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ABSTRACT

Cellulases have been vital for the saccharification of lignocellulosic biomass into 
reduced sugars to produce biofuels and other essential biochemicals. However, the 
sugar yields achievable for canonical cellulases (i.e. endoglucanases, exoglucanases 
and β-glucosidases) have not been convincing in support of the highly acclaimed 
prospects and end-uses heralded. The persistent pursuit of the biochemical industry 
to obtain high quantities of useful chemicals from lignocellulosic biomass has resulted 
in the supplementation of cellulose-degrading enzymes with other biological 
complementation. Also, chemical additives (e.g. salts, surfactants and chelating agents) 
have been employed to enhance the stability and improve the binding and overall 
functionality of cellulases to increase product titre. Herein, we report the roadmap of 
cellulase-additive supplementations and the associated yield performances.
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INTRODUCTION
Lignocellulose is an important cellulosic feedstock for producing bulk biochemicals 
and other value-added products due to its abundance, renewability and sustainability 
(Ramawat & Mérillon, 2015). The use of lignocellulosic biomass has received soaring 
attention within the last few decades because the ensuing products are believed to be 
a potential replacement of fossil fuels and fossil-based chemicals. For instance, unlike 
fossil fuels, (ligno) cellulosic biofuel putatively contribute no net increase in carbon 

Borneo International Journal of Biotechnology (BIJB)
Vol. 1 (December 2020), 1 – 18

e-ISSN 2716-697X
Review Article



© Eugene M. Obeng, Chan Yi Wei, Siti Nurul Nadzirah Adam & Clarence M. Ongkudon

2  |  BIJB Vol. 1 (December, 2020), e-ISSN 2716-697X

dioxide concentration in the atmosphere; thus, becoming beneficial in the quest to 
mitigate climate change and global warming (Balan, Bals, Chundawat, Marshall, & 
Dale, 2009; Vassilev, Baxter, Andersen, & Vassileva, 2010). 

Lignocellulose has a complex structure consisting of inner cellulose (30 – 45%) wrapped 
by a sheath of hemicellulose (15 – 30%) and lignin (12 – 25%) (Parisutham, Kim, & 
Lee, 2014), but varies in composition based on the type of species, growth process, 
growing conditions, age and geographical source of the biomass (Magalhães da Silva, 
da Costa Lopes, Roseiro, & Bogel-Łukasik, 2013; Vassilev et al., 2010). The holocellulose 
(hemicellulose plus cellulose) content has been the main source of the substrate to 
produce vital biochemicals. The process requires a consortium of enzymes, called 
cellulases, to systematically breakdown the substrate into reduced sugars for specific 
essential applications (e.g. biofuels) (Chandel & Silvério da Silva, 2013). Specifically, 
endoglucanases, exoglucanases and β-glucosidases are the three basic cellulases 
required for cellulose depolymerization.

The cellulase industry has witnessed recommendable improvements in terms of 
multiplicities in cellulase sources. Different sources, for example, fungi, bacteria, 
protozoans and even plants and animals, have shown potential for cellulase 
production (Kim & Kim, 2012). However, the fraternity still faces challenges on stability 
(thermal and pH) and catalytic efficiency. Remarkably, several attempts have been 
pursued to enhance the activity of cellulase. Some of these attempts have focused on 
the pre-treatment of the biomass (Agrawal et al., 2015; Jia et al., 2015; Pandiyan et al., 
2014), cellulase engineering (Bommarius, Sohn, Kang, Lee, & Realff, 2014; Ito, Ikeuchi, 
& Imamura, 2013; Kim, Chokhawala, Nadler, Blanch, & Clark, 2010; Lee, Chang, Jeng, 
Wang, & Liang, 2012), and the supplementation of the cellulose depolymerization 
process with additives (biological and non-biological).

Herein, we discuss the roadmap on the enhancement of cellulases for lignocellulose 
saccharification in the perspective of cellulase supplements and additives. More 
importantly, we discuss how some of these supplements/additives enhance the 
functionality of the three basic cellulases toward achieving high titer of reduced sugars 
to produce essential commodities. To improve comprehensibility, we commence the 
discussion with a brief description of the structure and nature of the key cellulases. A 
comprehensive review of these enzymes has been published by Bhat (2000).

CELLULASES
Cellulases are enzymes capable of hydrolysing the β-1,4-glycosidic linkages within 
the complex cellulose structure to yield reduced sugars such as glucose. The substrate 
of these enzymes, the cellulose, is a homopolymer which is composed of repeated 
units of D-glucose monomers linked together by β-1,4-glycosidic bonds. Cellulases 
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are carbohydrate-degrading enzymes – a type of glycoside hydrolases (GHs) – which 
commonly possess a carbohydrate-binding module (CBM) to ensure substrate 
targeting; a catalytic module (CM) to cleave the β-1,4-glycosidic bond; and other 
types of essential modules such as FN3-like modules (Davies, Gloster, & Henrissat, 
2005; Garvey, Klose, Fischer, Lambertz, & Commandeur, 2013; Moraïs et al., 2012). The 
non-catalytic modules of the multi-modular structure of cellulases frequently assist in 
protein-protein and protein-carbohydrate interactions (Bommarius et al., 2014).

There are three (3) basic cellulases (namely: endoglucanases, exoglucanase and 
β-glucosidases) which have been identified to ensure the conversion of cellulose 
into the glucose monomers. These enzymes differ structurally and functionally, 
but their catalytic mechanism follow the classical acid-catalyst hydrolysis model, 
employing two critical glutamate residues which function as a proton donor and 
a nucleophile, respectively (Garvey et al., 2013; Isorna et al., 2007). The two amino 
acid residues facilitate the hydrolysis of glycosidic linkages through the retention 
and/or inversion of the anomeric carbons within the polysaccharide structure 
(Koshland, 1953).

Endoglucanases (E.C.3.2.1.4) are the most abundant GHs; they are structurally 
characterized with short loops having well-defined, open active site clefts and show 
affinity toward amorphous site along cellulose chains (Juturu & Wu, 2014; Wilson, 2015). 
In contrast to endoglucanases, exoglucanases have long loops that form a tunnel-like 
structure around the catalytic residue but have an affinity for crystalline sites within 
the cellulose matrix (Juturu & Wu, 2014). Functional elucidations have led to the 
discovery and classification of two distinct exoglucanases, namely: the reducing end 
(E.C.3.2.1.176) and non-reducing ends (E.C. 3.2.1.91) exoglucanases. The classification 
is based on the portion of the polysaccharide chain (i.e., reducing end or non-reducing 
end) each enzyme favourably attacks (Wahlström, Rahikainen, Kruus, & Suurnäkki, 
2014). However, the two enzymes are complementary and processive. Based on 
performance, endoglucanases exhibit the most rapid dissociation with the greatest 
liquefaction that leads to cellulose depolymerization and viscosity reduction (Boyce & 
Walsh, 2015). The work of endo- and exoglucanases in cellulase cocktails is considered 
as the rate-determining step ensuring effective cellulose depolymerization (Chandel 
& Silvério da Silva, 2013). According to Luterbacher, Walker, & Moran-Mirabal (2013), 
the rate of limiting effect increases the surface area of the substrate and exposes a 
new binding site for successive enzymes to cleave. Notably, feedback inhibition – a 
condition where the product of the enzyme impedes the enzyme itself – has been a 
crucial challenge of endoglucanases and exoglucanases (Van Dyk & Pletschke, 2012); 
thus, the need to synergize their activity with β-glucosidases.
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β-glucosidases (EC 3.2.1.21) have a rigid active site that resides in a large cavity (i.e., the 
active site pocket) known to permit the entry of disaccharides (Nam, Sung, & Hwang, 
2010). Notably, some β-glucosidases are also able to break down soluble cellodextrins 
with a degree of polymerization ≤ 6 (González-Candelas, Aristoy, Polaina, & Flors, 
1989; Zhang & Lynd, 2004). The cavity is surrounded by four hydrophobic loops of 
different conformations which facilitate substrate binding (Czjzek et al., 2000; Nam 
et al., 2010). The specificity of β-glucosidases is influenced by the loops, which are 
potentially stabilized by hydroxyl groups, either from substrate or water (Isorna et 
al., 2007; Nam et al., 2010). β-glucosidases are categorized into two sub-families, viz. 
sub-family A (e.g. plant and non-rumen prokaryotic sources) and sub-family B (fungal 
and rumen bacterial sources) (Park et al., 2011). Similar to endo- and exoglucanases, 
β-glucosidases also experience glucose feedback inhibition – a challenge that has 
led to the discovery of glucose tolerant derivatives (Das et al., 2015; Günata & Vallier, 
1999; Rajasree, Mathew, Pandey, & Sukumaran, 2013; Riou, Salmon, Vallier, Günata, & 
Barre, 1998). Trichoderma and Aspergillus species have been key sources of primary 
cellulases (endo- and exocellulases) and β-glucosidases, respectively (Brijwani, Oberoi, 
& Vadlani, 2010; Gottschalk et al., 2010; Gutierrez-Correa, Portal, Moreno, & Tengerdy, 
1999; Wang, Bay, Chew, & Geng, 2014).

Functional elucidations have theorized that endoglucanases begin the deconstruction 
process by hydrolyzing cellulose at amorphous sites into long-chain oligomers (e.g., 
cellodextrin); exoglucanases attack the long-chain oligomers at the crystalline regions 
from either reducing or non-reducing ends to yield short-chain oligomers (e.g. 
cellobiose, cellotriose, cellutetrose, etc.) and β-glucosidases complete the breakdown 
process by converting cellobiose to D-glucose (Juturu & Wu, 2014; Segato, Damásio, de 
Lucas, Squina, & Prade, 2014). The overall process involves a series of adsorption and 
desorption, and it is governed by synergism, cooperativity and substrate channelling 
(Wilson, 2009).

ADDITIVE EFFECT ON CELLULOSE HYDROLYSIS
The complex structure of lignocellulosic biomass, even after pretreatment, requires 
a multitude of enzymes in conjunction with the canonical cellulases for effective 
degradation (Chundawat, Beckham, Himmel, & Dale, 2011). For instance, the 
supplementation of cellulases with other enzymes of relevant activities and the 
inclusion of enzyme-activity-enhancing chemicals to ensure most of the saccharides 
in the biomass are converted to their reduced and fermentable forms are common 
practices. The supplementary enzymes and accessories play a complementary role 
in effective biomass bio-depolymerization (Gao et al., 2011). The role and benefits of 
some of the biological and chemical additives commonly reported in the literature are 
discussed as follows:
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Biological Supplements

Hemicellulases

Hemicellulases are enzymes responsible for the breakdown of the hemicellulose 
sheath linking core cellulose and the outward lignin of the cell wall of plants. The 
hemicellulose substrate is the second most abundant plant polymer after cellulose 
(Peng & She, 2014; Rubin, 2008), and consist of easy-hydrolysable compounds 
including pentoses (e.g., arabinose and xylose), hexoses (e.g., mannose, galactose 
and glucose), and sugar acids (Hendriks & Zeeman, 2009; Imman, Arnthong, 
Burapatana, Laosiripojana, & Champreda, 2013). Generally, hemicellulases share 
common functionality with cellulases, in that they hydrolyze the β-1,4-glycosidic 
bonds within hemicellulose (Chang et al., 2011). Hemicellulases are also GHs and 
possess CMBs and other functional modules which support the functionality of the 
catalytic domains (CDs). Some CDs exhibit carbohydrate esterase (CE) functionality 
instead of the common GH-functionality (Shallom & Shoham, 2003). The GH-type 
catalytic domain hydrolyzes glycosidic linkages whereas CE-type hydrolyzes ferulic 
acid side groups or ester bonds of acetate (Shallom & Shoham, 2003). Xylanases, 
xylosidases, and arabinofuranosidases are the most common hemicellulases 
essential for biomass depolymerization (Ratanakhanokchai, Kyu, & Tanticharoen, 
1999). However, mannanases, glucuronidases and esterases are also hemicellulases 
with distinct activities.

Cellulases and hemicellulases complementarily affect the degree of polymerization 
of the cellulosic substrate, resulting in a high level of sugar monomers (Pala, Mota, & 
Gama, 2007). Hemicellulase activity on its feedstock clears the way for cellulases to 
attack the core cellulose (Doi, 2008). According to Gao et al. (2011), more than 80% of 
the theoretical glucose yield is achievable using an optimized blend of cellulases and 
hemicellulases. Gao et al. (2014) compared the yield of reduced sugar (i.e., glucose and 
xylose) from corn stover (CS) pretreated by ammonium fibre expansion (AFEX), dilute 
acid (DA) and ionic liquid (IL) with and without hemicellulase supplementation. For IL- 
CS, they reported 88% glucose and 53% xylose yields in the presence of hemicellulases 
as against 82% glucose and 12% xylose yields in the absence of hemicellulases 
within 48 h. The hemicellulase-assisted hydrolysis of AFEX-CS resulted in 99% 
glucose and 55% xylose yields as against 84% glucose and 10% xylose yields for the 
hemicellulase-devoid system in 48 h. Lastly, the DA-CS gave close to 97% glucose and 
68% xylose yields in the presence of the synergistic hemicellulase supplementation as 
compared to 88% glucose and 28% xylose yields for raw cellulase cocktail in 48 h. The 
hemicellulase helped in relieving bound cellulases from the substrate and that led to 
an improved recovery (Gao et al., 2014). Similar elucidations have been reported for 
steam-pretreated CS and hybrid poplar (Bura, Chandra, & Saddler, 2009) and barley 
straw (García-Aparicio et al., 2007). Notably, the glucose released in the presence of 
hemicellulases has a direct linear relationship with the concurrent release of xylose 
(Kumar & Wyman, 2009).
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Laccases

Laccases (EC 1.10.3.2) are multicopper oxidases responsible for the one-electron 
oxidation of various feedstocks, including phenolic and non-phenolic subunits of lignin 
(Chandel, Gonçalves, Strap, & da Silva, 2015; Dwivedi, Singh, Pandey, & Kumar, 2011; 
Lahtinen et al., 2009). The active sites of laccases have four copper atoms viz. Type-1 
(blue copper centre), Type-2 (normal copper) and Type-3 (coupled binuclear copper 
centres) located at three different centres (Dwivedi et al., 2011). The copper atoms 
oxidize cellulose substrates at C-1, C-4, and C-6 atoms positions (Segato et al., 2014). 
It is worth noting that the functionality of laccases is enforced by electron transfer 
and hydrogen atom mediators. Lignin peroxidase (EC 1.11.1.14) and manganese- 
dependent peroxidase (EC 1.11.1.13) have also been identified to oxidatively attack 
phenolic and non-phenolic aromatic lignin moieties (Manavalan, Manavalan, & Heese, 
2015; Wan & Li, 2012).

The principal substrate of laccases is lignin, which is a biopolymer composed of 
mixed phenylpropanoid units (Meyer, Lupoi, & Smith, 2011). For that matter, the 
supplementation of canonical cellulases with laccases could take care of the lignin 
residues which remain after the pretreatment lignocellulose. This is necessary because 
residual lignin in pretreated biomass directly inhibits and impedes the movement of 
the cellulases along the cellulose chain (Berlin, 2013; Zhang & Lynd, 2004). According 
to Moilanen, Kellock, Galkin, & Viikari (2011), laccases are capable of liberating trapped 
cellulases from unproductive adsorption. Moreover, laccases could potentially address 
phenolic compound inhibition of cellulases during biomass hydrolysis. For instance, 
Hyeon et al. (2014) obtained a 2.6 fold increase in the reduced sugar yield upon the 
involvement of laccases in the saccharification of pretreated barley straw. Moilanen 
et al. (2011) also reported a 12% increase in hydrolysis yield from pretreated spruce, 
using laccases and commercial cellulases. Furtado, Ribeiro, Lourenzoni, and Ward 
(2013) and Ribeiro et al. (2011) have also demonstrated the synergy and associated 
catalytic performance improvement when laccases are fused to other enzymes for 
biomass hydrolysis.

Lytic Polysaccharide Mono-oxygenases (LPMOs)

Lytic polysaccharide mono-oxygenases (LPMOs) are a recent discovery in the 
lignocellulose depolymerization pathway. Intriguingly, their inception has been 
vital in the understanding of how saprophytes breakdown biomass for their energy 
demands. LPMOs were previously thought of as being endoglucanase due to their 
ability to exhibit weak endocellulase functionalities (Karkehabadi et al., 2008; 
Karlsson et al., 2001). However, modern structural and functional elucidations have 
necessitated their reclassification as auxiliary activity (AA) family enzymes.
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Interestingly, the functional insights of LPMOs have challenged and reformed the 
classical concept of cellulose saccharification by canonical cellulases (Hemsworth, 
Davies, & Walton, 2013a). Therefore, some research has been geared at fully 
elucidating their functional distinctions and associated mechanisms to aid in their 
possible supplementation with cellulases.

Like laccases, LPMOs is also an oxidative enzyme. However, LPMS have a monomeric 
type II copper ions (Cu2+) in the centre of the active sites for substrate interaction 
(Hemsworth et al., 2013b; Quinlan et al., 2011). The active site is positioned within 
an extended flat-face structure which is different from the common tunnel-shaped 
structures shielding the active sites of cellulases (Hemsworth et al., 2013a; Isaksen et 
al., 2014). The catalytic activity of LPMOs dwells on the binding of active atmospheric 
oxygen (O2) to the type II Cu2+ ion which then facilitates its interaction with C-1 and C-4 
bonds along with the cellulose polymer (Hemsworth et al., 2013a; Walton & Davies, 
2016). The presence of molecular oxygen, an external electron donor and possibly 
CBM is key for LPMO functionality. The external electron donor could be provided by 
residual lignin present within the cellulose matrix (Westereng et al., 2015).

LPMOs complement cellulases during the breakdown of cellulose by causing chain 
breaks (via oxidation reactions) in the cellulose matrix thereby improving the 
accessibility of cleavage sites to cellulases (Horn, Vaaje-Kolstad, Westereng, & Eijsink, 
2012; Vaaje-Kolstad et al., 2010). In technical terms, the enzyme causes the abstraction 
of hydrogen atoms to aid in the cleavage of the bonds between the most accessible 
and most reactive C-H (i.e. C-1 and C-4) (Obeng et al., 2017). The strong synergism 
of LPMOs with other cellulases is believed to be due to their ability to attack highly 
crystalline and recalcitrant spots of cellulose where other enzymes cannot (Harris, 
Xu, Kreel, Kang, & Fukuyama, 2014). Jung, Song, Kim, and Bae (2015) reported an 
accelerated synergistic effect of 56 and 174% for the blend of LPMOs and cellulases on 
pretreated kenaf and oak, respectively. A similar observation (i.e. 60% more glucose) 
from LPMOs with Celluclast® on dry lignocellulosic biomass has been reported (Müller, 
Várnai, Johansen, Eijsink, & Horn, 2015).

Non-hydrolytic Accessory Proteins

Expansins and swollenins are the common non-hydrolytic proteins for lignocellulosic 
biomass deconstruction. They can loosen the cell wall of plants and alter the 
crystallinity of cellulosic material (Nakashima, Endo, Shibasaki-kitakawa, & Yonemoto, 
2014). Expansins are plant proteins whereas swollenins are expansin-derivatives from 
fungi and bacteria. These proteins disrupt the hydrogen bonds within the cellulose 
structure to reduce the crystallinity thereby enhancing the cellulose accessibility for 
enzymatic attacks (Harris et al., 2014). Nakatani, Yamada, Ogino, and Kondo (2013)
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reported a 2.9-fold increase in cellulase activity on phosphoric acid swollen cellulose 
(PASC) by co-displaying cellulase and expansin-like proteins on yeast cells. Also, 
Nakashima et al. (2014) reported a 35% increase in substrate digestibility by fusing 
endoglucanase with expansins.

Recently, there is also the practice of using non-enzymatic proteins such as bovine 
serum albumin (BSA), peptone, yeast extract, soybean protein and processing wastes 
from the meat, fish and milk industries as lignin blockers (Yang & Wyman, 2013). 
In simple terms, these proteinaceous materials help to either enhance cellulase 
adsorption or reduce unproductive adsorption of the cellulases onto lignin by 
interacting with (or “blocking”) lignin. The blocking effect improves the accessibility 
of cellulases to cellulose to promote efficient cellulose depolymerization. Also, the 
inclusion of lignin blockers reduces the intensiveness of pre-treatment method (Wang, 
Kobayashi, & Mochidzuki, 2015), enzyme loading (Luo et al., 2019), and operation 
time (Brondi, Vasconcellos, Giordano, & Farinas, 2019); thus, improving the economics 
of biomass saccharification. For instance, Ko, Kim, Ximenes, and Ladisch (2015) 
supplemented cellulases with BSA for the hydrolysis of hydrothermally pre- treated 
hardwood. The work reported about a 72% increase in hydrolysis yield compared 
with 17% for saccharification without BSA. Similarly, Wang et al. (2015) tested the 
influence of BSA, peptone and yeast extract on the hydrolysis yield of pre-treated rice 
straw using different commercial enzymes. The work reported 14 – 20% increase in 
hydrolysis yield upon the inclusion of these blocking agents. Also, Luo et al. (2019) 
reported the supplementation of pre-treated lignocellulose with soybean protein 
reported an improved enzymatic conversion 40%, 30%, and 41% for eucalyptus, 
bamboo, and Masson pine, respectively. The inclusion of soybean protein reduced 
enzyme loading by 8 times. Similarly, Florencio, Badino, and Farinas (2019) obtained 
up to 86% improvement sugarcane bagasse hydrolysis. Seki et al. (2015) have also 
reported about 2.9-fold improvement in saccharification yield due to the effects of 
non-enzymatic proteins in cattle saliva on cellulose degradation.

Non-biological Additives

The common non-biological additives for enhancing cellulase performance include 
salts, surfactants and chelating agents. These chemicals provide cellulase activity 
improvement by either serving as metal cofactors, activators or stabilizers. The 
associated effects are enzyme, enzyme preparation and concentration dependent. 

Salts and Chelating Agent

Many salts have been used in the literature to enhance the activity of cellulases. These 
salts are dominated by divalent cation-associated salts. However, the anion aspects 
of the salts have not shown their clear-cut functionality on cellulase enhancement to 
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date. KCl, MnCl2, CaCl2, CuCl2, MgCl2 and ZnSO4 are some of the common salts being 
reported in the literature. Each of the metal cations has shown specific affinities for 
one cellulase compared to another, although the cations may have the same valency 
number. The discrepancies could have a link with the atomic radius of the cation and 
dimensions of the active site cavity; however, this is yet to be proved.

Table 1 Impacts of additives in cellulose hydrolysis

Enzyme(s) Source Additive Relative 
performance References

Endoglucanase Alicyclobacillus 
vulcanalis

CaCl2 (10 mM)
MgCl2 (10 mM)
EDTA (2 mM)
Tween 20 (0.1%)
Triton X-100 (0.1%)

97%
86%
98%

124 %
124 %

Boyce and 
Walsh, 2015

Endoglucanase
and xylanase 
fusion protein 
(Xyl10g GS 
Cel5B)

Gloeophyllum 
trabeum

CoCl2 (1 mM)
CaCl2 (1 mM)
FeCl3 (1 mM)
KCl (1 mM)
LiCl (1 mM)
EDTA (1 mM)
NaCl (1 mM)

139% (115%)
101% (95%)

100% (115%)
100% (95%)
101% (95%)
91% (88%)

101% (97%)

Kim, Jung, Lee, 
Song, and Bae, 

2015

Exoglucanase Rhizopus 
stolonifera

CaCl2 (1 mM)
KOH (1 mM)
MgSO4 (1 mM)
ZnSO4 (1 mM)
Fe2Cl3 (1 mM)
NH4Cl (1 mM)
EDTA (1 mM)
Tween 20 (1 mM)
SDS (1 mM)
Triton X 100 (1 mM)

160%
95%

126%
75%

100%
99%

130%
80%
70%
55%

Navya, Bhoite, 
and Murthy, 

2012

β-glycosidase Alicyclobacillus 
acidocaldarius

Mg2+ (5 mM)
Mn2+ (5 mM)
Ca2+ (5 mM)
Zn2+ (5 mM)
Co2+ (5 mM)
Cu2+ (5 mM)
Ni2+ (5 mM)
Zn2+ (5 mM)
Co2+ (5 mM)
EDTA (5 mM)

Not significant
Not significant
Not significant

33%
96%

Not significant
Not significant
Not significant
Not significant
Not significant

Di Lauro, Rossi, 
and Moracci, 

2006

NB: The reported relative performances have been rounded to the nearest whole number. The figures in 
bracket refer to the concentration of xylose.
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One key property of these salts is the ability to dissociate in solution to yield a 
dielectric strength capable of resisting pH fluctuation, thus preserving/improving 
the functionality and stability of the enzymes present (Suplatov, Panin, Kirilin, 
Shcherbakova, & Kudryavtsev, 2014). For instance, Ca2+ has been identified as 
having the ability to improve ligand binding and cellulase stability, and maintain the 
structural integrity of enzymes (Abou-hachem et al., 2002; Bolam et al., 2004; Jamal, 
Nurizzo, Boraston, & Davies, 2004). According to Warren and Cheatum (1966), the salts 
contribute to the enzyme enhancement by modifying the organized structure of the 
protein macromolecule.

On the other hand, chelating agents improve enzymatic activity by trapping and 
forming complexes with material (e.g., metal ions). This property may or may not 
be beneficial since some of these enzymes have inherent metal cations and other 
chelatable structures. The commonly used chelating agent is ethylenediamine 
tetraacetic acid (EDTA), and it is known for its metal ion scavenging abilities (Naika 
& Tiku, 2011). Fontes and Gilbert (2010) opined that EDTA hinders the interaction 
of dockerins with cohesins (both are facets of most enzyme structures) whereas 
Ca2+ proves essential for dockerin stability and function. Table 1 shows some of the 
reported impacts of these additives in cellulose hydrolysis.

Surfactants

Surfactants, for example, Tween, Triton and polyethene glycol, have been vital in 
cellulase enhancement procedures. Similar to lignin blockers, surfactants commonly 
function by improving the adsorption and desorption catalytic activity of enzymes in a 
way to improve enzyme mobility and prevent non-specific enzyme attachments (Helle, 
Duff, & Coopes, 1993; Tu, Zhang, Paice, Mcfarlane, & Saddler, 2009). The amphiphilic 
surface-active chemical potentially could alter the surface area and composition of 
cellulosic feedstock to improve the accessibility of cleavage point (Helle et al., 1993). 
It is worth noting that different surfactants also influence cellulase activity differently 
and this may be attributed to their polarity (i.e. ionic, non-ionic or zwitterionic), which 
by extension affects the binding modules of an enzyme. Polyethene glycol (PEG4000), 
for instance, has been reported to improve the activity of beta-glucosidases and 
endoglucanase by 20% and 60%, respectively (Rocha-Martín, Martinez-Bernal, Pérez- 
Cobas, Reyes-Sosa, & García, 2017). However, the associated cost concerns have to be 
addressed. Table 1 displays some of the reported benefits of common surfactants.
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CONCLUSION
Several additives have a pronounced complementary effect on cellulase performance. 
The successful blend of cellulases, hemicellulases, lignases, accessory proteins and other 
additives in a way that will promote progressivity, synergism and non-competition are 
crucial for the cellulose-based industry. The challenge lies in proportionating these 
enzymes and supplementations in a manner that could function optimally to ensure 
the complete digestion of lignocellulosic biomass to simple sugars. However, with 
the current trend of cellulose hydrolysis research, the future of green products form 
lignocellulose still looks promising.
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