s SUSTAINABLE
ENGINEERING

=
(eISSN:3083-8231)
Article
Volume 2, Issue 2, 2025
https://doi.org/10.51200/susten.v2i2.6181

Applying ECG Signal Analysis for Personalized
Neuromuscular Rehabilitation and Performance
Enhancement

Ismail Saad", Jeremy A Anak Kennedy!, Nurmin Bolong?, Siti Nursyuhuda Mahsahirun!, Zul Atfyi
Fauzan M. N3, Kukjin Chun*

'Electrical & Electronic Engineering Program, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
2Civil Engineering Program, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia

3Computer Engineering Department, Faculty of Electronic & Computer Engineering, Universiti Teknikal Melaka, Malaysia
“Department of Electrical & Computer Engineering, Seoul National University, Seoul, South Korea

*Correspondence: ismail_s@ums.edu.my; *Scopus Author ID 22635305600
Received: 6 March 2025, Accepted: 27 July 2025

Abstract: This project investigates the application of electrocardiogram (ECG) signal analysis
in personalized neuromuscular rehabilitation and performance enhancement, focusing on the
biceps brachii muscle. Using an oscilloscope, ECG data were captured through three-lead
placement to examine the muscle's electrical activity under varying exertion conditions. Fast
Fourier Transform (FFT) analysis in MATLAB provided detailed frequency domain insights
into motor unit recruitment patterns. The findings establish correlations between ECG signal
variations and muscle activation levels, offering implications for optimizing rehabilitation
strategies, improving muscle training protocols, and enhancing neuromuscular performance.
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1. Introduction

An electrocardiogram (ECG) is a widely used diagnostic tool that records the electrical activity
of the heart over time. It provides essential information about the heart's rhythm, electrical
conduction, and possible abnormalities such as arrhythmias and ischemic conditions (Ashley,
2020). ECG signals are typically measured using electrodes placed on the skin, which detect
the tiny electrical impulses generated during each heartbeat. The standard ECG measurement
involves three to twelve leads, with the most common being the three-lead system, which
records electrical activity from different angles of the heart (CardiacDirect, 2023). These
signals are analyzed in both the time and frequency domains to detect changes in cardiac and
neuromuscular function (Aziz et al., 2022).

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, accounting
for approximately 17.9 million deaths annually (Mendis et al., 2021). Arrhythmias and other
cardiac dysfunctions contribute significantly to these fatalities, with sudden cardiac arrest being
a primary cause (Islam et al., 2020). Studies indicate that over 30% of these deaths occur due
to undiagnosed or mismanaged heart conditions. ECG monitoring plays a crucial role in early
detection and management of cardiac conditions, reducing morbidity and mortality through
timely medical interventions (Peterson & Masoudi, 2021).
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To accurately measure ECG signals, an amplifier circuit is necessary to enhance the weak
electrical signals generated by the heart. The operational amplifier (op-amp) used in this study
provided high-gain signal amplification while maintaining minimal distortion and noise
interference (Moulahcene et al., 2022). The amplifier circuit was designed with a high
common-mode rejection ratio (CMRR) to effectively remove unwanted noise, including power
line interference and motion artifacts. The combination of active low-pass and high-pass filters
further ensured accurate ECG signal acquisition (Goura & Reddy, 2023). The ability to amplify
and filter ECG signals precisely is critical for ensuring reliable data analysis in medical
applications.

MATLAB offers a robust platform for ECG signal processing, featuring advanced tools for
analyzing time-domain and frequency-domain characteristics of ECG data. The use of Fast
Fourier Transform (FFT) in MATLAB enables the extraction of frequency components
associated with cardiac and neuromuscular activity (Cheng et al., 2023). Additional signal
processing techniques such as wavelet transform and power spectral density (PSD) analysis
provide deeper insights into motor unit recruitment and muscle fatigue (Rahman et al., 2023).
By leveraging MATLAB's automated processing and visualization capabilities, this project
aims to enhance the efficiency and accuracy of ECG-based neuromuscular assessments,
making it a viable tool for clinical and sports performance applications.

Although ECG is traditionally used for cardiac diagnostics, its application in neuromuscular
research is gaining traction. The ability to monitor muscle activation and motor unit recruitment
through ECG signals opens new possibilities for rehabilitation and performance enhancement
(Chang et al., 2023). By leveraging ECG signal analysis, this study aims to improve the
understanding of motor unit recruitment patterns in the upper limb, provide a non-invasive
method for assessing muscle activation and fatigue, and offer insights for personalized
rehabilitation strategies, aiding in recovery and injury prevention and enhanced training
protocols for athletes and individuals undergoing physical therapy. Understanding ECG signal
variations in response to muscle activity can facilitate the development of more effective
rehabilitation programs tailored to individual neuromuscular responses (Cheng et al., 2023).
This study contributes to advancing the role of ECG in neuromuscular research and clinical
applications.

This project demonstrates that ECG analysis, particularly FFT-based frequency domain
assessment, is a viable method for evaluating upper limb motor unit recruitment. The results
indicate a strong correlation between ECG signal variations and motor unit activation levels,
suggesting applications in neuromuscular rehabilitation, sports science, and clinical
diagnostics. The integration of amplifier circuits and MATLAB-based signal processing
enhances the efficiency and accuracy of ECG monitoring, providing an effective tool for both
research and medical applications. The insights gained from this study contribute to advancing
medical technology for personalized rehabilitation, injury prevention, and performance
optimization. Further research should explore ECG signal variations across different muscle
groups and patient populations, integrating machine learning for enhanced classification and
real-time assessment in rehabilitation settings.
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2. Methodology

The study was conducted using ten healthy adult participants aged between 20 and 35 years,
all of whom reported no history of neuromuscular or cardiovascular disorders. Prior to
participation, written informed consent was obtained from each individual in accordance with
institutional ethical standards. To examine variations in electrocardiogram (ECG) signals under
different levels of physical exertion, the participants were subjected to a series of controlled
activities in a laboratory setting. The experiment included three main conditions. In the first
condition, referred to as the resting state, each participant remained seated in a relaxed position
for five minutes while baseline ECG signals were continuously recorded. In the second
condition, termed physical exertion, ECG signals were recorded following a sequence of
activities: a five-minute walk at a consistent pace, weightlifting exercises involving
incremental loads from 100 grams to 1000 grams in 200-gram intervals, and a combination of
walking and lifting. In the third condition, ECG signals were recorded specifically from the
area over the biceps brachii muscle before and after the exertional tasks to assess muscle-
specific signal changes.

Signal acquisition was performed using a three-lead ECG system with surface electrodes
positioned according to a modified limb lead configuration as shown in Figure 1. Lead I was
placed across the chest to capture general cardiac electrical activity. Lead II was arranged along
the arm to monitor electrical signals associated with the biceps brachii muscle. A ground
electrode was positioned at the ankle to reduce movement artifacts during recording. The ECG
signals were recorded using a calibrated data acquisition system with an appropriate sampling
rate and bandwidth to ensure accurate and high-resolution capture of both cardiac and localized
muscle electrical activity.

Figure 1. ECG electrode placement using three-lead system (source: https://litfl.com/ecg-lead-positioning/)

To ensure accurate detection of bioelectrical signals, an operational amplifier (op-amp) with
high gain and a high common-mode rejection ratio (CMRR) was utilized to amplify the raw
ECG signals while minimizing external interference. A bandpass filter with a frequency range
of 0.5 to 100 Hz was implemented to eliminate baseline wander and suppress high-frequency
noise, thereby enhancing signal quality. The filtered ECG signals were subsequently digitized
using an analog-to-digital converter and stored in a data acquisition system for further analysis.

Operational amplifiers are integral to ECG data acquisition systems because they enhance the
weak electrical signals generated by the heart. The typical amplitude of ECG signals ranges
from 0.5 to 4 mV, making them relatively small and susceptible to various types of interference
and noise. Op-amps are essential for boosting these signals to levels that can be accurately
recorded and analyzed.
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Webster (2010) emphasizes that the primary function of an ECG amplifier is to increase the
signal amplitude while maintaining the integrity of the original waveform. Op-amps provide
high gain, which is necessary for amplifying the small amplitude of ECG signals. This high
gain ensures that the signals are strong enough for further processing and analysis (Horowitz
& Hill, 2015). Electrical activity from nearby muscles (electromyography) can overlap with
the ECG signal. High-pass filtering and careful design of the op-amp circuitry are essential to
reduce EMG noise (S6rnmo & Laguna, 2005). Figure 2 shows the circuitry for ECG signals
data acquisition using op-amps and other elements of circuits (Dobrev et al., 2012).
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Figure 2. ECG signal data aqusitions circuitry using op-amps (source: Dobrev et al. 2012)

The collected ECG signals were processed and analyzed using MATLAB through a series of
structured steps. Initially, the preprocessing stage involved the removal of baseline drift,
application of noise filtering techniques, and normalization of signal amplitudes to ensure
consistency across recordings. Following preprocessing, time-domain analysis was conducted
to evaluate waveform characteristics, including measurements of P-QRS-T intervals and
variations in peak amplitudes, providing insights into temporal changes related to cardiac
activity. Frequency-domain analysis was then performed using Fast Fourier Transform (FFT)
to identify dominant frequency components associated with both cardiac and neuromuscular
activity. In addition, Power Spectral Density (PSD) analysis was applied to differentiate the
energy distribution between cardiac signals and muscle activation by examining frequency-
specific power levels. Finally, wavelet transform analysis was employed to decompose the
ECG signals across multiple scales, enabling the distinction between neuromuscular activity
and underlying cardiac rhythms through time-frequency localization.

Each participant’s data were analyzed separately, and an averaged dataset was used to compare
variations in ECG signal properties across different exertion levels. During the study,
precautions were taken to ensure proper electrode placement and skin preparation to minimize
noise and artifacts. The subjects’ safety was also ensured during weightlifting activities to
prevent injury. The ECG circuit and amplification settings were kept consistent throughout the
study to ensure accurate comparisons.
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3. Results and Discussion

3.1 Bicep Bracii ECG Data Acquisition
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Figure 3. ECG data pattern of time and frequency domain for lifting 100 g, 300 g, 500 g weight

The ECG signal of the biceps brachii was recorded during an experiment where participants
lifted weights of 100 g, 300 g, 500 g, 700 g, and 1000 g. In each trial, participants sat down
and lifted the assigned weight using their biceps. ECG readings were collected for each weight
and compared to analyze how muscle electrical activity changes with different levels of
exertion. This study aimed to better understand the relationship between muscle activation and
cardiovascular response during weightlifting. After collecting ECG data, MATLAB was used
to apply Fast Fourier Transform (FFT), converting signals from the time domain to the
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frequency domain for detailed analysis. Preprocessing removed noise and artifacts, ensuring
accurate frequency spectrum calculations. This revealed key patterns in muscle contraction and
relaxation, providing insights into how biceps brachii activity changes with different
weightlifting loads. The ECG data analysis, as shown in Figure 3, reveals that at lower weights
(100 g, 300 g, and 500 g), the time-domain signals exhibit stable waveforms with consistent
amplitude and periodicity. In contrast, Figure 4 demonstrates that lifting heavier weights
(700 g and 1000 g) results in increased amplitude and slight waveform variations, indicating
greater muscle activation.

The frequency-domain analysis presented in Figures 3 and 4 demonstrates a noticeable shift
toward higher frequency components with increasing weight loads. This phenomenon is
consistent with established physiological responses to muscle exertion, wherein higher
intensity contractions necessitate the recruitment of larger and faster motor units, which are
known to produce higher frequency electrical activity (Farina et al., 2004; De Luca, 1997). The
presence of these higher frequency components in the ECG signal—particularly when
monitored near active muscles such as the biceps brachii—can be attributed to the
superimposition of electromyographic (EMG)-like activity onto the cardiac signal, especially
under strenuous conditions.

Furthermore, the Power Spectral Density (PSD) distribution shown in Figure 4 reinforces this
interpretation. An increased presence of high-frequency power is indicative of elevated
neuromuscular demand and motor unit firing rates (Merletti & Parker, 2004). It also correlates
with the onset of muscular fatigue, as fatigue has been shown to cause shifts in spectral energy
toward higher frequencies due to changes in muscle fiber conduction velocity and motor unit
synchronization (Kupa et al., 1995).

These findings establish a clear relationship between load intensity during weightlifting and
the spectral characteristics of the ECG signal. By revealing how ECG frequency components
vary with exertion level, this study contributes valuable insights for tailoring neuromuscular
rehabilitation programs. Specifically, frequency-domain and PSD analysis of ECG signals may
serve as non-invasive markers for monitoring muscle activation, effort level, and fatigue, which
are critical in optimizing personalized rehabilitation and strength training protocols
(Phinyomark et al., 2012; Roy et al., 2007).
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Figure 4. ECG data pattern of time and frequency domain for lifting 700 g and 1000 g weight

3.2 ECG Signal Analysis of the Whole-Body Data Acquisition

The results presented in Figures 5 and 6 provide compelling evidence that electrocardiogram
(ECG) signal characteristics are sensitive to changes in physical exertion and can reflect both
cardiovascular and neuromuscular responses. In the time-domain analysis shown in Figure 5,
the ECG waveform during the resting state displays consistent and stable morphology with
minimal amplitude fluctuations, indicative of a calm autonomic state and low muscle
activation. This observation aligns with established norms in ECG behavior under minimal
exertion (Clifford, 2006). Following a 5-minute walk, a modest increase in the amplitude of
the ECG signal is observed, which corresponds with an elevated heart rate and enhanced
peripheral muscular engagement. This increase is expected due to sympathetic nervous system
activation, resulting in both cardiac output enhancement and subtle EMG-like interference
from adjacent skeletal muscles (Bai et al., 2019).

The corresponding frequency-domain analysis demonstrates a shift toward higher frequency
components post-exercise. This spectral shift suggests an increase in neuromuscular activity,
particularly when electrodes are placed near actively engaged muscles. It is well-documented
that motor unit recruitment and synchronization under physical stress cause elevated spectral
content, especially in the 30—100 Hz range (Phinyomark et al., 2012; De Luca, 1997).
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In Figure 6, where ECG signals were recorded during the performance of 50 repetitions of
lifting a 1 kg weight and during a combined sequence of walking followed by lifting, more
pronounced changes in both time and frequency domains are evident. The time-domain
waveform exhibits significantly increased amplitude, indicative of greater motor unit
recruitment and enhanced cardiac response due to sustained muscular contraction (Merletti &
Parker, 2004).

The frequency-domain analysis for these activities reveals a notable increase in high-frequency
components, reflecting intensified muscular effort and neuromuscular activation. The broader
frequency spectrum observed in the combined activity condition suggests the additive effects
of physical stress, where continuous load-bearing and dynamic movement likely contribute to
cumulative muscle fatigue. This is consistent with previous findings that fatigue causes
dispersion in the power spectrum and spectral broadening due to changes in conduction
velocity and motor unit firing patterns (Kupa et al., 1995; Roy et al., 2007).

Collectively, these findings validate that ECG signals—particularly when captured using
surface electrodes in proximity to large muscle groups—can serve as non-invasive indicators
of exercise intensity, muscular engagement, and fatigue progression. This supports the
potential application of ECG-based analysis in personalized rehabilitation monitoring, athletic
performance optimization, and real-time physiological assessment (Mizrahi et al., 2020; Di
Rienzo et al., 2013).
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Figure 5. ECG data pattern of time and frequency domain for resting and after 5-min walk condition
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The Fast Fourier Transform (FFT) analysis of ECG data acquired following whole-body
exercises—namely walking, lifting a 1 kg weight for 50 repetitions, and a combination of
both—reveals that the dominant frequency component lies within the range of 1-2 Hz, which
is consistent with typical heart rate frequencies during moderate physical activity (Clifford,
2006; Martinez et al., 2017). These dominant peaks correspond to the rhythmic nature of
cardiac cycles and are accompanied by harmonics that reflect the periodicity of the heart's
electrical activity. The power spectrum further indicates that these components exhibit stronger
energy concentration following combined activities, suggesting increased cardiac workload
and autonomic engagement due to cumulative exertion (Bai et al., 2019).

A comparison between ECG signals obtained from whole-body activities and those focused on
the biceps brachii muscle provides additional insight into the distinction between cardiac and
muscular contributions to the recorded signal. Signals acquired from the whole-body setup
primarily exhibit lower frequency components (<10 Hz), which are characteristic of cardiac
rhythms. In contrast, signals recorded over the biceps brachii region display prominent higher-
frequency components (>30 Hz), which can be attributed to localized muscle contractions and
the recruitment of motor units (De Luca, 1997; Merletti & Parker, 2004).

The power spectral density (PSD) analysis reinforces this differentiation by showing a broader
and more dispersed frequency distribution in the biceps brachii signals, particularly during
heavy lifting tasks. This dispersion reflects increased neuromuscular activity and the activation
of fast-twitch muscle fibers, which generate higher frequency electrical signals (Phinyomark
et al., 2012; Kupa et al., 1995). The PSD patterns indicate that muscle-generated signals are
not only higher in frequency but also more variable in energy distribution, especially under
conditions of load-induced fatigue.

These findings collectively support the utility of ECG analysis as a non-invasive method for
distinguishing between cardiac and skeletal muscle activity. By leveraging both time- and
frequency-domain features, ECG signals can provide meaningful information on exercise
intensity, muscle recruitment patterns, and fatigue levels. Such differentiation is particularly
valuable in the context of real-time exercise monitoring, neuromuscular rehabilitation, and
personalized fitness programs (Mizrahi et al., 2020; Di Rienzo et al., 2013).
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Figure 6. ECG data pattern of time and frequency domain for lifting 1 kg for 50 times and 5 min walk follow by
lifting 1 kg for 50 times condition

Conclusions

This study provides strong evidence that ECG signal analysis, when performed using both
time- and frequency-domain techniques, can effectively differentiate between cardiac and
skeletal muscle activity under varying levels of physical exertion. The findings confirm that
ECG signals obtained from whole-body electrode placements predominantly reflect cardiac
function, characterized by dominant low-frequency components (1-2 Hz) corresponding to
heart rate. In contrast, signals recorded near the biceps brachii muscle show increased presence
of high-frequency components (>30 Hz), which are indicative of localized neuromuscular
activation. As the intensity of physical activity increases—such as through lifting heavier
weights or combining aerobic and resistance exercises—there is a clear increase in ECG
waveform amplitude and frequency dispersion. These changes are consistent with enhanced
motor unit recruitment and the physiological onset of muscle fatigue, as supported by spectral
broadening observed in the FFT and Power Spectral Density (PSD) analyses. Together, these
results demonstrate the potential of ECG analysis as a non-invasive and accessible tool for
quantifying physiological responses to physical activity. Specifically, the ability to distinguish
cardiac from muscular contributions to the ECG signal enables real-time monitoring of exercise
intensity, evaluation of rehabilitation progress, and assessment of fatigue levels. These insights
can be leveraged to optimize athletic training programs, personalize rehabilitation protocols,
and support clinical decision-making in physical therapy and sports medicine contexts.
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The ECG analysis confirms that whole-body signals primarily reflect cardiac activity, with
dominant low-frequency components (1-2 Hz) linked to heart rate, while biceps brachii signals
exhibit higher frequency components associated with muscle contractions. Increased exertion,
such as lifting heavier weights or combining walking with weightlifting, leads to greater
waveform amplitude and frequency dispersion, indicating higher neuromuscular activation and
potential fatigue onset. The FFT and power spectral density (PSD) analysis demonstrate that
ECG signals effectively differentiate between cardiac function and localized muscle activity,
making them a valuable tool for monitoring exercise intensity, rehabilitation progress, and
muscle fatigue. These findings support the use of ECG in optimizing athletic training, guiding
rehabilitation protocols, and assessing physiological responses to physical exertion.
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