BORNEO EPIDEMIOLOGY JOURNAL

REVIEW ARTICLE

Open Access

A Scoping Review of the Effectiveness of Control Interventions of Human and Canine Rabies in an Effort to Rationalise the One Health Approach

Nur Asheila Binti Abdul Taib¹ and Razitasham Binti Safii²*

Abstract

According to the World Health Organization (WHO), rabies is one of the 18 neglected tropical diseases, together with dengue, leprosy, and trachoma, among others. Despite being a vaccinepreventable disease, the latest estimate of annual human rabies mortality from a 2015 study is as high as 59,000 throughout 150 countries. In human rabies, more than 95% of the cases are due to dog bites, making the elimination of canine rabies a global priority by fighting the disease at its animal source. World Health Organization (WHO), World Organization for Animal Health (OIE), Food and Agriculture Organization (FAO) of the United Nations, and the Global Alliance for Rabies Control (GARC) have warranted the One Health framework with the objective of complete eradication of dog-related human rabies by the year 2030. In an effort to rationalise the One Health approach, this scoping review found 17 studies on assessing the effectiveness of control interventions of human and canine rabies. Different strategies were implemented based on the endemicity of rabies in a particular country. Overall, the combined strategies using the One Health approach, which allows effective participation and communication between different agencies, have shown promising results in reducing rabies cases. These strategies will hopefully realise the goal in the Global Strategic Plan to achieve zero canine-mediated human rabies death by the year 2030.

Keywords: Rabies, Effectiveness, One health, Control and Intervention

¹Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Received:27/03/2020 Accepted:11/06/2020

Correspondence Email: razitasham@gmail.com

²Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Introduction

According to the World Health Organization (WHO), rabies is one of the 18 neglected tropical diseases, together with dengue, leprosy, and trachoma, among others (World Health Organization (WHO), 2020a). Despite being an ancient vaccine-preventable zoonotic disease, the latest estimate of annual human rabies mortality could still be as high as 59,000 across 150 countries around the globe (Hampson et al., 2015), (World Health Organization (WHO), 2020c). Although a preventable disease, it is generally fatal following the development of clinical signs of rabies (Centers for Disease Control and Prevention (CDC), 2019). In human rabies, more than 99% of the cases are due to dog bites (World Health Organization (WHO), 2020c), making the elimination of canine rabies a global priority by fighting the disease at its animal source.

In view of this, a quadripartite anti-rabies alliance between World Health Organization (WHO), World Organization for Animal Health (OIE), Food and Agriculture Organization (FAO) of the United Nations, and the Global Alliance for Rabies Control (GARC) have warranted the One Health framework with the principal goal of complete eradication of dog-related human rabies by the year 2030 (Lavan et al., 2017). The One Health initiatives acknowledge that the health of humans and animals together with the environment are highly interrelated. Built on five pillars, the action plan involves a collaborative strategy that combines sociocultural, technical, organisational, political, and resource-oriented aspects. It notably calls for three key actions; (1) to make human vaccination and immunoglobulin affordable, (2) to ensure timely treatment for bite victims, and (3) to implement mass vaccination campaigns for dogs in at-risk areas.

In this paper, we designed a scoping review of literature to examine the published evidence available on the effectiveness of human and canine rabies interventions in an effort to rationalise the One Health approach. The focus questions include the following:

- 1) What are the rabies control and prevention strategies being implemented globally?
- 2) What is the best practice for rabies control and intervention strategy?
- 3) Which of these has been shown to be effective, for different levels of rabiesrisk setting?

Methods

Our review methodology adopts the 2005 framework as developed by Arksey and O'Malley (Arksey & Malley, 2005) constituting the following five essential components: (1) developing research questions, (2) identifying the relevant studies, (3) selecting the studies, (4) charting the data, and (5) gathering, summarising, and reporting the results.

Search strategy

A comprehensive electronic search through Medline and Centre for Review and Dissemination (CRD) databases was done to identify the relevant studies in the past five years. For the Medline database, we set the search-field descriptor in the PubMed search as MeSH and Text Word and we assigned search terms including "rabies [MeSH]" AND "vaccination [MeSH]" AND "cost-benefit [Text Word]". For the CRD database, the search term included "rabies" AND "effectiveness" OR "vaccination". Additional key studies were identified via other sources like the reference lists and hand searched using the Google Scholar search engine.

Study selection

Only peer-reviewed articles published in academic journals from 2015 to 2020 were considered. The identified studies were then selected for review only if they fulfilled the following set of eligibility criteria:

- 1) The study population must be dogs or humans or both.
- 2) The interventions considered include canine immunisation or post-exposure prophylaxis (PEP) treatment or pre-exposure prophylaxis (PrEP) for humans.
- 3) The result of study includes the effectiveness or cost-effectiveness of the control strategies considered.

Rabies studies on other wildlife species such as skunks, racoons, and foxes were not included in the review. Non-English articles, guidelines, blueprints, systemic reviews, anecdotal reports, pre-prints as well as other grey literature were excluded. Effectiveness and efficacy studies that solely focused on improving intervention performance, such as immune response, vaccine quality, and potency regarding clinical trials, as well as studies that only addressed surveillance and monitoring type interventions, were also excluded in the review.

Data charting

Two authors (NA and RS) independently extracted and analysed the data in all the studies selected for the final review. Descriptive data on the study country and population, aim and methods, types of intervention and control strategies, as well as the key findings for each study were collated and recorded. All discrepancies were resolved by consensus.

Results

Initial search across the two databases identified a total number of 36 studies, with 33 studies from the MEDLINE database, and the remaining three were from the Centre for Reviews and Dissemination (CRD) database. Two studies were removed due to duplication, leaving 34 studies subjected to the record screening of titles. From the title screening, eight studies did not target the dog or human population, while another two studies did not address rabies prevention and controls directly and were therefore excluded. Six additional articles were included via hand-search of the key terms in the Google Scholar search engine or chosen from the reference lists. A total of 30 studies were then further screened in our full-text eligibility assessment,

whereby 13 articles did not meet our inclusion criteria. Two studies were in French and Chinese languages, another two publications were clinical trials, and the remaining did not have the outcomes of interest. As a result, 17 studies have met our inclusion criteria and so included in our final review, as seen in the flowchart in Figure 1 detailing the study selection. Table 1 presents the descriptive data of the studies extracted for our review.

Study characteristics

Around 47% of the studies(Borse et al., 2018; Hudson et al., 2019; Jeon et al., 2019; Laager et al., 2018; S. Musaili & Chepkwony, 2020; Taib et al., 2019; Wei et al., 2018; Yoder et al., 2019) included in our review were publications from the past three years while the remaining percentage (Bilinski et al., 2016; Dumas et al., 2015; Ferguson et al., 2015; Fitzpatrick et al., 2016; Mindekem et al., 2017; Muthiani et al., 2015; Velasco-Villa et al., 2017; E Wera et al., 2017; Ewaldus Wera et al., 2017) were published from the year 2015 to year 2017. Six studies (35%) were concerned on rabies in the continent of Africa; two in Chad (Mindekem et al., 2017; Yoder et al., 2019) one in Mali (Muthiani et al., 2015), one in Kenya (S. Musaili & Chepkwony, 2020), one in Tanzania (Bilinski et al., 2016) and one study in East Africa (Borse et al., 2018). Another four studies (23%) considered rabies in South East Asia; two in Indonesia (E Wera et al., 2017; Ewaldus Wera et al., 2017) one in Philippines (Ferguson et al., 2015) and one in Malaysia (Taib et al., 2019). In one study, the focus was on rabies in the Western Hemisphere region (Velasco-Villa et al., 2017) including North America, Central and South America and the Caribbean. A single study was conducted each for rabies in Australia (Wei et al., 2018), China (Laager et al., 2018), India (Fitzpatrick et al., 2016), France (Dumas et al., 2015) and in Latin America (Jeon et al., 2019). However, one study (Hudson et al., 2019) did not specify its study country as the researchers only simulated hypothetical scenarios.

Figure 1: Flowchart of the study selection

In regards to the study objectives, ten studies (70%) aimed at evaluating or reviewing the effectiveness of different control and intervention strategies in human and canine rabies while the other 30% (Bilinski et al., 2016; Borse et al., 2018; Dumas et al., 2015; Fitzpatrick et al., 2016; Mindekem et al., 2017; E Wera et al., 2017; Ewaldus Wera et al., 2017) aimed at estimating the cost-effectiveness of rabies interventions. Almost all of the studies examined dog vaccination but other rabies control strategies such as public education, the combined use of dog vaccination and contraceptives, dog culling, human post-exposure prophylaxis (PEP), oral rabies vaccine (ORV), and surgical sterilization of dogs were considered as well.

Effectiveness evaluation

The evaluation of rabies intervention effectiveness was considered at different levels of rabiesrisk (endemic, epidemic, and rabies-free). Although the endemic setting was the focal point in most literatures, three studies (Dumas et al., 2015; Hudson et al., 2019; Wei et al., 2018) have analysed the effectiveness of rabies prevention and control strategies in a rabies-free scenario. There were 13 studies utilising mathematical models to simulate disease transmission; nine (Bilinski et al., 2016; Fitzpatrick et al., 2016; Hudson et al., 2019; Mindekem et al., 2017; S. Musaili & Chepkwony, 2020; E Wera et al., 2017; Ewaldus Wera et al., 2017; Yoder et al., 2019) of which used a compartmental, deterministic model, one (Dumas et al., 2015) used decision-tree model, while another two(Taib et al., 2019; Wei et al., 2018) used individual- and agent-based models. The remaining studies (Ferguson et al., 2015; Jeon et al., 2019; Laager et al., 2018; Muthiani et al., 2015; Velasco-Villa et al., 2017) primarily used statistical analysis on available data in evaluating the intervention effectiveness.

Six studies (Bilinski et al., 2016; Ferguson et al., 2015; Fitzpatrick et al., 2016; Muthiani et al., 2015; Wei et al., 2018; E Wera et al., 2017) examined dog vaccination alone including small and large scale mass dog vaccination campaigns, one study (Dumas et al., 2015) focused solely on human PEP as the prevention and control strategy, whereas other studies have addressed the use of alternative interventions such as oral rabies vaccine (ORV) together with mass parenteral vaccination, or the combination of dog vaccination and human PEP, culling or surgical sterilization as well as public health education.

	Table 1: Description of selected studies included in the review. $(n = 1)$							
No	Author/	Study	Rabies-	Aim and	Interventions	Key findings		
· ·	Year	country/	risk level	methods	considered			
		population						
1	Musaili JS	Country:	Endemic	Aim: To study	Public health	Public health		
	et al.	Makueni		the influence	education on the	education on the		
	(2020)	county,		of public	importance of canine	importance of		
	(Musaili &	Kenya.		health	pre-	canine pre-		
	Chepkwon			education as	and post-exposure	and post-exposure		
	y, 2020)	Study		one of the	prophylaxis with	prophylaxis with		
		population:		control	emphasis on the	emphasize on the		
		Dogs.		measures of	concept of	concept of		
		0		canine rabies	responsible ownership.	responsible ownership produced		
				elimination in	ownersnip.	a significant		
				Makueni.		decrease in the		
						number of rabid		
				Methods:		dogs in Makueni.		
				Numerical		-		
				simulation				
				using a				
				deterministic,				
				compartmenta				
				l model that				
				captures the				
				rabies				
				transmission				
				dynamics				
				among dogs in Makueni.				
2	Hudson EG	Country:	Rabies-	Aim: To	Dog vaccination	In a rabies-free		
2		•			Dog vaccillation			
	et al.	Northern	Free.	assess the		NPA, a random		
	(2019)	Peninsula		effectiveness		vaccination strategy		
	(Hudson, et	Area		of several		is favourable as		
	al., 2019)	(NPA),		vaccination		opposed to a non-		
		Queensland		programs in		vaccination strategy.		

Table 1: Description of selected studies included in the review. (n = 17)

		, Australia.		terms of		
				different dog		A random non-
		Study		roaming		targeted vaccination
		population:		patterns in		coverage of 40% is
		Dogs.		NPA,		the most efficient in
				Queensland.		the context of NPA.
				Methods: An		However, as
				agent-based,		compared to a
				stochastic		random vaccination
				model is		strategy with the
				developed		same percentage of
				which		coverage, a 40%
				simulates		vaccination
				outbreaks		coverage targeting
				among the		more on roaming
				population of		dogs was more
				free-roaming		effective in
				domestic dog		decreasing the size
				in NPA.		and period of
						epidemic.
						-F
3	Jeon S et	Country:	Rabies-	Aim: To	Dog vaccination,	To prevent the
	al.	Hypothetic	Free.	evaluate the	human PEP	reintroduction of
	(2019)	al scenario.		level of		dog rabies in a post-
	(Jeon et al.,			vaccination		elimination setting,
	2019)	Study		needed to		it is crucial to
		population:		prevent the re-		vaccinate the free-
		Dogs,		establishment		roaming dog group
		humans.		of dog rabies		with coverage of at
				in a post-		least 38% to 56%.
				elimination		
				setting.		Rabies-free
						countries are at risk
				Methods: A		of reintroduction if
				modified		dog movement
				version of		control and
				RabiesEcon,		surveillance system
				which is a		are not fortified
				deterministic		post-elimination.
				mathematical		
				model to		
				simulate		
				different		
				rabies		
				reintroduction		
				scenarios.	_	
4	Yoder J et	Country:	Endemic.	Aim: To study	Dog vaccination,	As the usage of
	al.	Latin		the influence	human PEP.	human PEP
	(2019) (Veder et	America.		of dog rabies		increases by 10%,
1	(Yoder et			vaccination on		human rabies deaths
	al., 2019)	Study		the aspects of		decrease by 7%, but

BEJ, VOL. 1, ISSUE 1, JUNE 2020

	[-		L .	[
		population:		human deaths		when canine
		Dogs,		due to rabies,		vaccination is
		humans.		bites		increased by 10%,
				reporting, and		the usage of PEP
				human PEP.		can be reduced by
						2.8%.
				Methods: A		
				multivariate		Emphasis is on the
				regression		importance of mass
				analysis is		dog vaccination,
				performed		public education,
				over annual		treatment
				rabies-related		accessibility, and
				data from		clinical algorithms
				1995 to 2005		to avoid wastage of
				across seven		human PEP.
				different Latin		
				American		
				countries.		
5	Abdul Taib	Country:	Epidemi	Aim: To	Dog vaccination,	The ongoing
	NA et al.	Sarawak	с.	determine the	dog population	outbreak can be
	(2019)	State,		parameter	management.	managed effectively
	(Taib et al.,	Malaysia.		with the most		by increasing dog
	2019)			impact on		vaccination
		Study		Sarawak		coverage and
		population:		rabies		reducing the number
		Dogs,		transmission		of newborn puppies
		humans.		dynamics.		while culling is
						ineffective for long-
				Methods:		term rabies
				Model		elimination.
				simulation		
				using a		Culling is an
				deterministic		ineffective method
				model to		for population
				simulate		control.
				rabies		
				transmission		
				among dogs		
				and dog-to-		
				human in		
				Sarawak.		
6	Laager M	Country:	Endemic	Aim: To	Dog vaccination,	70% coverage of
	et al.	N'Djamena		evaluate the	Oral Rabies Vaccine	dog vaccination
	(2018)	,		effects of dog	(ORV).	would prevent
	(Laager et	Chad		heterogeneity		major outbreaks.
	al., 2018)			at individual		
		Study		levels and		Targeted
		population:		examine the		vaccination on the
		Dogs		risk of re-		population of highly
				establishment		connected roaming
				over different		dogs would be a
·		1			1	-

		1	1			
				vaccination		more effective
				coverage.		vaccination strategy
						as compared to a
				Methods: An		random vaccination
				individual-		strategy.
				based contact		
				network		Oral vaccination
				model of dog		would be an
				rabies		effective method to
				transmission		immunise these
				in N'Djamena		highly connected
				is developed.		roaming dogs.
7	Wei XK et	Country:	Endemic	Aim: To	Mass dog	To control rabies in
'	al.	Guangxi	Endenne	advocate the	vaccination, dog	Guangxi, a rabies
	(2018)	Province,		vaccination of	surveillance,	vaccination program
	(Wei et al.,	China		domestic dogs	vaccinated dog	has been successful
	(wei et al., 2018)	Cinna		in rural China	monitoring, human	demonstrated which
	2010)	Ctuder		in order to	rabies surveillance.	involves several
		Study		reduce the	rables surveillance.	
		population:		number of		control strategies
		Dogs,				such as dog
		humans		human rabies		vaccination, dog
				cases		surveillance and
				significantly.		monitoring, as well
						as compiling and
				Methods:		reporting statistics
				A vaccination		of human rabies
				program		cases.
				model,		
				applicable to		
				rural China is		
				developed and		
				assessed.		
8	Borse RH	Country:	Endemic.	Aim: To	Mass dog	In a low disease
	et al.	East Africa.		estimate the	vaccination, human	transmission setting,
	(2018)			cost-	PEP and RIG,	mass vaccinating
	(Borse et	Study		effectiveness	dog population	20% (biennial) or
	al., 2018)	population:		of East	management.	50% (annually) of
		Dogs,		African dog		the East African dog
		humans.		rabies		population is the
				vaccination		most cost-effective.
				programs.		
				~ ~		However, in a high
				Methods:		transmission
				Model		scenario, a 70%
				simulation		vaccination
				using a		coverage is required
				spreadsheet		to control the spread
				tool,		of rabies for a
				RabiesEcon,		minimum of 20
				which		years.
				incorporates a		years.
				deterministic		
				deterministic		

		1	r			ر
				model of dog-		
				to-dog and		
				dog-to-human		
				rabies		
	XX 1		** *	transmission.		
9	Velasco-	Country:	Varies.	Aim: To	Mass dog parenteral	In order to increase
	Villa A et	Western		review the	vaccination, oral	vaccination
	al.	Hemisphere		available	rabies vaccine	coverage, oral
	(2017)	•		control	(ORV), culling,	rabies vaccine
	(Velasco-			strategies for	immunocontraceptio	(ORV) should be
	villa et al.,	Study		canine rabies	n, dog population	utilised to vaccinate
	2017)	population:		eradication	management and	free-roaming dog
		Dogs,		within the	surveillance.	populations.
		humans .		Western		.
				Hemisphere.		Immunocontracepti
						on can be used as
				Methods: The		fertility control to
				necessary		manage free-
				available		roaming dog
				information		populations in Latin
				on the		American countries.
				progress of		
				canine rabies		Canine rabies can
				elimination		be eradicated when
				from the		dog herd immunity
				Western		is maintained at
				Hemisphere is		above 70%, along
				collated and		with laboratory-
				extensively		based surveillance
				reviewed.		of rabies in dogs,
						domestic animals
						and wildlife, as well
						as heightened public
						awareness.
						Culling only when
						the number of
						human rabies
10	Mindekem	Country:	Endemic.	Aim: To	Dog mass	exposures is high. The combined
10	R et al.	N'Djamena	Endennic.	evaluate the	vaccination, human	strategies of
	(2017)	, Chad.		cost-	PEP, and paramount	dog vaccination,
	(Mindekem	, Chau.		effectiveness,	One Health	human PEP and
	et al.,	Study		defined as the	communication i.e.	paramount One
	2017)	population:		cost per	communication	Health
	2017)	Dogs,		human	between human	communication is
		humans.			health and veterinary	more cost-effective
		numans.		exposure	professionals.	
				averted, of different	professionals.	as compared to the
				intervention		strategy of using PEP alone. In a
				strategies in		resource poor
				N'Djamena,		setting, the cost of

BEJ, VOL. 1, ISSUE 1, JUNE 2020

			r			
				Chad.		PEP use will be
						significantly
				Method:		lowered when the
				Numerical		One Health concept
				simulation		is efficiently
				using a		applied.
				deterministic		
				model		
				capturing the		
				dynamics of		
				N'Djamena		
				rabies		
				transmission		
				among dogs		
				and dog-to-		
				human and		
				economic		
				evaluation of		
				the mass		
				vaccination		
				campaigns in		
				N'Djamena.		
11	Wera E et	Country:	Endemic.	Aim: To	Mass dog	The combined
	al. (2017)	Flores		conduct an	vaccination,	strategies of annual
	(Ewaldus	Island,		economic	human PEP.	vaccination using a
	Wera et al.,	Indonesia.		evaluation		long-acting vaccine
	2017)			when different		at
		Study		mass		70% coverage
		population:		vaccination		together with human
		Dogs,		strategies is		PEP could eliminate
		humans.		applied in		all human rabies
				Flores Island.		deaths completely
						although
				Methods:		at a slightly higher
				Numerical		cost-effectiveness
				simulation		ratio.
				using a		
				deterministic		
				model		
				representing		
				the dynamics		
				of rabies		
				transmission		
				among dogs		
				and dog-to-		
				human in		
				Flores Island		
				to estimate the		
				cost-		
				effectiveness		
				ratio of the		
1				alternative		

						1
				strategies for		
				mass		
				vaccination.		
12	Fitzpatrick	Country:	Endemic.	Aim: To	Dog vaccination	Focus should be
	MC (2016)	Tamil		assess the	(owned dog, stray	more on vaccinating
	(Fitzpatrick	Nadu,		cost-	dog).	at least 13% of the
	et al.,	India.		effectiveness		stray dog population
	2016)			for different		in Tamil Nadu as it
		Study		control		would be more cost-
		population:		strategies of		effective in
		Owned		rabies in		lowering the
		dogs, stray		Tamil Nadu.		number of human
		dogs.				rabies cases by up to
				Methods:		90%.
				Numerical		
				simulation		
				using a		
				deterministic		
				model of		
				rabies		
				transmission		
				utilising data		
				on human		
				rabies and		
				canine		
				demography		
				in Tamil		
				Nadu.		
13	Bilinski	Country:	Endemic.	Aim: To	Mass dog	The study
	AM et al.	Ngorongor		evaluate the	vaccination	emphasises on
	(2016)	o and		cost-	campaign.	campaign
	(Bilinski et	Serengeti,		effectiveness		frequency, rather
	al., 2016)	Tanzania.		of several		than coverage.
				rabies canine		
		Study		vaccination		When risk of rabies
		population:		campaigns		reintroduction is
		Dogs,		with different		low, semi-annual
		wildlife,		coverage and		vaccination
		and		frequency.		campaigns are the
		humans.				most cost-effective
				Methods:		to control the
				Numerical		disease spread.
				simulation		
				using a		
				deterministic		
				model that		
				incorporates		
				the dynamics		
				of dog,		
				wildlife and		
				human		
				populations.		

BEJ, VOL. 1, ISSUE 1, JUNE 2020

		~				
14	Wera E et	Country:	Endemic.	Aim: To	Mass dog	The implementation
	al. (2016)	Flores		evaluate the	vaccination	of an annual mass
	(E Wera et	Island,		cost-	campaign.	dog vaccination
	al., 2016)	Indonesia		effectiveness		campaign with 70%
				of alternative		coverage using a
		Study		mass		long-acting vaccine
		population:		vaccination		can reduce the
		Dogs.		strategies for		duration of
				rabies control		outbreaks thus the
				in Flores		strategy would be
				Island.		the most cost-
						effective in the
				Methods:		context of Flores
				Numerical		Island.
				simulation		
				using a		
				deterministic		
				model that		
				incorporates		
				the dynamics		
				of rabies		
				transmission		
				in Flores		
				Island.		
15	Dumas FR	Country:	Rabies-	Aim: To	Human PEP and	Regardless of the
	et al.	France.	free.	conduct an	RIG.	category of
	(2015)	~ .		economic		exposure, the
	(Dumas et	Study		evaluation of		administration of
	al., 2015)	population:		PEP strategies		human PEP is not
		Humans.		following dog		the most cost-
				bite exposure		effective method
				in very low		and thus not
				rabies risk		preferable in a
				settings.		setting with very
				N 4 4		low risk of rabies.
				Methods:		
				A decision-		
				tree model is		
				developed		
				simulating the		
				trajectory of		
				bite victims in French cities		
				seeking PEP		
				treatment		
				following dog		
10	Ma41.5	Carrie	Ender '	bite exposure.	Cmoll	The state 1
16	Muthiani Y	Country:	Endemic.	Aim: To	Small-scale central-	The achieved
	et al.	Bamako,		estimate the	point dog	coverage of fixed-
	(2015) Muthiani	Mali.		achieved	vaccination	point vaccination
	(Muthiani	C 41		coverage of a	campaign.	campaign in
1	et al.,	Study		small-scale		Bamako was low

	2015			1		(
	2015)	population:		dog mass		(only 17%) which
		Dogs,		vaccination		could be due to low
		humans.		campaign in		engagement by dog
				Bamako and		owners.
				to determine		
				weak key		Lack of information
				parameters for		and dog
				intervention		aggressiveness
				effectiveness.		affect intervention
				Matheday		effectiveness.
				Methods:		The language day
				Following the vaccination		To increase the
						knowledge within
				campaign,		the society, a
				household		stakeholder
				survey and a		approach should be
				transect		taken in which the
				survey within the		community itself is
				vaccination		proactive in every step of the process
				zone were		from the initial
				conducted		
				simultaneousl		planning up to implementation
						stage of the
				y. The household and		campaign.
				transect-		campaign.
				survey data		A vaccination
				were fitted to		campaign
				a Bayesian		combining both
				model in order		fixed point and
				to estimate the		house-to-house
				overall		vaccination strategy
				vaccination		could mitigate the
				coverage. An		problem of handling
				effectiveness-		aggressive dogs.
				model		uggressive uogs.
				framework		
				was developed		
				to estimate		
				effectiveness		
				parameters of		
				interventions.		
17	Ferguson	Country:	Endemic,	Aim: To study	Mass dog	The effectiveness of
	EA et al.	Region VI	rabies-	the impact of	vaccination	mass vaccination
	(2015)	(Western	free.	spatial	campaign.	campaigns could be
	(Ferguson	Visayas),		heterogeneity		reduced
	et al.,	Philippines.		in vaccination		significantly due to
	2015)			coverage and		spatial
	,	Study		human-		heterogeneity in
		population:		mediated dog		vaccination
		Dogs.		movements		coverage even when
		Ŭ		for the		the overall coverage
L		1			1	

	elimination of	is high. The
	endemic	problem of
	canine rabies	heterogeneity can be
	by mass dog	mitigated through
	vaccination in	vaccine
	Region VI of	redistribution.
	the	
	Philippines	Long-distance dog
	(Western	movement will
	Visayas).	increase the risk of
		rabies
	Methods:	reintroduction into a
	A spatially-	rabies-free area.
	explicit canine	Thus, an effective
	rabies	surveillance and dog
	transmission	movement
	model is	regulations will be
	developed	critical at this post-
	which	elimination setting.
	incorporates	
	dog	
	movement	
	and	
	vaccination	
	coverage	
	scenarios in	
	Region VI.	

Discussion

The World Health Organization (WHO) has asserted that annual mass canine vaccination with an optimal threshold of 70% coverage would be the most cost-effective rabies control strategy (WHO, 2020b). Five studies (Borse et al., 2018; Muthiani et al., 2015; Taib et al., 2019; Velasco-Villa et al., 2017; Ewaldus Wera et al., 2017) have also highlighted the importance in sustaining a minimum of 70% dog vaccination coverage to induce herd immunity, which aligns with WHO's recommended guideline for canine rabies control. Furthermore, in an effort to manage the stray dog population with zero rabies immunity, two studies (Laager et al., 2018; Velasco-Villa et al., 2017) considered the use of baits laced with oral rabies vaccines (ORV). Laager (Laager et al., 2018) suggested a targeted vaccination strategy on a highly-connected roaming dogs with 70% coverage to eliminate endemic rabies.

Five studies (CDC, 2019; Jeon et al., 2019; Laager et al., 2018; S. Musaili & Chepkwony, 2020; WHO, 2020c) considered shifting the focus on vaccinating free-roaming stray dogs as the most effective means to control rabies both in a endemic setting or in a rabies-free area as a preventive measure. However, in a very low rabies risk setting, researchers (Hudson et al., 2019; Jeon et al., 2019) have found that a vaccination coverage of less than the WHO-recommended 70% is sufficient to maintain a rabies-free status. As compared to a random vaccination strategy, a vaccination strategy of 40% coverage in NPA, Queensland

targeting more on free-roaming dogs rather than the easily accessible non-roaming dogs would be more effective in preventing rabies incursion into the area (Hudson et al., 2019). These findings were also supported by another study (Jeon et al., 2019) which considered a simulated rabies-free post-elimination scenario in which a vaccination coverage of 38% to 56% of freeroaming dogs was found to be the most effective prevention measure.

Two studies (Ferguson et al., 2015; Jeon et al., 2019) have stressed the importance of dog surveillance in a post-elimination setting in order to prevent rabies re-establishment. An economic evaluation conducted by Dumas (Dumas et al., 2015) showed that, in terms of the rabies-free France, the human PEP treatment administered to bite victims indeed accumulated significant unnecessary costs, and is therefore not preferable regardless of the category of exposure.

In eradicate canine rabies in an endemic setting, Yoder (Yoder et al., 2019) emphasized on the combined strategy of mass dog vaccination and increasing public awareness and treatment accessibility, as well as having a better clinical algorithm to reduce the wastage of the costly, unnecessary PEP use. One study in Sarawak has found that the more effective strategy to manage the ongoing rabies outbreak would be to increase the dog vaccination coverage and to lower the dog birth rate (Taib et al., 2019) while culling is an ineffective method to stop the spread of rabies according to two studies (Taib et al., 2019; Velasco-Villa et al., 2017).

Additionally, two studies (Bilinski et al., 2016; Borse et al., 2018) have indicated that in a low-risk of rabies reintroduction, conducting a semi-annual vaccination campaign would be the most cost-effective to control the disease spread. According to Borse (Borse et al., 2018), dog vaccination coverage of 70% or above to halt the spread of rabies for at least 20 years in a high disease transmission scenario. However, in a low transmission scenario, vaccinating 20% semi-annually or 50% annually of the East African dog population will be most cost-effective.

Velasco-Villa (Velasco-Villa et al., 2017) suggested the use of ORV to immunise the free-roaming dogs especially in hard-to-reach places during mass parenteral vaccination campaigns and the use of immunocontraception to control the population of free-roaming dogs. Furthermore, the feasibility of canine rabies elimination can only be achieved when dog herd immunity is maintained at above 70%, along with sustained laboratory-based animal surveillance, as well as heightened public awareness on rabies education and the practice of responsible pet ownership.

Wei et al., 2018 stated that a control strategy involving mass dog vaccination, dog surveillance and monitoring, as well as human rabies case reporting can effectively reduce the spread of rabies from dogs to humans and successfully control endemic rabies in Guangxi. A study done by Fitzpatrick (Fitzpatrick et al., 2016) recommended vaccinating more of the stray dog population to control human rabies death while Musaili (S. Musaili & Chepkwony, 2020) emphasized the importance of public health education regarding both pre- and post-exposure prophylaxis for dogs as well as the practice of responsible dog ownership. According to

Muthiani (Muthiani et al., 2015), to increase the public awareness on mass dog vaccination, a stakeholder approach concerning a proactive participation of the community along every step of the process from the initial planning up to the implementation stage of the vaccination campaign should be integrated.

Two studies (Fitzpatrick et al., 2016), (E Wera et al., 2017) have highlighted the effectiveness of using long-acting vaccines for dog immunisation as compared to short-acting vaccines. Based on Wera (E Wera et al., 2017), implementing mass dog vaccination campaign annually with a 70% vaccination coverage using a long-acting vaccine produced shorter outbreak duration. A follow-up study in 2017 found that human rabies in Flores Island, Indonesia can only be eradicated with the use of combined strategies involving the long-acting vaccine at 70% coverage together with human PEP (Ewaldus Wera et al., 2017). Bilinski (Bilinski et al., 2016) also stated that less frequent vaccination campaigns would be optimal when risk of rabies reintroduction is low.

The estimated cost-effectiveness by Mindekem (Mindekem et al., 2017) is significantly higher for the control strategy involving combination of canine vaccination, human PEP and One Health communication as compared to the strategy of using PEP alone. Furthermore, reducing spatial heterogeneity by closing the gaps in vaccination coverage via vaccine redistribution could be a more effective mass vaccination campaign strategy as stated by Ferguson (Ferguson et al., 2015) while in a post-elimination setting, effective dog movement surveillance is important to prevent rabies reintroduction.

Conclusion

In an effort to rationalize the One Health approach, this scoping review found 17 studies on assessing the effectiveness of rabies interventions and control strategies. Different strategies were implemented based on the endemicity of rabies in that particular country. Among the successful strategies were public education, the practice of responsible dog ownership, humananimal surveillance system, targeted dog vaccination, control of free roaming population, as well as a decentralised network for animal control, surveillance and vaccination. Furthermore, the stakeholder approach needs to be strengthened which involves community-level collaboration when planning and implementing intervention programs. Overall, the combined strategies using One Health approach which allows effective participation and communication between different agencies including human health and veterinary professionals, among others have showed promising results in reducing rabies cases. The strategies will hopefully able to realize the goal in the Global Strategic Plan to achieve zero canine-mediated human rabies death by the year 2030.

Acknowledgement

We thank the Malaysia One Health University Network (MyOHUN) for the empowerment of the One Health concept among lecturers in universities, which help in teaching future leaders. We also thank Professor Chew Keng Sheng for sharing his knowledge while preparing this paper.

References

- Arksey, H., & O'Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology: Theory and Practice, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
- Bilinski, A. M., Fitzpatrick, M. C., Rupprecht, C. E., Paltiel, A. D., & Galvani, A. P. (2016). Optimal frequency of rabies vaccination campaigns in Sub-Saharan Africa. *Proceedings of the Royal Society B: Biological Sciences*, 283(1842). https://doi.org/10.1098/rspb.2016.1211
- Borse, R. H., Atkins, C. Y., Gambhir, M., Undurraga, E. A., Blanton, J. D., Kahn, E. B., Dyer, J. L., Rupprecht, C. E., & Meltzer, M. I. (2018). Cost-effectiveness of dog rabies vaccination programs in East Africa. *PLoS Neglected Tropical Diseases*, 12(5), 0–1. https://doi.org/10.1371/journal.pntd.0006490
- CDC. (2019). What are the signs and symptoms of rabies? https://www.cdc.gov/rabies/symptoms/index.html.
- Dumas, F. R., Diaye, D. S. N., Paireau, J., Gautret, P., Bourhy, H., Le, C., & Yazdanpanah, Y. (2015). Cost-effectiveness of rabies post-exposure prophylaxis in the context of very low rabies risk : A decision-tree model based on the experience of France. *Vaccine*, 33(20), 2367–2378. https://doi.org/10.1016/j.vaccine.2015.02.075
- Ferguson, E. A., Hampson, K., Cleaveland, S., Consunji, R., Deray, R., Friar, J., Haydon, D. T., Jimenez, J., Pancipane, M., & Townsend, S. E. (2015). Heterogeneity in the spread and control of infectious disease : consequences for the elimination of canine rabies. *Nature Publishing Group*, *December*, 1–13. https://doi.org/10.1038/srep18232
- Fitzpatrick, M. C., Shah, H. A., Pandey, A., Bilinski, A. M., Kakkar, M., Clark, A. D., Townsend, J. P., Abbas, S. S., & Galvani, A. P. (2016). One Health approach to cost-effective rabies control in India. *Proceedings of the National Academy of Sciences of the United States of America*, 113(51), 14574–14581. https://doi.org/10.1073/pnas.1604975113
- Hampson, K., Coudeville, L., Lembo, T., Sambo, M., Kieffer, A., Attlan, M., Barrat, J., Blanton, J. D., Briggs, D. J., Cleaveland, S., Costa, P., Freuling, C. M., Hiby, E., Knopf, L., Leanes, F., Meslin, F. X., Metlin, A., Miranda, M. E., Müller, T., ... Dushoff, J. (2015). Estimating the Global Burden of Endemic Canine Rabies. *PLoS Neglected Tropical Diseases*, 9(4), 1–20. https://doi.org/10.1371/journal.pntd.0003709
- Hudson, E. G., Brookes, V. J., Dürr, S., & Ward, M. P. (2019). Targeted pre-emptive rabies vaccination strategies in a susceptible domestic dog population with heterogeneous roaming patterns. *Preventive Veterinary Medicine*, 172(September), 104774. https://doi.org/10.1016/j.prevetmed.2019.104774
- Jeon, S., Cleaton, J., Meltzer, M. I., Kahn, E. B., Pieracci, E. G., Blanton, J. D., & Wallace, R. (2019). Determining the post-elimination level of vaccination needed to prevent re-establishment of dog rabies. *PLoS Neglected Tropical Diseases*, 13(12), e0007869. https://doi.org/10.1371/journal.pntd.0007869
- Laager, M., Mbilo, C., Madaye, E. A., Naminou, A., Léchenne, M., Tschopp, A., Naïssengar, S. K., Smieszek, T., Zinsstag, J., & Chitnis, N. (2018). The importance of dog population contact network structures in rabies transmission. *PLoS Neglected Tropical Diseases*, 12(8), 1–18. https://doi.org/10.1371/journal.pntd.0006680
- Lavan, R. P., Macg, A. I., Sutton, D. J., & Tunceli, K. (2017). Rationale and support for a One Health program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings. *Vaccine*, 35(13), 1668–1674. https://doi.org/10.1016/j.vaccine.2017.02.014

- Mindekem, R., Lechenne, M. S., Naissengar, K. S., Oussiguéré, A., Kebkiba, B., Moto, D. D., Alfaroukh, I. O., Ouedraogo, L. T., Salifou, S., & Zinsstag, J. (2017). Cost description and comparative cost efficiency of post-exposure prophylaxis and canine mass vaccination against rabies in N'Djamena, Chad. *Frontiers in Veterinary Science*, 4(APR). https://doi.org/10.3389/fvets.2017.00038
- Muthiani, Y., Traoré, A., Mauti, S., Zinsstag, J., & Hattendorf, J. (2015). Low coverage of central point vaccination against dog rabies in Bamako, Mali. *Preventive Veterinary Medicine*, 120(2), 203– 209. https://doi.org/10.1016/j.prevetmed.2015.04.007
- S. Musaili, J., & Chepkwony, I. (2020). A Mathematical Model of Rabies Transmission Dynamics in Dogs Incorporating Public Health Education as a Control Strategy -A Case Study of Makueni County. Journal of Advances in Mathematics and Computer Science, 35(1), 1–11. https://doi.org/10.9734/jamcs/2020/v35i130235
- Taib, N. A. A., Labadin, J., & Piau, P. (2019). Model simulation for the spread of rabies in Sarawak, Malaysia. *International Journal on Advanced Science, Engineering and Information Technology*, 9(5), 1739–1745. https://doi.org/10.18517/ijaseit.9.5.10230
- Velasco-Villa, A., Escobar, L. E., Sanchez, A., Shi, M., Streicker, D. G., Gallardo-Romero, N. F., Vargas-Pino, F., Gutierrez-Cedillo, V., Damon, I., & Emerson, G. (2017). Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. In *Antiviral Research* (Vol. 143, pp. 1–12). https://doi.org/10.1016/j.antiviral.2017.03.023
- Wei, X. K., Xiong, Y., Li, X. N., Zheng, M., Pan, Y., He, X. X., Liang, J. J., Liu, C., Zhong, Y. Z., Zou, L. Bin, Zheng, L. F., Guo, J. G., Li, C. T., Huang, S. Bin, Gan, J. Z., Meng, Z. M., Yang, J., Tang, H. B., Liu, Q., & Luo, T. R. (2018). Vaccination demonstration zone successfully controls rabies in Guangxi Province, China. *BMC Infectious Diseases*, 18(1), 1–7. https://doi.org/10.1186/s12879-018-3301-8
- Wera, E, Mourits, M. C. M., Siko, M. M., & Hogeveen, H. (2017). Cost-Effectiveness of Mass Dog Vaccination Campaigns against Rabies in Flores Island, Indonesia. *Transboundary and Emerging Diseases*, 64(6), 1918–1928. https://doi.org/10.1111/tbed.12590
- Wera, Ewaldus, Mourits, M. C. M., & Hogeveen, H. (2017). Cost-effectiveness of mass dog rabies vaccination strategies to reduce human health burden in Flores Island , Indonesia. *Vaccine*. https://doi.org/10.1016/j.vaccine.2017.10.009
- WHO. (2020a). Neglected tropical diseases. https://www.who.int/neglected diseases/diseases/summary/en/
- WHO. (2020b). Prevention. https://www.who.int/rabies/about/home_prevention/en/.
- WHO. (2020c). *Rabies*. https://www.who.int/health-topics/rabies#tab=tab 1.
- Yoder, J., Younce, E., Lankester, F., & Palmer, G. H. (2019). Healthcare demand in response to rabies elimination campaigns in Latin America. *PLoS Neglected Tropical Diseases*, 13(9), 1–14. https://doi.org/10.1371/journal.pntd.0007630