECG signals may 
serve as non-invasive markers for monitoring muscle activation, effort level, and fatigue, which 
are critical in optimizing personalized rehabilitation and strength training protocols 
(Phinyomark et al., 2012; Roy et al., 2007). 
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Time Domain Frequency Domain 

  

 
 

Figure 4. ECG data pattern of time and frequency domain for lifting 700 g and 1000 g weight 

 

3.2 ECG Signal Analysis of the Whole-Body Data Acquisition 

The results presented in Figures 5 and 6 provide compelling evidence that electrocardiogram 
(ECG) signal characteristics are sensitive to changes in physical exertion and can reflect both 
cardiovascular and neuromuscular responses. In the time-domain analysis shown in Figure 5, 
the ECG waveform during the resting state displays consistent and stable morphology with 
minimal amplitude fluctuations, indicative of a calm autonomic state and low muscle 
activation. This observation aligns with established norms in ECG behavior under minimal 
exertion (Clifford, 2006). Following a 5-minute walk, a modest increase in the amplitude of 
the ECG signal is observed, which corresponds with an elevated heart rate and enhanced 
peripheral muscular engagement. This increase is expected due to sympathetic nervous system 
activation, resulting in both cardiac output enhancement and subtle EMG-like interference 
from adjacent skeletal muscles (Bai et al., 2019). 

The corresponding frequency-domain analysis demonstrates a shift toward higher frequency 
components post-exercise. This spectral shift suggests an increase in neuromuscular activity, 
particularly when electrodes are placed near actively engaged muscles. It is well-documented 
that motor unit recruitment and synchronization under physical stress cause elevated spectral 
content, especially in the 30–100 Hz range (Phinyomark et al., 2012; De Luca, 1997).  
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In Figure 6, where ECG signals were recorded during the performance of 50 repetitions of 
lifting a 1 kg weight and during a combined sequence of walking followed by lifting, more 
pronounced changes in both time and frequency domains are evident. The time-domain 
waveform exhibits significantly increased amplitude, indicative of greater motor unit 
recruitment and enhanced cardiac response due to sustained muscular contraction (Merletti & 
Parker, 2004). 

The frequency-domain analysis for these activities reveals a notable increase in high-frequency 
components, reflecting intensified muscular effort and neuromuscular activation. The broader 
frequency spectrum observed in the combined activity condition suggests the additive effects 
of physical stress, where continuous load-bearing and dynamic movement likely contribute to 
cumulative muscle fatigue. This is consistent with previous findings that fatigue causes 
dispersion in the power spectrum and spectral broadening due to changes in conduction 
velocity and motor unit firing patterns (Kupa et al., 1995; Roy et al., 2007). 

Collectively, these findings validate that ECG signals—particularly when captured using 
surface electrodes in proximity to large muscle groups—can serve as non-invasive indicators 
of exercise intensity, muscular engagement, and fatigue progression. This supports the 
potential application of ECG-based analysis in personalized rehabilitation monitoring, athletic 
performance optimization, and real-time physiological assessment (Mizrahi et al., 2020; Di 
Rienzo et al., 2013). 

 
Time Domain Frequency Domain 

  

  

Figure 5. ECG data pattern of time and frequency domain for resting and after 5-min walk condition 
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The Fast Fourier Transform (FFT) analysis of ECG data acquired following whole-body 
exercises—namely walking, lifting a 1 kg weight for 50 repetitions, and a combination of 
both—reveals that the dominant frequency component lies within the range of 1–2 Hz, which 
is consistent with typical heart rate frequencies during moderate physical activity (Clifford, 
2006; Martínez et al., 2017). These dominant peaks correspond to the rhythmic nature of 
cardiac cycles and are accompanied by harmonics that reflect the periodicity of the heart's 
electrical activity. The power spectrum further indicates that these components exhibit stronger 
energy concentration following combined activities, suggesting increased cardiac workload 
and autonomic engagement due to cumulative exertion (Bai et al., 2019). 

A comparison between ECG signals obtained from whole-body activities and those focused on 
the biceps brachii muscle provides additional insight into the distinction between cardiac and 
muscular contributions to the recorded signal. Signals acquired from the whole-body setup 
primarily exhibit lower frequency components (<10 Hz), which are characteristic of cardiac 
rhythms. In contrast, signals recorded over the biceps brachii region display prominent higher-
frequency components (>30 Hz), which can be attributed to localized muscle contractions and 
the recruitment of motor units (De Luca, 1997; Merletti & Parker, 2004). 

The power spectral density (PSD) analysis reinforces this differentiation by showing a broader 
and more dispersed frequency distribution in the biceps brachii signals, particularly during 
heavy lifting tasks. This dispersion reflects increased neuromuscular activity and the activation 
of fast-twitch muscle fibers, which generate higher frequency electrical signals (Phinyomark 
et al., 2012; Kupa et al., 1995). The PSD patterns indicate that muscle-generated signals are 
not only higher in frequency but also more variable in energy distribution, especially under 
conditions of load-induced fatigue. 

These findings collectively support the utility of ECG analysis as a non-invasive method for 
distinguishing between cardiac and skeletal muscle activity. By leveraging both time- and 
frequency-domain features, ECG signals can provide meaningful information on exercise 
intensity, muscle recruitment patterns, and fatigue levels. Such differentiation is particularly 
valuable in the context of real-time exercise monitoring, neuromuscular rehabilitation, and 
personalized fitness programs (Mizrahi et al., 2020; Di Rienzo et al., 2013). 
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Time Domain Frequency Domain 

  

  

Figure 6. ECG data pattern of time and frequency domain for lifting 1 kg for 50 times and 5 min walk follow by 
lifting 1 kg for 50 times condition 

Conclusions 

This study provides strong evidence that ECG signal analysis, when performed using both 
time- and frequency-domain techniques, can effectively differentiate between cardiac and 
skeletal muscle activity under varying levels of physical exertion. The findings confirm that 
ECG signals obtained from whole-body electrode placements predominantly reflect cardiac 
function, characterized by dominant low-frequency components (1–2 Hz) corresponding to 
heart rate. In contrast, signals recorded near the biceps brachii muscle show increased presence 
of high-frequency components (>30 Hz), which are indicative of localized neuromuscular 
activation. As the intensity of physical activity increases—such as through lifting heavier 
weights or combining aerobic and resistance exercises—there is a clear increase in ECG 
waveform amplitude and frequency dispersion. These changes are consistent with enhanced 
motor unit recruitment and the physiological onset of muscle fatigue, as supported by spectral 
broadening observed in the FFT and Power Spectral Density (PSD) analyses. Together, these 
results demonstrate the potential of ECG analysis as a non-invasive and accessible tool for 
quantifying physiological responses to physical activity. Specifically, the ability to distinguish 
cardiac from muscular contributions to the ECG signal enables real-time monitoring of exercise 
intensity, evaluation of rehabilitation progress, and assessment of fatigue levels. These insights 
can be leveraged to optimize athletic training programs, personalize rehabilitation protocols, 
and support clinical decision-making in physical therapy and sports medicine contexts. 
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The ECG analysis confirms that whole-body signals primarily reflect cardiac activity, with 
dominant low-frequency components (1–2 Hz) linked to heart rate, while biceps brachii signals 
exhibit higher frequency components associated with muscle contractions. Increased exertion, 
such as lifting heavier weights or combining walking with weightlifting, leads to greater 
waveform amplitude and frequency dispersion, indicating higher neuromuscular activation and 
potential fatigue onset. The FFT and power spectral density (PSD) analysis demonstrate that 
ECG signals effectively differentiate between cardiac function and localized muscle activity, 
making them a valuable tool for monitoring exercise intensity, rehabilitation progress, and 
muscle fatigue. These findings support the use of ECG in optimizing athletic training, guiding 
rehabilitation protocols, and assessing physiological responses to physical exertion. 
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