OPTIMISATION OF AN ELECTROCHEMICAL SENSOR BASED ON BARE GOLD ELECTRODE FOR DETECTION OF ALUMINIUM ION

Authors

  • Gilbert Ringgit Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Shafiquzzaman Siddiquee Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Suryani Saallah Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Mohammad Tamrin Mohamad Lal Borneo Research Marine Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.51200/bijb.vi.2203

Keywords:

electrochemical sensor, heavy metal , aluminium , cyclic voltammetry , differential pulse voltammetry

Abstract

In this work, an electrochemical method for detection of trace amount of aluminium (Al3+), a heavy metal ion, based on a bare gold electrode (AuE) was developed. Current responses of the AuE under various type of electrolytes, redox  indicators, pH, scan rate and accumulation time were investigated using cyclic voltammetry (CV) method to obtain the optimum conditions for Al3+ detection. The sensing properties of the AuE towards the target ion with different concentrations were investigated using differential pulse voltammetry (DPV) method. From the CV results, the optimal
conditions for the detection of Al3+ were Tris-HCl buffer (0.1 M, pH 2) supported by 5 mM Prussian blue with scan rate and accumulation time respectively of 100 mVs−1 and 15 s. Under the optimum conditions, the DPV method was detected with different concentrations of aluminium ion ranging from 0.2 to 1.0 ppm resulted in a good linear regression r² = 0.9806. This result suggests that the optimisation of the basic parameters in electrochemical detection using AuE is crucial before further modification of the Au-electrode to improve the sensitivity and selectivity especially for the low concentration of ion detection. The developed method has a great potential for rapid detection of heavy metal ion (Al3+) in drinking water samples.

References

Altunay, N., Yıldırım, E., & Gürkan, R. (2018). Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid–liquid microextraction prior to atomic absorption spectrometric determination. Food Chemistry, 245, 586 – 594.
Barceló, J., & Poschenrieder, C. (2002). Fast root growth responses, root exudates, andinternal detoxification as clues to the mechanisms of aluminium toxicity andresistance: a review. Environmental and Experimental Botany, 48, 75–92.
Baylor, N. W., Egan, W., & Richman, P. (2002). Aluminium salts in vaccines – U.S. perspective. Vaccine, 20, 18 – 23.
Berke, H. (2014). ‘Counting ions’ in Alfred Werner’s coordination chemistry using electrical conductivity measurements. Educación Química, 25 (E1), 267 – 275.
Chaiyo, S., Mehmeti, E., Zagar, K., Siangproh, W., Chailapakul, O., & Kalcher, K. (2016). Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Na+ion/ionic liquid/graphene composite modified screen-printed carbon electrode. Analytica Chimica Acta, 918, 26 – 34.
Diao, Q., Ma, P., Lv, L., Li, T., Sun, Y., Wang, X., & Song, D. (2016). A water-soluble and reversible fluorescent probe for Al3+and F− in living cells. Sensors and Actuators B, 229, 138 – 144.
Dravecz, G., Bencs, L., Beke, D., & Gali, A. (2016). Determination of silicon and aluminium in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta, 147, 271 – 275.
Ensafi, A. A., Amini, M., & Rezaei, B. (2013). Detection of DNA damage induced by chromium/glutathione/H2O2 system at MWCNTs–poly (diallyldimethylammonium chloride) modified pencil graphite electrode using methylene blue as an electroactive probe. Sensors and Actuators B: Chemical, 177, 862 – 870.
Elečková, L., Alexovič, M., Kuchár, J., Balogh, I. S., & Andruch, V. (2015). Visual detection and sequential injection determination of aluminium using a cinnamoyl derivative. Talanta, 133, 27 – 33.
Ferancová, A., Hattuniemi, M. K., Sesay, A. M., Räty, J. P., & Virtanen, V . T. (2016). Rapid and direct electrochemical determination of Ni(II) in industrial discharge water. Journal of Hazardous Materials, 306, 50 – 57.
Fu, Y., Jiang, X. J., Zhu, Y. Y., Zhou, B. J., Zang, S. Q., Tang, M. S., … Mak, T. C. W. (2014). A new fluorescent probe for Al3+ based on rhodamine 6G and its application to bioimaging. Dalton Transactions, 43, 12624 – 12632.
Gilbert, R., Siddiquee, S., Tamrin, M. L., Saallah, S., Yusuf, N. H. M., & Amin, Z. (2018). Electrochemical methods for detection of zinc ion in drinking water. International Journal of Pharma and Bio Science, 9, 268 – 276.
Gilbert, R., Siddiquee, S., Saallah, S., & Tamrin, M. L. (2019). Optimisation of parameters for detection of manganese ion using electrochemical method. IOP Conference Series: Materials Science and Engineering, 606, 012009. DOI: 10.1088/1757-899X/606/1/012009
Gholivand, M. B., Akbari, A., Faizi, M., & Jafari, F. (2017). Introduction of a simple sensing device for monitoring of hydrogen peroxide based on ZnFe2O4 nanoparticles/chitosan modified gold electrode. Journal of Electroanalytical Chemistry, 796, 17 – 23.
Gumpu, M. B., Veerapandian, M., Krishnan, U. M., & Rayappan, J. B. B. (2017). Simultaneous electrochemical detection of Cd (II), Pb (II), As (III) and Hg (II) ions using ruthenium (II)-textured graphene oxide nanocomposite. Talanta, 162, 574 – 582.
Honeychurch, K. C., Rymansaib, Z., & Iravani, P. (2018). Anodic stripping voltammetry determination of zinc at a 3-D printed carbon nanofiber-graphite-polystyrene electrode using a carbon pseudo-reference electrode. Sensors and Actuators B: Chemical, 267, 476 – 482.
Khanhuathon, Y., Siriangkhawut, W., Chantiratikul, P., & Grudpan, K. (2015). Spectrophotometric method for determination of aluminium content in water and beverage samples employing flow-batch sequential injection system. Journal of Food Composition and Analysis, 41, 45 – 53.
Kim, H. S., Angupillai, S., & Son, Y. A. (2016). A dual chemosensor for both Cu2+and Al3+: A potential Cu2+and Al3+switched YES logic function with an INHIBIT logic gate and a novel solid sensor for detection and extraction of Al3+ions from aqueous solution. Sensors and Actuators B, 222, 447 – 458.
Lima, L. C., Papai, R., & Gaubeur, I. (2018). Butan-1-ol as an extractant solvent in dispersive liquid-liquid microextraction in the spectrophotometric determination of aluminium. Journal of Trace Elements in Medicine and Biology, 50, 175 – 181.
Ma, Y. H., Yuan, R., Chai, Y. Q., & Liu, X. L. (2010). A new aluminium(III)-selective potentiometric sensor based on N,N’-propanediamide bis(2-salicylideneimine) as a neutral carrier. Materials Science and Engineering C, 30, 209 – 213.
Manjumeena, R., Duraibabu, D., Rajamuthuramalingam, T., Venkatesan, R., & Kalaichelvan, P. T. (2015). Highly responsive glutathione functionalized green AuNP probe for precise colorimetric detection of Cd2+ contamination in the environment. Royal Society of Chemistry Advances, 5, 69124 – 69133.
Mergu, N., Singh, A. K., & Gupta, V. K. (2015). Highly sensitive and selective colorimetric and off– on fluorescent reversible chemosensors for Al3+ based on the rhodamine fluorophore. Sensors, 15, 9097 – 9111.
Engineering Service Division, Ministry of Health, Malaysia. (2016). Drinking water quality standard. Retrieved from https://environment.com.my/wp-content/uploads/2016/05/Drinking-Water-MOH.pdf.
Mohseni, H. K., Matysiak, W., Chettle, D. R., Byun, S. H., Priest, N., Atanackovic, J., & Prestwich, W. V. (2016). Optimization of data analysis for the in vivo neutron activation analysis of aluminium in bone. Applied Radiation and Isotopes, 116, 34 – 40.
Peng, D., Hui, B., Kang, M., Wang, M., He, L., Zhang, Z., & Fang, S. (2016). Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu (II). Applied Surface Science, 390, 422 – 429.
Ramezani, S., Jahani, R., Mashhadizadeh, M. H., Shahbazi, S. & Jalilian, S. (2018). A novel ionic liquid/polyoxomolybdate based sensor for ultra-high sensitive monitoring of Al(III): Optimization by Taguchi statistical design. Journal of Electroanalytical Chemistry, 814, 7 – 19.
Rana, S., Mittal, S. K., Singh, N., Singh, J., & Banks, C. E. (2017). Schiff base modified screen printed electrode for selective determination of aluminium(III) at trace level. Sensors and Actuators B: Chemical, 239, 17 – 27.
Rastogi, L., Dash, K., & Ballal, A. (2017). Selective colorimetric/visual detection of Al3+in ground water using ascorbic acid capped gold nanoparticles. Sensors and Actuators B, 248, 124 – 132.
Sarkar, D., Ghosh, P., Gharami, S., Mondal, T. K., & Murmu, N. (2017). A novel coumarin based molecular switch for the sequential detection of Al3+and F−: Application in lung cancer live cell imaging and construction of logic gate. Sensors and Actuators B: Chemical, 242, 338 – 346.
Skalny, A. V., Kaminskaya, G. A., Krekesheva, T. I., Abikenova, S. K., Skalnaya, M. G., Bykov, A. T., & Tinkov, A. A. (2018). Assessment of hair metal levels in aluminium plant workers using scalp hair ICP-DRC-MS analysis. Journal of Trace Elements in Medicine and Biology, 50, 658 – 663.
Siddiquee, S., Yusof, N. A., Salleh, A. B., Tan, S. G., & Bakar, F. A. (2010). Electrochemical DNA biosensor for the detection of Trichoderma harzianum based on a gold electrode modified with a composite membrane made from an ionic liquid ZnO nanoparticles and chitosan, and by using acridine orange as a redox indicator. Microchimica Acta, 172, 357 – 363.
Silva, E. D. N. D., Heerdt, G., Cidade, M., Pereira, C. D., Morgon, N. H., & Cadore, S. (2015). Use of in vitro digestion method and theoretical calculations to evaluate the bioaccessibility of Al, Cd, Fe and Zn in lettuce and cole by inductively coupled plasma mass spectrometry. Microchemical Journal, 119, 152 – 158.
Soni, M. G., White, S. M., Flamm, W. G., & Burdock, G. A. (2001). Safety evaluation of dietary aluminium. Regulatory Toxicology and Pharmacology, 33, 66 – 79.
Suherman, A. L., Tanner, E. E. L., Kuss, S., Sokolov, S. V., Holter, J., Young, N. P., & Compton, R. G. (2018). Voltammetric determination of aluminium(III) at tannic acid capped-gold nanoparticle modified electrodes. Sensors and Actuators B, 265, 682 – 690.
Tarley, C. R., Basaglia, A. M., Segatelli, M. G., Prete, M. C., Suquila, F. A. C., & Oliveira, L. L. G. (2017). Preparation and application of nanocomposite based on imprinted poly(methacrylic acid)-PAN/MWCNT as a new electrochemical selective sensing platform of Pb2+ in water samples. Journal of Electroanalytical Chemistry, 801, 114 – 121.
Trachioti, M. G., Hrbac, J., & Prodromidis, M. I. (2018). Determination of Cd and Zn with “green” screen-printed electrodes modified with instantly prepared sparked tin nanoparticles. Sensors and Actuators B: Chemical, 260, 1076 – 1083.
Tripathi, R. M., Gupta, R. K., Singh, P., Bhadwal, A. S., Shrivastav, A., Kumar, N., & Shrivastav, B. R. (2014). Ultra-sensitive detection of mercury(II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors and Actuators B: Chemical, 204, 637 – 646.
Wang, J. (2001). Analytical electrochemistry (2nd ed.). New York: Wiley-VCN.
Wang, C. X., Wu, B., Zhou, W., Wang, Q., Yu, H., Deng, K., Li, J. M., Zhuo, R. X., & Huang, S. W. (2018). Turn-on fluorescent probe-encapsulated micelle as colloidally stable nanochemosensor for highly selective detection of Al3+ in aqueous solution and living cell imaging. Sensors & Actuators: B. Chemical, 271, 225 – 238.
Wen, S. H., Wang, Y., Yuan, Y. H., Liang, R. P., & Qui, J. D. (2018). Electrochemical sensor for arsenite detection using graphene oxide assisted generation of Prussian blue nanoparticles as enhanced signal label. Analytica Chimica Acta, 1002, 82 – 89.
World Health Organization. (1998). Guidelines for drinking water quality (Second edition, Volume 2, p. 3). Retrieved from https://www.who.int/water_sanitation_health/dwq/2edaddvol2a.pdf.
Wu, W., Jia, M., Zhang, Z., Chen, X., Zhang, Q., Zhang, W., … Chen, L. (2019). Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a low cost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicology and Environmental Safety, 175, 243 – 250.
Xuan, X., & Park, J. Y. (2018). A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes. Sensors and Actuators B, 255, 1220 – 1227.
Yang, Y., Kang, M., Fang, S., Wang, M., He, L., Zhao, J., … Zhang, Z. (2015). Electrochemical biosensor based on three-dimensional reducedgraphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors and Actuators B, 214, 63 – 69.
Zioła-Frankowska, A., Kuta, J., & Frankowski, M. (2015). Application of a new HPLC-ICP-MS method for simultaneous determination of Al3+ and aluminium fluoride complexes. Heliyon, e00035. DOI: http://dx.doi.org/10.1016/j.heliyon.2015.e00035

Published

2020-12-23

How to Cite

Ringgit, G. ., Siddiquee, S., Saallah, S., & Mohamad Lal, M. T. (2020). OPTIMISATION OF AN ELECTROCHEMICAL SENSOR BASED ON BARE GOLD ELECTRODE FOR DETECTION OF ALUMINIUM ION. Borneo International Journal of Biotechnology (BIJB), 103 - 123. https://doi.org/10.51200/bijb.vi.2203