

A Critical Review of Water Filtration Methods in Developing Countries

Wan Sieng Yeo^{1,2,*}, Soon Kai Chong¹, Jaison Jeevanandam^{3,4}, Chi Phan⁵

¹ Department of Oil and Gas Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

² Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98000 Miri, Sarawak, Malaysia.

³ Division of Experimental Neurobiology, Preclinical Research Program, National Institute of Mental Health, 250 67 Klecany, Czechia.

⁴ Scared Heart College (Autonomous), Thevara, Ernakulam, Kochi 682013, India.

⁵ Discipline of Chemical Engineering, WASM, Curtin University, Australia.

*Correspondence: yeows@ums.edu.my (W.S. Yeo)

*ORCID ID: 0000-0003-3248-3521

Received: 03 July 2025, Accepted: 23 Sept 2025

Abstract: Access to clean and safe drinking water remains a critical challenge in various developing countries, where water sources are frequently contaminated with pathogenic microorganisms and chemical pollutants such as coliform bacteria, arsenic, and fluoride. These contaminants contribute significantly to the spread of waterborne diseases and related health conditions. This review presents a comparative analysis of household- and community-scale water filtration methods, focusing on their applicability, efficiency, and sustainability in low-resource settings. Conventional sand and bio-sand filters demonstrate bacterial removal efficiencies of 85–98%, while riverbank filtration systems can reduce coliform counts by 2–4 log units but are less effective against dissolved arsenic and fluoride. Emerging low-cost technologies, such as filters composed of plant biomass with fluoride removal efficiency up to 70%, zeolite-based media with arsenic removal ability exceeding 90%, and silver-impregnated porous clay pots with >99% of bacterial inactivation efficacy, are examined for their potential to improve water quality with production costs as low as US \$2-5 per unit and sustainability. Further, the article evaluates these methods based on key criteria, including technical feasibility, contaminant removal efficiency, environmental impact, and ease of implementation. The novelty of this review lies in its integrated approach to offer a critical perspective on both conventional and alternative filtration systems within the specific socio-economic and environmental contexts of developing regions. This work contributes valuable insights toward the development of effective, scalable, and community-appropriate water treatment technologies by highlighting both their limitations and opportunities for innovation.

Keywords: Water filtration; household sand filters; household bio-sand filters; water treatment system; riverbank filtration

© 2025 by UMS Press.

1. Introduction

In recent decades, significant progress has been made in the development and enhancement of water treatment technologies, particularly in filtration methods [1, 2]. Innovations in filter design, coupled with the availability of a wide range of chemical coagulants, have enabled the implementation of filtration systems that operate without traditional sedimentation processes [3]. Direct filtration systems are characterized by including only preliminary screening, coagulant dosing, rapid mixing, and flocculation, eliminating the need for sedimentation [4]. However, a key limitation of these systems is their typically insufficient

solid-holding capacity, rendering them less effective under sustained conditions of high turbidity [5].

In France, systematic patent protection for filtration technologies became feasible after the patent law of 1791, which enabled the commercialization of systems using sponges, charcoal, wool, sand, crushed sandstone, and gravel [6]. By the early 1800s, England and Scotland initiated large-scale surface water filtration through engineered systems, with London pioneering municipal applications [7]. Engineers experimented with diverse configurations, including downward, upward, and horizontal flow; graded sand and gravel media (finer to coarser); and backwashing via reverse flow [8]. In 1829, James Simpson's landmark slow sand filter (SSF) for Chelsea Water Works featured an underdrain system, graded gravel-sand media, and an SSF system to purify the water [9]. SSF, first implemented in the U.S. at Poughkeepsie, New York (1872), originated from European designs, such as James Simpson's system in London [10]. Remarkably, these core design principles of filtration, including biological filtration layers, graded media, and low flow rates, remain fundamental to modern SSF systems [11]. The reliance of these filtration approaches on natural processes, minimal chemical input, and low maintenance makes them significantly relevant for developing countries in recent times, where cost, simplicity, and sustainability are crucial for household- and community-scale water treatment. Hence, the World Health Organization has recognized SSF as one of the most cost-effective methods for small communities that are capable of achieving 90-99% of pathogen removal without complex infrastructure [12-14]. Thus, the historical evolution of filtration systems provides a valuable foundation for addressing current challenges in low-resource regions.

The essential filter design principles are vital since the filter is used to remove pathogenic waterborne microorganisms, including bacteria, viruses, and protozoan parasites, that pose significant risks to drinking water safety when barriers are breached [14]. Among these microorganisms, viruses are particularly challenging due to their small size and resistance to conventional disinfection (e.g., chlorine) [15], necessitating multi-barrier protection and rigorous monitoring of removal efficiency across treatment stages [16]. Besides, a parallel concern is eutrophication from nutrient pollution (e.g., nitrogen/phosphorus), which drives the proliferation of toxin-producing *cyanobacteria* [17]. While ancient *cyanobacteria* generated Earth's oxygen, modern blooms in nutrient-rich waters release cyanotoxins (e.g., microcystins) that threaten aquatic ecosystems, livestock, and human health [18, 19]. Consequently, wastewater discharge into surface waters requires dual treatment objectives, including advanced nutrient removal to curb eutrophication and robust disinfection to inactivate pathogens.

SSF that spread to communities, such as Lawrence and Massachusetts (USA), has effectively eliminated microorganisms through biological activities in the *schmutzdecke* layer [20]. However, SSFs possess limitations, which include the tendency to clog over time and the requirement of frequent maintenance [21]. The limitations of SSF, particularly its inability to meet the demands of highly turbid water and rapid urban consumption, have contributed to its reduced use in favor of rapid sand filtration systems, which integrate coagulation and a mechanical backwashing approach to enhance efficiency and adaptability in modern water

treatment contexts [22]. Despite this, SSF remains critical in niche applications, particularly in low-resource settings, due to its robust pathogen removal without chemical inputs.

Post-Civil War America started with SSF, rapidly adopted efficient rapid sand filters, and later entered the modern era of safety with chlorination in the year 1908 [23]. The 20th century has witnessed rising consumer expectations for better water quality and government regulations (for instance, the Safe Drinking Water Act (SDWA)), which drive continuous improvement to address a broader spectrum of contaminants. Comprehensive federal regulation was initiated with the Surface Water Treatment Rule (SWTR) in 1989, which mandated filtration and disinfection for U.S. public water systems using surface water sources [24]. This rule specifically addresses pathogens, such as *Giardia lamblia* and *Cryptosporidium*, which provide protozoan resistance to conventional disinfection (e.g., chlorine) and require physical removal through filtration [25]. Driven in part by the *Cryptosporidium* outbreak in Milwaukee, USA (year 1993), subsequent regulations such as the Interim Enhanced Surface Water Treatment Rule (IESWTR, 1998) and the Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR, 2006) imposed stricter turbidity standards and risk-based treatment requirements, thereby compelling several unfiltered systems to implement filtration for complying with the enhanced microbial protection standards [26]. Therefore, filtration remains an essential process in surface water treatment, playing a vital role in the effective removal of microbial contaminants and the protection of public health.

Besides the microbial contaminant removal, the Langat River in Malaysia was identified to have distinct elemental distributions, which include heavy metals, such as arsenic (As), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) [27]. Before water is consumed by a human's body, these harmful impurities, which are highly toxic compounds in the water, must be removed [28]. These trace elements showed higher prevalence in suspended solids, whereas sediments exhibited elevated concentrations of Zn, Ni, Pb, and Cr [29]. Elemental analysis was performed using inductively coupled plasma mass spectrometry (ICP-MS) for water, suspended solids, and sediment samples [30]. Also, besides removing microbial contaminants, the efficiency of the removal of these heavy metal pollutants is essential [31, 32]. Despite evidence of heavy metal pollution, comprehensive studies on filtration efficacy for these contaminants, especially REEs, are still absent in the literature.

On the other hand, short-term surface water pollution from elevated heavy metal concentrations is predominantly driven by industrial and agricultural anthropogenic activities, including mining operations, coal combustion, battery manufacturing, chemical production, and improper waste disposal [33]. While ecosystems possess limited adaptive capacity to naturally occurring geological weathering of heavy metals, anthropogenic inputs frequently exceed tolerable ecological thresholds and disrupt biogeochemical cycles [34]. Heavy metals and metalloids are prioritized concerns due to their persistence, bioaccumulation potential, and acute-to-chronic toxicity in aquatic ecosystems and human health (e.g., renal failure, carcinogenicity) [35]. Household-scale water filtration systems, due to the risks of heavy metals, offer a practical interim solution for improving water quality through low-cost, energy-efficient contaminant removal [36]. However, comprehensive analyses of filtration

technologies remain scarce, particularly regarding long-term efficacy, scalability, and trade-offs between conventional and advanced methods.

This narrative review aims to evaluate household filtration technologies with emphasis on bio-sand, ceramic, and composite media as sustainable point-of-use solutions for resource-limited settings. Unlike previous reviews that often focus solely on technical performance, this work uniquely emphasizes household- and community-scale filtration technologies while integrating both social and technical dimensions within the context of developing countries. Further, this review quantifies contaminant removal efficacy for priority pollutants (pathogens, turbidity, heavy metals), benchmarks socio-technical trade-offs (comparison between cost and performance, as well as local adaptability and reliability), and identifies implementation barriers across diverse hydrogeological and cultural contexts, through integrated analysis of peer-reviewed literature, experimental data, and analytical modeling approaches. While these systems offer critical advantages, including zero energy requirements, minimal sludge generation, and construction from local materials, which improves their performance, variability underscores an urgent need for standardized testing protocols, context-specific design optimization, and resolved scalability gaps. Thus, this review establishes the recent studies that accelerate the deployment of effective, equitable water filtration in global communities, where centralized filtration treatment remains limited. For this narrative review, relevant studies were retrieved from Google Scholar and Web of Science, covering literature published between 2004 and 2025.

2. Water Filtration and Coagulation

Water is a fundamental human right and essential for life, which requires safety, accessibility, and adequate treatment to meet health and societal needs [37]. Globally, half of the 700 million people lack safely managed drinking water services, while approximately 2 billion people use water contaminated by feces [38]. Recent statistics have projected that global water demand will surge, driven by agricultural intensification, population growth, and industrialization [39]. Contaminated water transmits diseases, such as cholera and typhoid, accounting for annual deaths, underscoring the critical need to eliminate pathogens (viruses, bacteria, and protozoa), micropollutants (pesticides, pharmaceuticals), and geogenic toxins [40]. Furthermore, the chemical contaminants, including As (carcinogenic), Pb, Cr, Cd, Ni, and fluoride (skeletal/dental fluorosis), are widely reported across different regions of the world [41], posing significant global concerns for human health and water safety.

In the agro-food and beverage industry wastewater treatment, raw materials, such as fruit pulps (guava, orange), sugars, and phosphates, contribute to high organic loads (Biochemical oxygen demand (BOD)/chemical oxygen demand (COD)) and suspended solids (SS), necessitating robust pre-treatment [42]. Coagulation-flocculation is commonly employed to remove SS and colloidal organic matter and usually reduces the load on downstream biological systems [43]. Further, coagulants (e.g., ferric chloride) neutralize particle charges to destabilize colloids, while flocculants (e.g., polymers) bridge particles into settleable flocs. These flocs are subsequently removed via a sedimentation or filtration process, which significantly reduces turbidity and organic content before biological treatment. However,

using chemical coagulants and synthetic flocculants can cause problems, such as producing too much sludge, creating secondary pollution, and increasing costs. This shows the need for greener options, like bio-based coagulants or combined treatment methods.

Numerous studies have examined the efficiency of coagulants (e.g., ferric chloride, poly-aluminum chloride) and flocculants (e.g., polyacrylamide, chitosan) in industrial wastewater treatment [44]. Key factors include coagulant dosage, pH adjustment, and flocculant addition sequence, which dictate charge neutralization, sweep-floc mechanisms, and floc aggregation kinetics [45]. In municipal wastewater treatment, granular activated carbon (GAC) effectively absorbs COD and volatile organic compounds (e.g., benzene) by leveraging its porous structure and surface functional groups [46]. However, optimal coagulation conditions for turbidity, natural organic matter, or color removal often diverge from those targeting natural organic matter (NOM) due to differences in NOM hydrophobicity, molecular weight, polarity, acidity, and charge density [47]. While baseline coagulation prioritizes turbidity reduction through particle destabilization, optimized coagulation requires precise adjustments in dosage and pH to enhance NOM removal, particularly hydrophobic fractions, such as humic acids, which reduce disinfection by-product (DBP) formation potential [48].

Water filtration removes suspended particles (e.g., silt, algae), microorganisms (bacteria, protozoa), and targeted chemical contaminants to produce water with specific quality standards (e.g., drinking, pharmaceutical) [49]. Conventional drinking water systems employ multi-barrier processes that are adapted to source water quality, which typically integrate coagulation, granular media filtration, disinfection [50], and optionally membrane filtration or adsorption, that is not a rigid five-stage sequence. Nonwoven membranes (melt-blown, spun-bonded, and electrospun nanofibers) enable effective microfiltration (0.1–10 μm pore size) for particle removal, with hybrid micro- or nano-fiber composites enhancing selectivity [51]. Moreover, the traditional additives (e.g., bentonite clays, polyanionic cellulose) undergo thermal degradation and polymer chain scission to reduce fluid-colloidal stability [52]. While thermal expanders mitigate this thermal degradation partially, nanoparticle reinforcements, such as Nano Glass Flakes (NGFs), demonstrate superior performance, including reduced fluid loss and enhanced rheology with higher yield points or gel strength [53]. Nanoparticles achieve a higher yield point or gel strength by forming tortuous pathways that restrict fluid invasion while maintaining mud workability [54]. Besides tough conditions like drilling, the use of nanomaterials can also help in potable water treatment applications. They work in similar ways, such as making water flow through longer paths, keeping the system stable, and removing more contaminants. The following sub-sections present different filtrations.

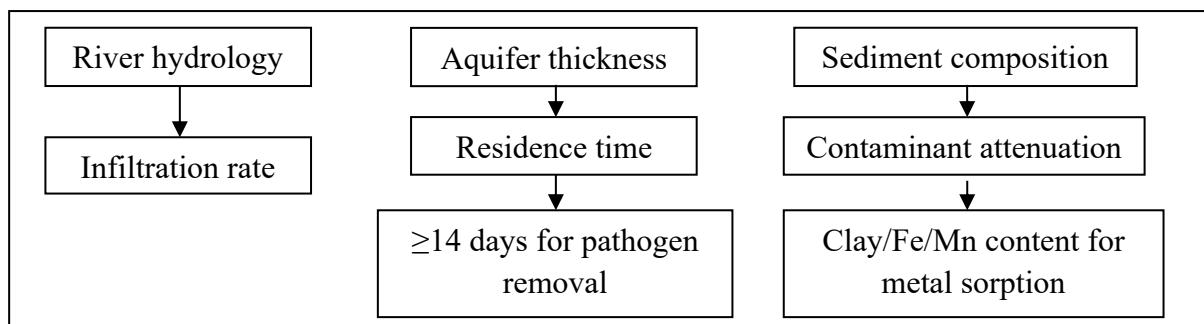
2.1. Electrospun Polyacrylonitrile Nanofibrous Membrane Filtration

Polyacrylonitrile (PAN), a synthetic polymer composed of repeating acrylonitrile units, is a dominant precursor for carbon-based materials due to its high carbon yield [55], superior mechanical strength (high tensile strength in carbonized form), and exceptional thermal stability [56]. These properties stem from PAN's stereospecific molecular structure and high nitrile-group density, which facilitate cyclization and ladder-polymer formation during stabilization. However, unmodified PAN exhibits inherent hydrophobicity, or so-called not

excellent water wettability, due to the presence of nonpolar nitrile groups, limiting its filtration applications without surface modification or blending of composites.

Electrospinning, which is a scalable nanofiber production technique, leverages electrostatic forces to generate a polymer-solution jet from a Taylor cone, forming continuous fibers [57]. This electrospinning process is particularly critical for PAN-based materials, enabling tunable fiber morphology through parameters, such as solution viscosity (e.g., Dimethyl Sulfoxide (DMSO) or Dimethylformamide (DMF)) and voltage [58, 59]. PAN nanofibers synthesized via the electrospinning method serve as foundational substrates for high-performance applications, including oil or water separation membranes [60] (e.g., PAN or halloysite composites achieving high flux recovery), carbon nanofiber precursors [61], and flame-retardant materials (limiting oxygen index) [62].

Electrospun PAN or halloysite nanotube (PAN/HNT) composite membranes demonstrate exceptional oil/water separation efficiency to achieve high removal of oil-in-water emulsions [63]. The incorporation of HNTs has been identified to enhance membrane hydrophilicity for boosting pure water flux while maintaining high oil rejection [64]. This performance stems from HNTs' nano-tubular structure to form preferential water pathways and surface charge modifications [65]. Electrospinning refined origins enable precise fabrication of PAN/HNT nanofibers with tunable diameters, ultrahigh surface-area-to-volume ratios, and interconnected porosity [57]. These composites synergize PAN's mechanical robustness with HNTs' thermal resilience and ion-exchange capacity [66]. The resultant membranes exhibit polymer advantages (e.g., moldability and corrosion resistance), and inorganic advantages (e.g., mineral rigidity and chemical inertness), making them ideal for harsh-environment separation applications [67]. Emerging contaminants such as Per- and polyfluoroalkyl substances, microplastics, and pharmaceuticals pose additional challenges for water treatment in harsh environments [68-70].


PAN-based nanofibers are extensively utilized in advanced water purification membranes due to their high surface area-to-volume ratio, tunable pore size, and controllable hydrophilicity [71]. These properties are optimized through electrospinning parameter adjustments (e.g., voltage, flow rate, collector distance) to achieve the desired porosity and fiber morphology [72]. PAN nanofiber membranes are primarily applied in ultrafiltration (UF) and nanofiltration (NF) systems for pollutant removal [73]. Graphene oxide (GO) composites significantly enhance membrane performance. For instance, Ag/GO-PAN nanofibers achieve 30% higher water flux, compared to unmodified PAN, while improving antibacterial efficiency against *S. aureus* [74, 75].

Historically, PAN was used in textiles to produce wool-like fibers via wet or dry spinning; however, its dominant modern application is carbon fiber production through stabilization and carbonization [76]. Additional PAN's functional uses include filtration systems (e.g., oily wastewater treatment via hydrolyzed PAN-TiO₂ membranes) [77], cement reinforcement (e.g., enhanced concrete durability through nanofiber integration) [78], acoustic/thermal insulation (e.g., leveraging high porosity and mat flexibility) [79], and heavy metal adsorption.

Despite these advantages, electrospun PAN or PAN/HNT nanofiber membranes face challenges in scalability and cost compared to conventional phase-inversion polymeric UF and NF membranes. Electrospinning requires high-voltage setups and often low-throughput processes, which limit their large-scale production [80]. Conventional UF/NF membranes, by contrast, are cheaper, with a production cost of $\sim \$0.1\text{-}0.5$ per m^2 and are already industrially mature, though they often suffer from fouling and limited chemical resistance [81]. PAN/HNT composites show superior flux and oil rejection ($>98\%$) [82]; however, their fabrication costs and material integration, such as halloysite source and nanofiber uniformity, remain higher than commercial UF membranes. It is noteworthy that PAN-based systems exhibit higher reusability and longer lifetimes under harsh environments compared to polymer-only membranes, suggesting better long-term sustainability in niche, high-demand applications [83].

2.2. Riverbank Filtration

Riverbank Filtration (RBF) is a natural pre-treatment method where surface water infiltrates through aquifer sediments (e.g., sand/gravel) [84] before extraction via wells that have been deployed globally for over a century to augment drinking water supplies [85]. Sustainable RBF operation requires maintaining stable hydraulic conditions and water quality compliance (e.g., pathogen/log reduction targets), which directly influence downstream treatment design [86]. The process leverages hyporheic exchange, including river percolation, attenuation of contaminants via physical filtration, biodegradation (e.g., organic pollutant breakdown in oxic zones), and sorption (e.g., heavy metals onto clay or iron oxides) [87]. In losing streams (common in arid regions), water loss to aquifers enhances RBF filtration residence time to improve contaminant removal efficiency [88]. Under optimal conditions (e.g., minimal aquifer pollution), RBF-produced water can exceed local groundwater quality with high *Cryptosporidium* removal, Dissolved Organic Carbon (DOC) reduction, and heavy metal attenuation [89]. **Figure 1** summarizes the critical RBF design parameters.

Figure 1. Critical RBF design parameters

RBF has been utilized in Europe for over 150 years along major rivers, such as the Rhine (Switzerland and Germany), Danube (central and southeastern Europe), and Elbe (Germany and the Czech Republic), with documented implementation in Düsseldorf, Germany, since 1870 [89, 90]. In the United States, RBF has been operational for several years in key sites, such as the Ohio River in Kentucky and the South Platte River in Colorado, where it serves as

a cost-effective pretreatment technique to reduce pathogen loads [91]. The process leverages natural attenuation mechanisms such as filtration, biodegradation, and adsorption that are within aquifer sediments to eliminate more than 90% of turbidity and significantly reduce *Giardia*, *Cryptosporidium*, and viruses [92]. Recent applications in Egypt demonstrate RBF's adaptability to diverse hydrogeological settings, though site-specific challenges, such as manganese mobilization (e.g., in Luxor, Egypt), require supplemental treatment [88].

2.2.1. Comparisons Between Riverbank Filtration and Slow Sand Filtration

The cholera epidemic in Hamburg, Germany, in 1892, which was caused by *Vibrio cholerae* contamination of the Elbe River, resulted in approximately 10,000 deaths and exposed critical failures in municipal water management [93]. Unlike other European cities that had implemented filtration systems, Hamburg's merchant-led government had refused to treat its water supply, prioritizing economic interests over public health. In response, Hamburg abandoned direct river intake and rapidly constructed a mechanical sand filtration plant by 1893, not a subsoil passage, which became operational a year ahead of schedule. This system reduced turbidity and pathogens through engineered granular media, without standalone natural subsoil filtration.

While SSF and RBF both leverage biological and physical attenuation mechanisms, their operational principles differ substantially [94]. SSF relies on a cultivated *schmutzdecke* (biological layer) for pathogen elimination [95]. RBF depends on aquifer properties (e.g., sediment mineralogy, residence time) for contaminant degradation to achieve pathogen reduction [94]. Both methods provide robust pathogen removal but are typically integrated with advanced processes to meet modern standards; instead, they often integrate with advanced processes (e.g., chlorination, membranes) to meet regulatory standards [96]. Moreover, site selection hinges on hydrogeological feasibility, infrastructure costs, and maintenance complexity, with residence time requirement in RBF for optimal efficacy, and the need for periodic sand scraping in SSF [88].

The SSF treatment of water by percolation through a biologically active sand bed has been identified to optimize elimination of pathogens [11]. This process functions as a fixed-bed bioreactor, relying on a microbial biofilm (*schmutzdecke*) and subsurface biological layers to achieve removal of bacteria, protozoa, and viruses, reduction of biodegradable organics (e.g., DOC), and near-complete turbidity elimination (<1 Nephelometric turbidity units (NTU)) [97]. While robust against moderate pH fluctuations and low surfactant levels, SSF is vulnerable to extreme pH, which degrades biofilm integrity, high metal concentrations cause pore clogging, and cold temperatures slow down their biological activity [98]. In wastewater applications, SSF serves as tertiary treatment for septic tank effluent polishing (BOD₅ reduction) before soil dispersal, anaerobic effluent post-treatment (e.g., anaerobic up-flow sludge blanket (UASB) reactors) to achieve pathogen removal, and water reuse systems when combined with UV disinfection [99].

In SSF, a biologically active layer (*schmutzdecke*) is formed at the sand surface, which comprises bacteria, protozoa, and extracellular polymers [95]. This layer physically traps

suspended solids (turbidity reduction) and biologically degrades organics via extracellular enzymes (BOD₅ removal), and adsorbs pathogens (*E. coli* reduction) [11]. Hydraulic conductivity decreases during the accumulation of contaminants, which requires periodic scraping of the *schmutzdecke*. Likewise, regeneration requires 4–11 days to re-establish microbial communities [100]. Post-maintenance efficiency is typically improved due to renewed biological activity. However, fundamental RBF operates differently from SSF, as it does not involve the formation of a surface *schmutzdecke* [84]. For instance, biofilms coated sediment grains throughout the hyporheic zone, and contaminant removal occurred via aerobic/anaerobic biodegradation in subsurface biofilms, mineral sorption (e.g., Fe/Mn oxides adsorbing metals), and straining in sediment pores. Moreover, high-flow events may scour riverbed sediments, however they do not eliminate subsurface biofilms, which persist in aquifer matrices.

2.2.2. Removal of Pathogens, Indicators, Surrogates, and Toxins by Using Riverbank Filtration

RBF is a natural water treatment process where surface water infiltrates through a riverbed or bank sediments into an aquifer, driven by natural hydraulic gradients or pumping-induced drawdown [101]. During subsurface passage, water undergoes contaminant attenuation via pathogen removal and biodegradation of organic compounds (e.g., DOC reduction) [102]. It is noteworthy that the pathogen removal includes the physical straining of particles (e.g., *Cryptosporidium*), adsorption to clay or iron oxide coatings on sediment grains, and die-off/predation in biofilms (reduction for bacteria/viruses) [103]. Meanwhile, optimal RBF requires aquifer granulometry such as sandy sediments with hydraulic conductivity and flow velocity to ensure more than 14-day residence time, and clogging control, such as riverbed turbidity of <50 NTU to maintain infiltration rates [89]. Additionally, pathogen attachment depends on grain surface charge (e.g., Fe/Mn oxides favor adsorption) and pore geometry (tortuosity of >1.5 enhances contact). The detachment is negligible under stable flow, which is increased during rapid pumping surges or the riverbed scouring process. The LT2ESWTR was applied to all U.S. public water systems (PWSs) using surface water or groundwater under the direct influence of surface water (GWUDI), with GWUDI status requiring hydrogeological verification of hydraulic connectivity [86]. This regulation, which was established in 2006, targets *Cryptosporidium* risks through risk-based treatment requirements, where source water monitoring is mandatory for *Cryptosporidium*, *E. coli*, and turbidity.

2.3. Removal of Fluoride, Coliform Bacteria, and Arsenic by Filter Media

The challenge of the fluoride, coliform bacteria, and arsenic removal disproportionately affects small, remote communities reliant on groundwater, where exposure to As above 10 µg/L causes carcinogenic (skin/lung/bladder cancers), cardiovascular, and dermal effects [104]. Thermotolerant coliforms (e.g., *E. coli*) indicate fecal contamination, signaling potential pathogens (viruses, protozoa) that can cause acute gastroenteritis (vomiting, cramps, diarrhea) and chronic conditions, such as kidney failure [105]. While household SSFs offer low-cost treatment, their unmodified designs exhibit limitations [106]. These limitations of

SSFs include pathogen removal and reduction (insufficient for highly contaminated sources), chemical ineffectiveness, where near-zero removal of dissolved As/fluoride has led to As removal via adsorption, and pathogen reduction while maintaining affordability [106].

2.4. Low-Cost Household Drinking Water Filtration System

Mahmood [107] evaluated a low-cost HSF for treating contaminated drinking water in earthquake-affected communities of northern Pakistan, where over 4,000 water systems were damaged. Two villages were selected for field demonstrations, with HSF performance monitored through microbiological testing (pre-treatment with 101 CFU/100 mL of *E. coli* and 73 CFU/100mL of total coliforms) and community engagement (focus groups and questionnaires assessing water quality perceptions). The HSF used a concrete or plastic container (standard height: ~0.9 m) filled with locally sourced and graded sand as well as gravel layers (not cylindrical pipes), to achieve a 97% reduction in *E. coli*, coliforms, and turbidity after 10 days of operation, and 67% of community acceptance, with turbidity identified as the primary water quality. While HSF effectively addressed immediate disaster recovery needs, recent advances in gravity-driven membrane (GDM) filtration offer complementary solutions for sustainable water treatment [108]. GDMs use ultra-low-pressure membranes (e.g., PVDF hollow fibers) to achieve 2–4 log pathogen removal with minimal maintenance, showing promise for rural and emergency contexts. However, the latest review on low-cost GDM for sustainable water treatment by Nguyen [109] summarized the recent advantages and limitations of GDM. Compared to conventional filters like HSF, BSF, and BSZ-SICG in terms of cost and maintenance, GDM filtration has a high initial cost, but it is technologically superior in terms of treatment quality and eliminates the daily and weekly maintenance burden. Even the conventional filters are cheaper, but their long-term effectiveness is notoriously variable due to their dependence on perfect user behavior.

2.4.1. Household Bio-sand Filter using Plant Biomass

Baig, Qaisar Mahmood [102] demonstrated that decentralized household water treatment, particularly biosand filters (BSFs), offers a practical solution for low-income communities that lack safe drinking water access [110]. BSFs significantly reduce diarrheal diseases and improve water quality by treating water at the point of use [111]. Globally, over 300,000 BSFs have been installed across 69 countries to serve approximately 1.5–2 million people [112]. Field studies confirm BSFs achieve 1–3 log high removal of *E. coli* and thermotolerant coliforms, high turbidity reduction, and high user satisfaction in sustained deployments. These systems are low-cost, simple to operate, and maintainable with local materials (gravel, sand) [113]. Baig, Qaisar Mahmood [102], developed a modified BSF incorporating coniferous *Pinus* bark biomass (CPBB) to address severe bacteriological contamination in earthquake-affected northern Pakistan. This amendment enhanced pathogen removal through adsorption while reducing filter weight, showing their advantages in mountainous terrain. Four prototype filters that are field-tested under temperate conditions show 97% *E. coli* removal after 10 days of operation, despite cold-climate biological activity limitations.

2.4.2. Nanofiltration and Reverse Osmosis

RO and NF are pressure-driven membrane technologies that remove dissolved salts and divalent ions via semi-permeable barriers [114]. State-of-the-art membranes utilize crosslinked aromatic polyamide (PA) active layers formed by interfacial polymerization on polysulfone (PSU) support as a standalone material [115]. Recent innovations explore alternative selective layers, including GO laminations [116], aquaporin-embedded block copolymers [117], and liquid crystal-templated nanopores [118]. In this section, the emerging materials' scalability, fouling resistance, and commercial viability, with RO-specific economic analyses comparing energy savings, are evaluated.

PA-based membranes operate via solution-diffusion mechanisms, requiring pressures greater than osmotic pressure [119]. Their performance is dynamically influenced by feeding temperature, pH, and ionic composition. PA's nanoscale heterogeneity complicates direct characterization; pore metrics are inferred through molecular weight cutoff and positron annihilation spectroscopy. Meanwhile, membrane fabrication involves casting of porous polysulfone onto polyester non-woven fabric, interfacial polymerization (e.g., dipping in m-phenylenediamine aqueous solution), which was later allowed to react with trimethylol chloride in hexane, and post-treatment involving solvent extraction, thermal curing, and roll storage. Finished membranes are assembled into spiral-wound modules with feed spacers. Feed flows tangentially and permeates the traverse PA-PSU-polyester layers into the permeate channels, while rejected solutes concentrate in the brine stream.

2.4.3. Comparison Criteria of Three Households' Water Treatment Systems: HSF, BSF, and BSZ-SICG

Tables 1 and 2 provide a comparative analysis of household water treatment systems, which are HSF, BSF, and Bio-Sand Zeolite-Silver Impregnated Granular Clay (BSZ-SICG) filters, to evaluate construction for the use of locally sourced materials, contaminant detection using standardized methods, water quality instrumentation, and operational parameters like temperature ranges, flow rates, and daily capacity. These household water treatment systems demonstrate distinct advantages in resource-limited settings. While designs leverage regionally available materials, performance varies significantly with temperature, feed quality, and maintenance. Furthermore, from **Tables 1 and 2**, BSZ-SICG performs well for turbidity, and this is due to its unique multi-layered filter media composition. However, BSZ-SICG lacks cold-climate validation since it relies on a biological layer (*schmutzdecke*) for pathogen removal, in which the cold climates slow microbial activity and reduce bacterial inactivation efficiency. Still, BSZ-SICG is highly effective but complex and expensive, making it suitable for well-supported programs in temperate regions with high turbidity.

2.4.4. Comparison of RBF, SSF, and household water treatment systems

Quantitative sustainability assessments highlight that decentralized filtration systems differ significantly in energy demand, material recyclability, and life cycle impacts. Riverbank filtration (RBF) systems generally exhibit low operational energy use (<0.1 kWh/m³ treated),

since they rely on natural subsurface processes; however, land and infrastructure requirements limit scalability in densely populated areas [120]. Further, SSF has demonstrated life cycle greenhouse gas emissions of $\sim 0.05 - 0.1$ kg CO₂-eq/m³ treated water, considerably lower than conventional chemical-based treatments [121]. Furthermore, HSF shows high material sustainability due to the use of sand and gravel, whereas cement-based units are less recyclable and have embodied CO₂ emissions of $\sim 150 - 200$ kg CO₂-eq per unit [122]. In contrast, novel BSZ-SICG filters offer enhanced microbial removal ability, yet raise concerns about silver nanoparticle leaching and limited recyclability of impregnated media [123]. Moreover, energy demand across household filters remains negligible (< 0.01 kWh/m³), which strengthens their case for off-grid communities. Therefore, a comprehensive sustainability perspective must weigh not only contaminant removal efficiencies but also embodied energy, recyclability of materials, and end-of-life impacts to guide technology adoption in resource-limited regions.

While technologies such as riverbank filtration, slow sand filtration, and household bio-based filters demonstrate promising efficiency, their large-scale implementation in developing regions faces significant barriers [49]. Cultural acceptance remains a critical factor, as households may perceive alternative filter media (e.g., bio-sand or zeolite/ silver/clay composites) as less safe compared to commercially packaged solutions, which can limit their adoption despite their proven efficacy [124]. Challenges related to the maintenance of filters also hinder their sustainability, since filters require routine cleaning, replacement of media, and user training, which are often overlooked in low-resource communities [125]. For instance, bio-sand filters may lose effectiveness without proper scouring of the biological layer, and silver-impregnated filters require monitoring of silver leaching to ensure safety [126]. Further, policy gaps exacerbate these limitations, as several developing countries lack standardized guidelines, certification mechanisms, or subsidies to support decentralized filtration systems [127]. Scaling up of these techniques, without supportive regulatory frameworks, remains dependent on non-governmental organizations (NGOs) or donor projects, which eventually restricts their long-term impact [128]. Therefore, addressing socio-cultural perceptions, enabling user-friendly maintenance protocols, and integrating supportive policies are as crucial as technical efficiency for ensuring sustainable adoption of filtration technologies.

3. Conclusion and Recommendation

This review presents a critical and comparative evaluation of various household water filtration systems relevant to developing countries, with a particular focus on their technical performance, adaptability, and sustainability in low-resource settings. The analysis demonstrates that while locally fabricated filters such as household sand filters (HSF), bio-sand filters (BSF), and BSZ-SICG systems show considerable promise in improving water quality and reducing disease burden, each method presents unique limitations. Temperature sensitivity, limited virus removal efficiency, and inability to address dissolved contaminants remain significant challenges across all systems. Notably, social factors such as cultural acceptance and user familiarity often outweigh technical performance in determining real-world adoption and long-term use. Further, enhancing filter media with plant biomass or

mineral additives and modifying system components, such as replacing stainless steel with iron-oxide gravel, may improve affordability and chemical stability.

Moreover, this review highlights several research gaps that need to be addressed to strengthen water filtration practices in developing regions. First, there is a lack of long-term field studies under diverse environmental conditions, which limits understanding of filter durability and real-world performance. Second, while conventional and emerging systems show promise for microbial removal, the treatment of chemical contaminants such as arsenic, fluoride, and other persistent pollutants remains underexplored in low-cost applications. Third, the absence of standardized and comparable testing protocols makes it difficult to evaluate and compare results across studies. Future research should therefore focus on large-scale, longitudinal trials, systematic evaluation of both microbial and chemical contaminant removal, and the development of harmonized testing frameworks. Additionally, more studies are needed on user practices, cultural acceptance, and socio-economic impacts to ensure that proposed technologies are not only technically effective but also socially sustainable and scalable in resource-limited contexts. Future progress will require standardized testing protocols under varied environmental conditions (e.g., EPA 1603 methods), as well as affordable innovations in filter media and system design. Overall, this review highlights that while no single filtration method is universally optimal, context-specific design, community engagement, and affordable innovation are key to advancing household water security in developing regions. Hence, future studies should investigate how the water filtration methods can be applied and adapted across diverse contexts in Asia, Africa, and South America.

Funding

This research received internal funding, namely “Geran Kolaborasi Penyelidikan Dengan Institusi Luar (Collaborative Research Grant with External Institutions),” which was funded by Universiti Malaysia Sabah (UMS). The project code for this funding is GKP2501.

Acknowledgments

This paper forms part of the collaborative efforts outlined in the Letter of Intent (LOI) between Universiti Malaysia Sabah (UMS) and Sacred Heart College, India. The authors would also like to express their sincere appreciation for the administrative and technical support provided by Curtin University Malaysia and UMS in the preparation of this work.

Conflicts of Interest

The authors declare no conflict of interest.

Table 1. Comparison of household water treatment systems

Comparison Criteria	HSF	BSF	BSZ-SICG
Construction	Concrete tank, gravel (5-20 mm), sand (0.15-0.35 mm), galvanized iron outlet	Coniferous Pinus bark biomass (CPBB) layer (5-10 cm)	25L buckets, zeolite-clay composite, silver-coated gravel
<i>E. coli/Coliform</i> Detection	Oxfam DelAgua field kit (WHO-approved)	Membrane filtration (EPA 1603)	Chromocult agar (ISO 9308-1)
Turbidity Testing	Hach 2100P (0-1000 NTU range)	YSI ProDSS (FNU units)	Hach 2100P (NTU)
pH Measurement	Hanna HI98129 (ATC probe)	Same as HSF	Same as HSF
Hardness/Chloride Analysis	Titration (EPA 130.2)	Ion chromatography (absent in original)	Not applicable
Operating Temp. (°C)	1-25	1-15 (field-tested)	25 (lab-controlled)
Daily Water Input (L)	20	20	25
Flow Rate	0.4-0.6 L/min (unsaturated)	0.36-0.45 L/min (declines over time)	27.5-38.6 L/h
Biomass Media	None	CPBB (enhances adsorption)	None

Table 2. Comparison of household sand filter (HSF), bio-sand filter (BSF), bio-sand zeolite silver impregnated granular clay (BSZ-SICG), and SIPP filters.

Filter Type	Advantages	Limitations	Evidence Source
HSF	<ul style="list-style-type: none">- 90-95% <i>E. coli</i> removal after maturation- >95% turbidity reduction- 10-year lifespan with scraped maintenance- Material cost: <\$15	<ul style="list-style-type: none">- Zero dissolved contaminant removal (arsenic/fluoride)- 30-50% efficiency drop at <5°C- Weekly scraping required- No residual disinfection	[129, 130]
BSF (w/ CPBB)	<ul style="list-style-type: none">- 97% pathogen removal in Pakistan trials- 50% lower flow decay vs. standard BSF- 40% weight reduction for mountainous use- Adsorbs heavy metals	<ul style="list-style-type: none">- <1-log virus removal- Clogs at >50 NTU- 20-30 days maturation period- CPBB replacement annually	[131, 132]
BSZ-SICG	<ul style="list-style-type: none">- <i>E. coli</i> removal in SIPP configuration- Turbidity: 168 to 0.85 NTU- Zero detectable silver leaching- Reduces diarrheal incidence by 45%	<ul style="list-style-type: none">- Antimicrobial failure at Ag<0.1 ppm- Quarterly media replacement- No cold-climate data- High clay sourcing costs	[133-135]

Nomenclature

Al	Aluminium
As	Arsenic
BSF	Bio sand filter
BSZ	Bio-sand zeolite
BOD	Biochemical Oxygen Demand
HSF	Household sand filter
Ce	Cerium
Cd	Cadmium
Co	Cobalt
COD	Chemical Oxygen Demand
CPBB	Coniferous Pinus bark biomass
Cr	Chromium
Cu	Copper
DBP	Disinfection by-product
DMF	Dimethylformamide
DMSO	Dimethyl Sulfoxide
DOC	Dissolved Organic Carbon
GAC	Granular activated carbon
GDM	Gravity-driven membrane
GO	Graphene oxide
GWUDI	Groundwater under the direct influence of surface water
Hg	Mercury
NGFs	Nano Glass Flakes
HNT	Halloysite nanotube
HPHT	High-pressure high temperature
HSF	Household Sand Filters
ICP-MS	Inductively coupled plasma mass spectrometry
IESWTR	Interim Enhanced Surface Water Treatment Rule
KAP	Knowledge, Attitude, and Practices
La	Lanthanum
LT2ESWTR	Long Term 2 Enhanced Surface Water Treatment Regulation
MPD	m-phenylenediamine
MWCO	Molecular weight cutoff
NF	Nanofiltration
NGFs	Nano Glass Flakes
NOM	Natural organic matter
NTU	Nephelometric turbidity units
PA	Polyamide
PAN	Polyacrylonitrile
PAN/HNT	Polyacrylonitrile/halloysite nanotube
Pb	Lead
PSU	Polysulfone
PWSs	Public water systems
Rb	Rubidium

RBF	Riverbank filtration
RBFW	Riverbank filtration well
REE	Rare earth elements
RO	Reverse osmosis
Sc	Scandium
SDWA	Safe Drinking Water Act
SIPP	Silver-Impregnated Porous Pot
SS	Suspended solids
SSF	Slow sand filtration
SWTR	Surface Water Treatment Rule
Th	Thorium
TMC	Trimesoyl chloride
UASB	Anaerobic up-flow sludge blanket
UF	Ultrafiltration
UNICEF	United Nations Children's Fund
US	United States
WHO	World Health Organization
Zn	Zinc
SICG	Silver impregnated granular clay

References

- [1] KK Yadav, MM Cabral-Pinto, A Gacem, AM Fallatah, B Ravindran, S Rezania, JS Algethami, LB Eltayeb, M Abbas, TH Al-shareef. Recent advances in the application of nanoparticle-based strategies for water remediation as a novel clean technology—A comprehensive review. *Materials Today Chemistry*, 2024, 40, 10222, <https://doi.org/10.1016/j.mtchem.2024.102226>.
- [2] MK Chan, WS Yeo, JCY Ngu, PY Lee, J Nandong, NA Sharani, AM Aris, KB Chin. Enhancing sustainability in sewage treatment: A least squares support vector regression-based modeling approach for optimizing regeneration conditions of iFeCu. *Journal of Water Process Engineering*, 2024, 64, 105694, <https://doi.org/10.1016/j.jwpe.2024.105694>.
- [3] A Bhagavatula, V Rajagopalan, B Duncan, P Vimalchand. Innovative recovered water process implementation: Flocculation-sedimentation-filtration process for addressing water and energy nexus challenges at Kemper IGCC Power Plant. *Energy Nexus*, 2021, 1, 100007, <https://doi.org/10.1016/j.nexus.2021.100007>.
- [4] LK Wang, M-HS Wang, NK Shamma, HH Hahn. Physicochemical treatment consisting of chemical coagulation, precipitation, sedimentation, and flotation. In *Integrated Natural Resources Research*, L.K. Wang, M.S. Wang, Y. Hung, Eds., Springer: Cham, Switzerland, 2021, 265-397, https://doi.org/10.1007/978-3-030-61002-9_6.
- [5] V Devda, K Chaudhary, S Varjani, B Pathak, AK Patel, RR Singhania, MJ Taherzadeh, HH Ngo, JW Wong, and W Guo. Recovery of resources from industrial wastewater employing electrochemical technologies: Status, advancements and perspectives. *Bioengineered*, 2021, 12(1), 4697-471, <https://doi.org/10.1080/21655979.2021.1946631>.
- [6] RV Snyder, G Macchiarella, S Bastioli, and C Tomassoni. Emerging trends in techniques and technology as applied to filter design. *IEEE Journal of Microwaves*, 2021, 1(1), 317-344, <https://doi.org/10.1109/JMW.2020.3028643>.

[7] P Hartemann, A Montiel. History and development of water treatment for human consumption. *Hygiene*, 2025. 5(1), 6, <https://doi.org/10.3390/hygiene5010006>.

[8] M Turan. Backwashing of granular media filters and membranes for water treatment: A review. *AQUA Water Infrastructure, Ecosystems and Society*, 2023. 72(3), 274-298, <https://doi.org/10.2166/aqua.2023.207>.

[9] DA Savic, JK Banyard. Water supply and distribution systems. 2nd Edition ed, ed. D.A. Savic and J.K. Banyard. 2024, Leeds, England: Emerald Group Publishing.

[10] PK Mondal. Performance evaluation of fabric aided slow sand filter, in *Civil and Environmental Engineering*. 2004, University of Windsor: Canada. 192.

[11] YN Yeszhan, S Sultakhan, E Kuldeyev, B Khalkhabay, Q Xu, S Azat. Slow sand filtration for water treatment, In *Innovative Materials for Industrial Applications: Synthesis, Characterization and Evaluation*. 2025, IGI Global Scientific Publishing. 75-96. <https://doi.org/10.4018/979-8-3693-7505-1.ch003>.

[12] PA Clark, CA Pinedo, M Fadus, S Capuzzi. Slow-sand water filter: Design, implementation, accessibility and sustainability in developing countries. *Medical Science Monitor: International Medical Journal of Experimental Clinical Research*, 2012. 18(7), 105-117. <https://doi.org/10.12659/MSM.883200>.

[13] ML Weber-Shirk, RI Dick. Physical-chemical mechanisms in slow sand filters. *American Water Works Association. Journal*, 1997. 89(1), 87.

[14] OO Sadare, D Oke, OA Olawuni, IA Olayiwola, K Moothi. Modelling and optimization of membrane process for removal of biologics (pathogens) from water and wastewater: Current perspectives and challenges. *Helijon*, 2024. 10(9), e29864. <https://doi.org/10.1016/j.heliyon.2024.e29864>

[15] D Thamilvanan, J Jeevanandam, YS Hii, YS Chan. Sol-gel coupled ultrasound synthesis of photo-activated magnesium oxide nanoparticles: Optimization and antibacterial studies. *The Canadian Journal of Chemical Engineering*, 2021. 99(2), 502-518, <https://doi.org/10.1002/cjce.23861>.

[16] MJ Adelman, P Oberoi, J Oppenheimer, L Furatian, S Arabi, CM Glover, JG Jacangelo. Aligning monitoring of virus barriers in potable reuse with unit process treatment mechanisms and time scales: A critical review and research needs. *AWWA Water Science*, 2024. 6(2), e1368, <https://doi.org/10.1002/aws2.1368>.

[17] KTN Le, JFG Maldonado, T-L Nguyen, E Goitom, H Trigui, NA Ndiaye, Y Terrat, BJ Shapiro, B Husk, A Zamyadi. The short-term effect of nitrogen on freshwater cyanobacteria and cyanotoxins. *Frontiers in Water*, 2024. 6, 1432183, <https://doi.org/10.3389/frwa.2024.1432183>.

[18] V Mohammed, J Arockiaraj. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. *Science of the Total Environment*, 2024. 924, 171644, <https://doi.org/10.1016/j.scitotenv.2024.171644>.

[19] J Jeevanandam, YS Hii, Y San Chan. Biosynthesized metal nanoparticles in bioremediation, in *Rhizomicrobiome dynamics in bioremediation*, V. Kumar, Editor. 2021, CRC Press: United States. 126-161. <https://doi.org/10.1201/9780367821593-7>.

[20] M Pachocka. Intermittent slow sand filters: Improving their design for developing world applications, in *Civil Engineering Department*. 2010, University of Delaware: United States. 159.

[21] N Etzinger, S Guité. Sand filtration system for reducing turbidity of recycled drainage water on tourne-sol farm. 2024, McGill University.

[22] MK Kumar, KM Kumar, NS Kumar. Innovative approaches to water purification harnessing bio-chemical adsorbents for multistage potable water filtration, in *Innovative Materials for Environmental and Aerospace Applications*, Rachid Amrousse, et al., Editors. 2025, IGI Global Scientific Publishing. 389-458, <https://doi.org/10.4018/979-8-3373-0669-8>.

[23] GE Symons. Water treatment through the ages. *Journal-American Water Works Association*, 2006. 98(3), 87-98, <https://doi.org/10.1002/j.1551-8833.2006.tb07609.x>.

[24] A Lamsal, RH Germain, E Bevilacqua. Socioeconomic implications of upstream–downstream relationships and watershed communities: A New York city watershed case study. *Water*, 2024. 16(22), 3197, <https://doi.org/10.3390/w16223197>.

[25] MW LeChevallier, T Prosser, M Stevens. Opportunistic pathogens in drinking water distribution systems—A review. *Microorganisms*, 2024. 12(5), 916, <https://doi.org/10.3390/microorganisms12050916>.

[26] MJ McGuire, T Karanfil, SW Krasner, DA Reckhow, JA Roberson, RS Summers, P Westerhoff, Y Xie. Not your granddad's disinfection by-product problems and solutions. *Journal (American Water Works Association)*, 2014. 106(8), 54-73.

[27] WY Lim, AZ Aris, TH Tengku Ismail. Spatial geochemical distribution and sources of heavy metals in the sediment of Langat River, Western Peninsular Malaysia. *Environmental Forensics*, 2013, 14(2), 133-145, <https://doi.org/10.1080/15275922.2013.781078>.

[28] WS Yeo. A comparative study of different artificial intelligence models and response surface methodology for heptachlor removal using Fe/Cu nanoparticles. *ASEAN Engineering Journal*, 2023. 13(4), 157-163, <https://doi.org/10.11113/aej.v13.20623>.

[29] NF Mokhtar, AZ Aris, SM Praveena. Preliminary study of heavy metal (Zn, Pb, Cr, Ni) contaminations in Langat river estuary, Selangor. *Procedia Environmental Sciences*, 2015. 30, 285-290, <https://doi.org/10.1016/j.proenv.2015.10.051>.

[30] N Belkouteb, H Schroeder, JG Wiederhold, TA Ternes, L Duester. Multi-element analysis of unfiltered samples in river water monitoring—digestion and single-run analyses of 67 elements. *Analytical and Bioanalytical Chemistry*, 2024. 416(13), 3205-3222, <https://doi.org/10.1007/s00216-024-05270-4>.

[31] WS Yeo, S Japarin. The least-square support vector regression model for the dyes and heavy metal ions removal prediction. *Chemical Engineering Communication*, 2024. 211(7), 986-999, <https://doi.org/10.1080/00986445.2024.2321447>.

[32] JCY Ngu, WS Yeo, MK Chan, J Nandong. Least squares support vector regression-based modeling of ammonia oxidation using immobilized nanoFeCu. *Journal of Water Process Engineering*, 2024. 64, 105695, <https://doi.org/10.1016/j.jwpe.2024.105695>.

[33] FN Chowdhury, MM Rahman. Source and distribution of heavy metal and their effects on human health, in *Heavy metal toxicity: Human health impact and mitigation strategies*, N. Kumar, Editor. 2024, Springer: Cham, Switzerland. 45-98, https://doi.org/10.1007/978-3-031-56642-4_3.

[34] M El-Sharkawy, MO Alotaibi, J Li, D Du, E Mahmoud. Heavy metal pollution in coastal environments: ecological implications and management strategies: A review. *Sustainability*, 2025. 17(2), 701, <https://doi.org/10.3390/su17020701>.

[35] TS Maliehe, N Mavingo, TN Selepe, P Masoko, FM Mashao, N Nyamutswa. Quantitative assessment of human health risks associated with heavy metal and bacterial pollution in groundwater from Mankweng in Limpopo Province, South Africa. *International Journal of Environmental Research and Public Health*, 2024, 21(11), 1489, <https://doi.org/10.3390/ijerph21111489>.

[36] S Pennellini. Appropriate technologies and natural systems for wastewater treatment in low-and middle-income countries. 2022, University of Bologna: Bologna, Italy. <https://doi.org/10.48676/unibo/amsdottorato/10372>.

[37] WH Organization. Guidelines for drinking-water quality: incorporating the first and second addenda. 4 ed. 2022: World Health Organization.

[38] G Berihun, M Abebe, S Hassen, A Gizeyat, L Berhanu, D Teshome, Z Walle, B Desye, B Sewunet, A Keleb. Drinking water contamination potential and associated factors among households with under-five children in rural areas of Dessie Zuria

District, Northeast Ethiopia. *Frontiers in Public Health*, 2023. 11, 1199314, <https://doi.org/10.3389/fpubh.2023.1199314>.

[39] AK Bojer, MW Abshare, S Nadarajah. Evaluating the effect of climate change and fast population growth on water supply and demand in Jimma town, Ethiopia, using the WEAP modeling tool. *Journal of Water and Climate Change*, 2025. 16(4), 1586-1617, <https://doi.org/10.2166/wcc.2025.751>.

[40] UB Onyedikachi, FE Mukah. Water contamination by industrial processes and sustainable management strategies, in *Water Crises and Sustainable Management in the Global South*, S.C. Izah, et al., Editors. 2024, Springer: Singapore. 181-210, https://doi.org/10.1007/978-981-97-4966-9_6.

[41] G Ravindiran, S Rajamanickam, S Sivarethnamohan, B Karupaiya Sathaiah, G Ravindran, SK Muniasamy, G Hayder. A review of the status, effects, prevention, and remediation of groundwater contamination for sustainable environment. *Water*, 2023. 15(20), 3662, <https://doi.org/10.3390/w15203662>.

[42] AK Pandey, BK Mishra, A Arora, S Singh, Lata, and RC Ray. Bioaugmentation and biovalorization of agro-food and beverage industry effluents, in *Bioaugmentation, Biostimulation and Biocontrol*, A. Singh, N. Parmar, and R. Kuhad, Editors. 2011, Springer: Berlin, Heidelberg. 85-106, https://doi.org/10.1007/978-3-642-19769-7_5.

[43] TA Aragaw, FM Bogale. Role of coagulation/flocculation as a pretreatment option to reduce colloidal/bio-colloidal fouling in tertiary filtration of textile wastewater: A review and future outlooks. *Frontiers in Environmental Science*, 2023. 11, 1142227, <https://doi.org/10.3389/fenvs.2023.1142227>.

[44] C Zhao, J Zhou, Y Yan, L Yang, G Xing, H Li, P Wu, M Wang, H Zheng. Application of coagulation/flocculation in oily wastewater treatment: A review. *Science of The Total Environment*, 2021. 765, 142795, <https://doi.org/10.1016/j.scitotenv.2020.142795>.

[45] H Chow. The treatment of high hardness waters by electrocoagulation: Factors affecting contaminant removal, electrode fouling, and precipitate separation, in *Department of Civil and Environmental Engineering*. 2021, University of Waterloo: Ontario, Canada. 170.

[46] R Ganjoo, S Sharma, A Kumar, M Daouda. Activated carbon: Fundamentals, classification, and properties. *Activated Carbon: Progress and Applications*, ed. C. Verma and M.A. Quraishi. 2023, London: The Royal Society of Chemistry. 450, <https://doi.org/10.1039/BK9781839169861-00001>.

[47] A Knap-Bałdyga, M Żubrowska-Sudol. Natural organic matter removal in surface water treatment via coagulation—current issues, potential solutions, and new findings. *Sustainability*, 2023. 15(18), 13853, <https://doi.org/10.3390/su151813853>.

[48] H Tahraoui, S Toumi, M Boudoukhani, N Touzout, ANEH Sid, A Amrane, A-E Belhadj, M Hadjadj, Y Laichi, M Aboumustapha. Evaluating the effectiveness of coagulation–flocculation treatment using aluminum sulfate on a polluted surface water source: A year-long study. *Water*, 2024. 16(3), 400, <https://doi.org/10.3390/w16030400>.

[49] AA Gadgil, A Das, P Ashokkumar, N Munjal, J Periasamy. Advancements in filtration technologies for air and water pollution control, in *Environmental applications of carbon-based materials*, J. Arun, N. Nirmala, and S.S. Dawn, Editors. 2024, IGI Global: Hershey, PA, US. 167-195, <https://doi.org/10.4018/979-8-3693-3625-0.ch007>.

[50] Z Zhao, W Sun, Y Ke, Y Zhang, X Wang. Microbial dynamics at different stages of drinking water treatment systems. *Environmental Science: Water Research & Technology*, 2025, 11(6), 1401-1427.

[51] Y Kara, K Molnár. A review of processing strategies to generate melt-blown nano/microfiber mats for high-efficiency filtration applications. *Journal of Industrial Textiles*, 2022. 51(1_suppl), 137S-180S, <https://doi.org/10.1177/15280837211019488>.

[52] S Gao, D Lin, A Li, L Deng, A Dong, J Zhang. Synergistic effects of covalent crosslinking and hydrophobic association on enhancing thermal and salt resistance of polymeric filtrate reducer. *Journal of Molecular Liquids*, 2024. 407, 125204, <https://doi.org/10.1016/j.molliq.2024.125204>.

[53] M Sajjadian, VA Sajjadian, A Rashidi. The influence of nanoparticles with KCl salt on improving of water-based drilling fluid properties: experimental analysis and trial field test. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, 2025. 47(1), 3478-3495, <https://doi.org/10.1080/15567036.2020.1854900>.

[54] C Martin, A Nourian, M Babaie, G Nasr. Environmental, health and safety assessment of nanoparticle application in drilling mud-Review. *Geoenergy Science and Engineering*, 2023. 226, 21176, <https://doi.org/10.1016/j.geoen.2023.211767>.

[55] A Kausar. Polyacrylonitrile nanocomposite with carbon nanostructures: A review. *Polymer-Plastics Technology and Materials*, 2019. 58(7), 707-731, <https://doi.org/10.1080/25740881.2018.1563113>.

[56] D Jang, ME Lee, J Choi, SY Cho, S Lee. Strategies for the production of PAN-Based carbon fibers with high tensile strength. *Carbon*, 2022. 186, 644-677, <https://doi.org/10.1016/j.carbon.2021.10.061>.

[57] Y Cho, JW Beak, M Sagong, S Ahn, JS Nam, ID Kim. Electrospinning and nanofiber technology: Fundamentals, innovations, and applications. *Advanced Materials*, 2025, 2500162, <https://doi.org/10.1002/adma.202500162>.

[58] M Coronas, Y Holade, D Cornu. Review of the electrospinning process and the electro-conversion of 5-hydroxymethylfurfural (HMF) into added-value chemicals. *Materials*, 2022, 15(12), 4336, <https://doi.org/10.3390/ma15124336>.

[59] X Sun. Development and characterization of wet spinning PAN/CNT fibers, in Department of Mechanical Engineering. 2025, Northeastern University: Boston, Massachusetts, United States.

[60] Y Pei, X Wu, Y Lv, N Liang, S Lv, J Guo, D Jia. A direct electrospinning strategy prepared series of coal-derived nanofibers for efficient oil-water separation. *Applied Surface Science*, 2024, 645, 158815, <https://doi.org/10.1016/j.apsusc.2023.158815>.

[61] TD Nguyen, JS Lee. Electrospinning-based carbon nanofibers for energy and sensor applications. *Applied Sciences*, 2022, 12(12), 6048, <https://doi.org/10.3390/app12126048>.

[62] S Wang, P Fan, W Liu, B Hu, J Guo, Z Wang, S Zhu, Y Zhao, J Fan, G Li. Research progress of flexible electronic devices based on electrospun nanofibers. *ACS Nano*, 2024, 18(46), 31737-31772, <https://doi.org/10.1021/acsnano.4c13106>.

[63] Q Wang, J Cui, S Liu, J Gao, J Lang, C Li, Y Yan. Facile preparation of halloysite nanotube-modified polyvinylidene fluoride composite membranes for highly efficient oil/water emulsion separation. *Journal of Materials Science*, 2019, 54, 8332-8345, <https://doi.org/10.1007/s10853-019-03482-z>.

[64] P Zhang, Y Yang, G Qiao, Y Huang, J Lan, B Ban, J Zhang, X Lu, J Suo, M Yang. Treatment of refinery wastes using PC/GO/HNTs mixed matrix membranes. *Fuel*, 2025. 401, 135865, <https://doi.org/10.1016/j.fuel.2025.135865>.

[65] Y Li, X Yuan, L Jiang, H Dai, Y Zhao, X Guan, J Bai, H Wang. Manipulation of the halloysite clay nanotube lumen for environmental remediation: A review. *Environmental Science: Nano*, 2022, 9(3), 841-866, <https://doi.org/10.1039/D1EN01032H>.

[66] M Fahimizadeh, LW Wong, Z Baifa, S Sadjadi, SAB Auckloo, K Palaniandy, P Pasbakhsh, JBL Tan, RR Singh, P Yuan. Halloysite clay nanotubes: Innovative applications by smart systems. *Applied Clay Science*, 2024, 251, 107319, <https://doi.org/10.1016/j.clay.2024.107319>.

[67] MQ Seah, SF Chua, WL Ang, WJ Lau, A Mansourizadeh, C Thamaraiselvan. Advancements in polymeric membranes for challenging water filtration environments:

A comprehensive review. *Journal of Environmental Chemical Engineering*, 2024, 12(3), 112628, <https://doi.org/10.1016/j.jece.2024.112628>.

[68] SD Richardson, T Manasfi. Water analysis: emerging contaminants and current issues. *Analytical Chemistry*, 2024, 96(20), 8184-8219, <https://doi.org/10.1021/acs.analchem.4c01423>.

[69] R Corpus, M Bayani, J Aguilar, J Aguilar, H Aguilar. Emerging pollutants in waste water: Challenges and advancements in treatment technology. in *IOP Conference Series: Earth and Environmental Science*. 2024. Ho Chi Minh City, Vietnam: IOP Publishing. <http://www.doi.org/10.1088/1755-1315/1372/1/012037>.

[70] MRI Rayhan, AS Shohag, KA Riya, JM Liza, MM Rahman, MS Rahaman. Legacy and emerging contaminants: Discussions and legislative advances, in *The Handbook of Environmental Chemistry*. 2024, Springer: Berlin, Heidelberg. https://doi.org/10.1007/698_2024_1176.

[71] B Danagody, N Bose, K Rajappan. Electrospun polyacrylonitrile-based nanofibrous membrane for various biomedical applications. *Journal of Polymer Research*, 2024, 31(4), 119, <https://doi.org/10.1007/s10965-024-03965-x>.

[72] BA Chinnappan, M Krishnaswamy, H Xu, ME Hoque. Electrospinning of biomedical nanofibers/nanomembranes: effects of process parameters. *Polymers*, 2022, 14(18), 3719, <https://doi.org/10.3390/polym14183719>.

[73] M Obaid, MA Abdelkareem, S Kook, H-Y Kim, N Hilal, N Ghaffour, IS Kim. Breakthroughs in the fabrication of electrospun-nanofiber-supported thin film composite/nanocomposite membranes for the forward osmosis process: A review. *Critical Reviews in Environmental Science and Technology*, 2020, 50(17), 1727-1795, <https://doi.org/10.1080/10643389.2019.1672510>.

[74] NM Noah. Current status and advancement of nanomaterials within polymeric membranes for water purification. *ACS Applied Nano Materials*, 2023, 7(16), 18610-18625, <https://doi.org/10.1021/acsanm.3c04110>.

[75] W Jang, J Yun, Y Park, IK Park, H Byun, CH Lee. Polyacrylonitrile nanofiber membrane modified with Ag/GO composite for water purification system. *Polymers*, 2020, 12(11), 2441, <https://doi.org/10.3390/polym12112441>.

[76] S Bianchi, F Bartoli, C Bruni, C Fernandez-Avila, L Rodriguez-Turienzo, J Mellado-Carretero, D Spinelli, M-B Coltelli. Opportunities and limitations in recycling fossil polymers from textiles. *Macromol*, 2023, 3(2), 120-148. <https://doi.org/10.3390/macromol3020009>.

[77] V Kochkodan. Surface Modification, in *Membrane Modification: Technology and Applications*, Nidal Hilal, Mohamed Khayet, and C.J. Wright, Editors. 2012, CRC Press, LLC: Boca Raton, Florida, United States. 41.

[78] T Wang, J Xu, E Bai, Y Lv, G Peng. Research on a sustainable concrete synergistic reinforced with carbon fiber and carbon nanofiber: mechanical properties, durability and environmental evaluation. *International Journal of Hydrogen Energy*, 2023, 48(90), 35366-35386, <https://doi.org/10.1016/j.ijhydene.2023.05.234>.

[79] X Zhao, Kunpeng Ruan, Hua Qiu, Yali Zhang, J Gu. Polyacrylonitrile nanofiber reinforced polyimide composite aerogels with fiber-pore interpenetrating structures for sound absorption, air filtration and thermal insulation. *Composites Science and Technology*, 2023, 244, 110275, <https://doi.org/10.1016/j.compscitech.2023.110275>.

[80] H Chen, M Huang, Y Liu, L Meng, M Ma. Functionalized electrospun nanofiber membranes for water treatment: A review. *Science of the Total Environment*, 2020, 739, 139944, <https://doi.org/10.1016/j.scitotenv.2020.139944>.

[81] RW Baker. *Membrane technology and applications*. 2023, John Wiley & Sons.

[82] S Acarer, İ Pir, M Tufekci, T Erkoc, S Güneş Durak, V Oztekin, Gl Türkoğlu Demirkol, MS Ozcoban, TY Temelli Çoban, S Cavus. Halloysite nanotube-enhanced polyacrylonitrile ultrafiltration membranes: fabrication, characterization, and

performance evaluation. *ACS Omega*, 2023, 8(38), 34729-34745, <https://doi.org/10.1021/acsomega.3c03655>.

[83] CI Idumah, A Hassan, J Ogbu, J Ndem, IC Nwuzor. Recently emerging advancements in halloysite nanotubes polymer nanocomposites. *Composite Interfaces*, 2019, 26(9), 751-824, <https://doi.org/10.1080/09276440.2018.1534475>.

[84] Abd Rashid, Nur Aziemah, Mohamad Faiz Mohd Amin, Mohd Remy Rozainy Mohd Arif Zainol, Ismail Abustan, Wan Hanna Melini Wan Mohtar, MKN Shamsuddin. Protection of water: Robust of artificial barriers in application of riverbank filtration abstraction for water sustainability. *Desalination and Water Treatment*, 2025, 322, 10103, <https://doi.org/10.1016/j.dwt.2025.101034>.

[85] I Abd-Elaty, Osama K. Saleh, Hala M. Ghanayem, Am Pris John, S Straface. Investigating and improving natural treatment processes by riverbank filtration in Egypt, in *In groundwater in arid and semi-arid areas: Monitoring, assessment, modelling, and management*, S. Ali, A.M. Armanuos, Editors. 2023, Springer: Cham, Switzerland, 341-368, https://doi.org/10.1007/978-3-031-43348-1_14.

[86] T Rauch-Williams, Jeff Mosher, , VZ J. Drewes, C Gerba. State-of-the-science review: Evidence for pathogen removal in managed aquifer recharge systems, in *State water resources control board and the water research foundation*. 2023, Alexandria, Northern Virginia, United States, 133.

[87] G Bertrand, A De Paiva, J de Araújo Freitas, J da Silva Pereira Cabral, T Veras Albuquerque, J de Carvalho Filho. River bank filtration in tropical metropoles: integrated evaluation of physical, geochemical and biochemical interactions in Recife, NE Brazil. *International Journal of Environmental Science and Technology*, 2022, 19, 5803–5818, <https://doi.org/10.1007/s13762-021-03558-x>.

[88] ZM El-Fakhary. Potential of using river bank filtration to augment water resources: A review, in *Groundwater in Developing Countries: Case Studies from MENA, Asia West Africa*, S. Ali, A. Negm, Editors. 2025, Springer: Cham, Switzerland, 97-126, https://doi.org/10.1007/978-3-031-79122-2_4.

[89] Y Gao, Y Tang, M Zhao, X Zheng, H Jin. A comprehensive review of riverbank filtration technology for water treatment. *Water*, 2025, 17(3), <https://doi.org/10.3390/w17030371>.

[90] C Sandhu, T Grischek, P Kumar, C Ray. Potential for riverbank filtration in India. *Clean Technologies and Environmental Policy*, 2011, 13, 295-316, <https://doi.org/10.1007/s10098-010-0298-0>.

[91] AKA Ahmed, TF Marhaba. Review on river bank filtration as an in situ water treatment process. *Clean Technologies and Environmental Policy*, 2017, 19(2), 349-359, <https://doi.org/10.1007/s10098-016-1266-0>.

[92] MA Dawoud, WA Al Hassan. Groundwater management and treatment: A resilient source for environmental protection, In *Sustainable remediation for pollution and climate resilience*, A.A.H. Abdel Latef, E.M. Zayed, and A.A. Omar, Editors. 2025, Springer: Singapore. 661-693, https://doi.org/10.1007/978-981-96-5674-5_24.

[93] A de Waal. *New pandemics, old politics: Two hundred years of war on disease and its alternatives*. 2021, Hoboken, New Jersey, USA: John Wiley & Sons.

[94] F Uwimpaye, Gratien Twagirayezu, Isaac Odidi Agbam, Karolina Mazurkiewicz, J Jež-Walkowiak. Riverbank filtration: A frontline treatment method for surface and groundwater—African perspective. *Environmental Monitoring and Assessment*, 2025, 197(2), 1-28, <https://doi.org/10.1007/s10661-024-13413-4>.

[95] A Maurya, Manoj Kumar Singh, S Kumar. Biofiltration technique for removal of waterborne pathogens, in *Waterborne pathogens: Detection and treatment*. MNV Prasad, A Grobelak, Editors. 2020, Elsevier: Amsterdam, Netherlands. 123-141, <https://doi.org/10.1016/B978-0-12-818783-8.00007-4>.

[96] J Shamshad, RU Rehman. Innovative approaches to sustainable wastewater treatment: A comprehensive exploration of conventional and emerging technologies. *Environmental Science: Advances*, 2025, 4, 189-222, <https://doi.org/10.1039/D4VA00136B>.

[97] K Abdiyev, Seitkhan Azat, Erzhan Kuldeyev, Darkhan Ybyraiymkul, Sana Kabdrakhmanova, Ronny Berndtsson, Bostandyk Khalkhabai, Ainur Kabdrakhmanova, S Sultakhan. Review of slow sand filtration for raw water treatment with potential application in less-developed countries. *Water*, 2023, 15(11), 2007, <https://doi.org/10.3390/w15112007>.

[98] L-K Guo, Lei Yang, Yong-Xiang Ren, Jiang-Wei Dou, Shen Cui, Jun Lan, Xiao-Tong Li, Jia Wang, and Y-C Wang. Enhanced biofilm formation and denitrification in slow sand filters for advanced nitrogen removal by powdery solid carbon sources addition. *Journal of Water Process Engineering*, 2020, 50, 103192, <https://doi.org/10.1016/j.jwpe.2022.103192>.

[99] I Kader Yettefti, Fatima Ezzahra Aboussabiq, Samira Etahiri, Dimitris Malamis, O Assobhei. Slow sand filtration of effluent from an anaerobic denitrifying reactor for tertiary treatment: A comparable study, using three Moroccan sands. *Carpathian Journal of Earth and Environmental Sciences*, 2013, 8(3), 207-218.

[100] PJ Hunter, Leo A. Calvo-Bado, Nick R. Parsons, Tim R. Pettitt, Geoff M. Petch, Eve Shaw, J. Alun W. Morgan, JM Whipps. Variation in microbial communities colonizing horticultural slow sand filter beds: Implications for filter function. *Irrigation Science*, 2013, 31, 631-642, <https://doi.org/10.1007/s00271-012-0339-z>.

[101] L Sharma. Riverbank filtration: Modeling fate of dissolved organic carbon, transport of *Escherichia coli* and coupling with aquifer storage to address temporal water scarcity, in *Civil and Environmental Engineering*. 2012, University of Hawaii: Manoa, Hawaii, 152.

[102] RG Maliva. Contaminant attenuation and natural aquifer treatment, in *Anthropogenic Aquifer Recharge: WSP Methods in Water Resources Evaluation Series No. 5*. 2020, Springer: Cham, Switzerland, 165-208, https://doi.org/10.1007/978-3-030-11084-0_7.

[103] J Peng, Yiping Cao, Megan A. Rippy, ARM Nabiul Afroz, SB Grant. Indicator and pathogen removal by low impact development best management practices. *Water*, 2016, 8(12), 600, <https://doi.org/10.3390/w8120600>.

[104] R Devi, Esayas Alemayehu, Vijender Singh, Ashok Kumar, E Mengistie. Removal of fluoride, arsenic and coliform bacteria by modified homemade filter media from drinking water. *Bioresource Technology*, 2008, 99(7), 2269-2274, <https://doi.org/10.1016/j.biortech.2007.05.002>.

[105] JS Gruber, Ayse Ercumen, JMC Jr. Coliform bacteria as indicators of diarrheal risk in household drinking water: systematic review and meta-analysis. *PloS one*, 2014, 9(9), e107429, <https://doi.org/10.1371/journal.pone.0107429>.

[106] C Onyutha, Emmanuel Okello, Rebecca Atukwase, Pamella Nduhukiire, Michael Ecodu, JN Kwingira. Improving household water treatment: using zeolite to remove lead, fluoride and arsenic following optimized turbidity reduction in slow sand filtration. *Sustainable Environment Research* 2024, 34(1), 4, <https://doi.org/10.1186/s42834-024-00209-x>.

[107] Q Mahmood, Shams Ali Baig, Bahadar Nawab, Mustafa Nawaz Shafqat, Arshid Pervez, BS Zeb. Development of low cost household drinking water treatment system for the earthquake affected communities in Northern Pakistan. *Desalination and Water Treatment*, 2011, 273(2-3), 316-320, <https://doi.org/10.1016/j.desal.2011.01.052>.

[108] C Zhao, Xiaobin Tang, Tingting Zhu, Xing Du, Kinjal J. Shah, Bin Liu, H Liang. Critical review of pretreatment on the performance of gravity driven membranes. *Journal of Environmental Chemical Engineering*, 2024, 12(5), 113423, <https://doi.org/10.1016/j.jece.2024.113423>.

[109] T-T Nguyen, Duc Viet Nguyen, Hossein Jalaei Salmani, Huu-Viet Nguyen, Hasan Fareed, Pham Thi Thai Ha Nguyen, X-T Bui. Gravity-driven membrane filtration: Fouling control and its application for water and wastewater treatment, in Low cost water and wastewater treatment systems: Conventional and recent advances. 2025, Elsevier: Amsterdam, Netherlands. 327-346, <https://doi.org/10.1016/B978-0-443-23662-4.00005-6>.

[110] P Selvakumar. Emerging Trends in Water Treatment and Purification Techniques. 2025, New York, USA: IGI Global Scientific Publishing. 121-148, <https://www.doi.org/10.4018/979-8-3693-6920-3.ch004>.

[111] DC Sombei, CA Mecha, MN Chollom. A review of low-cost point-of-use water treatment solutions addressing water access and quality in resource-limited settings. *Water*, 2025, 17(12), 1827, <https://doi.org/10.3390/w17121827>.

[112] JO Eniola, B Sizirici. Assessing the sustainability of modified biosand filters using life cycle assessment, cost and performance factors. *Environment, Development and Sustainability*, 2024, 1-25, <https://doi.org/10.1007/s10668-024-05297-8>.

[113] M Hincapié, A Galdós-Balzategui, BLS Freitas, F Reygadas, L Sabogal-Paz, N Pichel, L Botero, L Montoya, L Galeano, GJWr Carvajal. Automated household-based water disinfection system for rural communities: Field trials and community appropriation. *Water Research*, 2025, 284, 123888, <https://doi.org/10.1016/j.watres.2025.123888>.

[114] S Shukla, Urvashi Gupta, T Jindal. Insights into nanofiltration and reverse osmosis membranes for water purification, in Nano-solutions for sustainable water and wastewater management, M.C. Garg, et al., Editors. 2025, Springer: Cham, Switzerland, 159-183, https://doi.org/10.1007/978-3-031-82794-5_7.

[115] T Xie, Feiyang Li, Kuo Chen, Shengchao Zhao, Yuhao Chen, Haixiang Sun, Peng Li, QJ Niu. Fabrication of novel thin-film nanocomposite polyamide membrane by the interlayer approach: A review. *Desalination*, 2023, 554, 116509, <https://doi.org/10.1016/j.desal.2023.116509>.

[116] KM Cho, Hyeong-Jin Lee, Yoon Tae Nam, Yong-Jae Kim, Chansol Kim, Kyoung Min Kang, Claudio Adrian Ruiz Torres, Dae Woo Kim, H-T Jung. Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons. *ACS Applied Materials & Interfaces*, 2019, 11(30), 27004-27010, <https://doi.org/10.1021/acsami.9b09037>.

[117] DM Reurink, Fei Du, Radosław Górecki, Hendrik DW Roesink, WMD Vos. Aquaporin-containing proteopolymersomes in polyelectrolyte multilayer membranes. *Membranes* 2020, 10(5), 103, <https://doi.org/10.3390/membranes10050103>.

[118] A Karausta, E Bokusoglu. Liquid crystal-templated synthesis of mesoporous membranes with predetermined pore alignment. *ACS Applied Materials and Interfaces*, 2018, 10(39), 33484-33492, <https://doi.org/10.1021/acsami.8b14121>.

[119] J He, Tom Arbaugh, Danh Nguyen, Weikang Xian, Eric MV Hoek, Jeffrey R. McCutcheon, Y Li. Molecular mechanisms of thickness-dependent water desalination in polyamide reverse-osmosis membranes. *Journal of Membrane Science*, 2023, 674, 121498, <https://doi.org/10.1016/j.memsci.2023.121498>.

[120] Y Zheng, A Artimo, O Puurunen, S Saraperä. Assessment of environmental and social sustainability of Managed Aquifer Recharge schemes, In Managing aquifer recharge: a showcase for resilience sustainability. 2021, UNESCO Publishing Paris, France. 47-72.

[121] M Peter-Varbanets, C Zurbrügg, C Swartz, W Pronk. Decentralized systems for potable water and the potential of membrane technology. *Water Research*, 2009, 43(2), 245-265, <https://doi.org/10.1016/j.watres.2008.10.030>.

[122] DS Lantagne, TF Clasen. Use of household water treatment and safe storage methods in acute emergency response: case study results from Nepal, Indonesia, Kenya, and Haiti. *Environmental Science & Technology*, 2012, 46(20), 11352-11360, <https://doi.org/10.1021/es301842u>.

[123] TA Dankovich, DG Gray. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. *Environmental Science & Technology*, 2011, 45(5), 1992-1998, <https://doi.org/10.1021/es103302t>.

[124] PR Nkhoma, K Alsharif, E Ananga, M Eduful, M Acheampong. Recycled water reuse: what factors affect public acceptance? *Environmental Conservation*, 2021, 48(4), 278-286, <https://www.doi.org/10.1017/S037689292100031X>.

[125] T Zubaidah, S Hamzani, J Juanda. Small-scale filtration systems: A solution for clean water in Martapura river communities. *Dinamisia: Jurnal Pengabdian Kepada Masyarakat*, 2024, 8(6), 1667-1681, <https://doi.org/10.31849/dinamisia.v8i6.22252>.

[126] P Budeli, RC Moropeng, MNB Momba. Improvement of biosand filtration systems using silver-impregnated clay granules. *Journal of Water Process Engineering*, 2021, 41, 102049, <https://doi.org/10.1016/j.jwpe.2021.102049>.

[127] H Muzioreva, T Gumbo, N Kavishe, T Moyo, I Musonda. Decentralized wastewater system practices in developing countries: A systematic review. *Utilities Policy*, 2022, 79, 101442, <https://doi.org/10.1016/j.jup.2022.101442>.

[128] S Mustafa, L Ying, K Jamil, X Wang. Household adoption of domestic water filtration for combating waterborne diseases in developing countries. *Scientific Reports*, 2025, 15(1), 32260, <https://doi.org/10.1038/s41598-025-17252-2>.

[129] BLS Freitas, UC Terin, LP Sabogal-Paz. Household slow sand filters in intermittent and continuous flow for a long-term surface water treatment: Efficiencies assessment and operational challenges. *Journal of Environmental Chemical Engineering*, 2023, 11(3), 110090, <https://doi.org/10.1016/j.jece.2023.110090>.

[130] MG de Melo Neto, BL Freitas, NN Fava, LP Sabogal-Paz. Rainwater treatment system efficiency: Household slow sand filter combined with UVC lamp disinfection. *Journal of Water Process Engineering*, 2024, 58, 104785, <https://doi.org/10.1016/j.jwpe.2024.104785>.

[131] DA Duran Romero, MC de Almeida Silva, BJ M. Chaúque, A D. Benetti. Biosand filter as a point-of-use water treatment technology: influence of turbidity on microorganism removal efficiency. *Water*, 2020, 12(8), 2302, <https://doi.org/10.3390/w12082302>.

[132] TO Mahlangu, L Mpenyana-Monyatsi, MN Momba, BB Mamba. A simplified cost-effective biosand filter (BSFZ) for removal of chemical contaminants from water. *Journal of Chemical Engineering and Material Science*, 2011, 2(10), 156-167, <https://doi.org/10.5897/JCEMS11.041>.

[133] RC Moropeng, MNB Momba. Mechanism of silver incorporated in biosand zeolite clay granular filters for the removal of *Cryptosporidium parvum* and *Giardia lamblia* from surface water at point of use. *Desalination Water Treatment*, 2020, 205, 286-29, <https://doi.org/10.5004/dwt.2020.26395>.

[134] RC Moropeng, P Budeli, L Mpenyana-Monyatsi, MNB Momba. Dramatic reduction in diarrhoeal diseases through implementation of cost-effective household drinking water treatment systems in Makwane Village, Limpopo Province, South Africa. *International Journal of Environmental Research and Public Health*, 2018, 15(3), 410, <https://doi.org/10.3390/ijerph15030410>.

[135] P Budeli, RC Moropeng, L Mpenyana-Monyatsi, MNB Momba. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems. *PLoS One*, 2018, 13(4), e0194715, <https://doi.org/10.1371/journal.pone.0194715>.