REASSESSMENT OF THE CATALYTIC ACTIVITY AND SUBSTRATE SPECIFICITY OF FKBP35 FROM Plasmodium knowlesi USING PROTEASE-FREE ASSAY

Authors

  • Cahyo Budiman Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu Sabah, Malaysia
  • Carlmond Goh Kah Wun Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu Sabah, Malaysia
  • Lee Ping Chin Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu Sabah, Malaysia
  • Rafida Razali Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu Sabah, Malaysia
  • Thean Chor Leow Enzyme and Microbial Technology Research Center, Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.51200/bijb.v1i.2602

Keywords:

malaria, Plasmodium knowlesi, Peptidyl prolyl cis-trans isomerases, FKBP

Abstract

FK506-binding protein35 of Plasmodium knowlesi (Pk-FKBP35) is a member of peptidyl prolyl cis-trans isomerase (PPIase) and is considered as a promising avenue of antimalarial drug target development. This protein is organized into the N-terminal domain responsible for PPIase catalytic activity followed and the tetratricopeptide repeat domain for its dimerization. The protease-coupling and protease-free assays are known to be the common methods for investigating the catalytic properties of PPIase. Earlier, the protease-coupling assay was used to confirm the catalytic activity of Pk-FKBP35 in accelerating cis-trans isomerization of the peptide substrate. This report is aimed to re-assess the catalytic and substrate specificity of Pk-FKBP35 using an alternative method of a protease-free assay. The result indicated that while Pk-FKBP35 theoretically contained many possible cleavage sites of chymotrypsin, experimentally, the catalytic domain was relatively stable from chymotrypsin. Furthermore, under protease-free assay, Pk-FKBP35 also demonstrated remarkable PPIase catalytic activity with kcat/KM of 4.5 + 0.13 × 105 M−1 s−1, while the kcat/KM of active site mutant of D55A is 0.81 + 0.05 × 105 M−1 s−1. These values were considered comparable to kcat/KM obtained from the protease-coupling assay. Interestingly, the substrate specificities of Pk-FKBP35 obtained from both methods are also similar, with the preference of Pk-FKBP35 towards Xaa at P1 position was Leu>Phe>Lys>Trp>Val>Ile>His>Asp>Ala>Gln>Glu. Altogether, we proposed that protease-free and protease-coupling assays arereliable for Pk-FKBP35.

Author Biography

Rafida Razali, Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu Sabah, Malaysia



References

Ahmad, S., Kumar, V., Ramanand, B., & Rao, N. M. (2011). Probing protein stability and proteolytic

resistance by loop scanning: A comprehensive mutational analysis. Protein Science, 21,

– 446. DOI: 10.1002/pro.2029

Alag, R., Bharatham, N., Dong, A., Hills, T., Harikishore, A., Widjaja, A.A, … Yoon, H. S, (2009).

Crystallographic structure of the tetratricopeptide repeat domain of Plasmodium

falciparum FKBP35 and its molecular interaction with Hsp90 C-terminal pentapeptide.

Protein Science: a Publication of the Protein Society, 18 (10), 2115 – 2124. DOI: 10.1002/

pro.226.

Berger, A., & Schechter, I. (1970). Mapping the active site of papain with the aid of peptide

substrates and inhibitors. Philosophical transactions of the Royal Society of London.

Series B, Biological Sciences, 257 (813), 249 – 264. DOI: 10.1098/rstb.1970.0024

Bisswanger, H. (2014). Enzyme assays. Perspectives in Science, 1, 41 – 55. DOI: http://dx.doi.

org/10.1016/j.pisc.2014.02.005

Budiman, C., Bando, K., Angkawidjaja, C., Koga, Y., Takano, K., & Kanaya, S. (2009). Engineering

of monomeric FK506-binding protein 22 with peptidyl prolyl cis-trans isomerase. FEBS

Journal, 276 (15), 4091 – 4101. DOI: https://doi.org/10.1111/j.1742-4658.2009.07116.x

Budiman, C., Lindang, H. U., Cheong, B. E., & Rodrigues, K. F. (2018). Inhibition and substrate

specificity properties of FKBP22 from a psychrotrophic bacterium, Shewanella sp. SIB1.

Protein Journal, 37 (3), 270 – 279. DOI: https://doi.org/10.1007/s10930-018-9772-z

Budiman, C., Tadokoro, T., Angkawidjaja, C., Koga, Y., & Kanaya, S. (2012). Role of polar and

nonpolar residues at the active site for PPIase activity of FKBP22 from Shewanella sp.

SIB1. FEBS Journal, 279 (6), 976 – 986. DOI: 10.1111/j.1742-4658.2012.08483.x

Divis, P. C., Hu, T. H., Kadir, K. A., Mohammad, D., Hii, K.C., Daneshvar, C., … Singh, B. (2020).

Efficient surveillance of Plasmodium knowlesi genetic subpopulations, Malaysian

Borneo, 2000–2018. Emerging Infectious Diseases, 26 (7), 1392 – 1398. DOI: https://

dx.doi.org/10.3201/eid2607.190924

Fanghanel, J., & Fischer, G. (2004). Insight into catalytic mechanism of peptidyl prolyl cis/trans

isomerase. Frontiers Bioscience, 9, 3453 – 3478. DOI: 10.2741/1494.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R. D., & Bairoch, A. (2005).

Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The

proteomics protocols handbook (pp. 571 – 607). Totowa, New Jersey: Humana Press.

Goh, C. K. W., Silvester, J., Wan Mahadi, W. N. S., Lee, P. C., Lau, T. Y., Thean, C. L., … Budiman,

C. (2018). Expression and characterization of functional domains of FK506-binding

protein 35 from Plasmodium knowlesi. Protein Engineering, Design and Selection, 31

(12), 489 – 498. DOI: 10.1093/protein/gzz008

Goh, X. T., Lim, Y. A., Vythilingam, I., Chew, C. H., Lee, P. C., Tan, T. C., ... Chua, K. H. (2013).

Increased detection of Plasmodium knowlesi in Sandakan division, Sabah as revealed

by PlasmoNex™. Malaria Journal, 12, 264. DOI: https://doi.org/10.1186/1475-2875-

-264

Goodwin, T. W., & Morton, R. A. (1946) The spectrophotometric determination of tyrosine

and tryptophan in proteins. Biochemical Journal, 40 (5 – 6), 628 – 632. DOI: 10.1042/

bj0400628

Harikishore, A., Niang, M., Rajan, S., Preiser, P. R., & Yoon, H. S. (2013). Small molecule Plasmodium

FKBP35 inhibitor as a potential antimalaria agent. Scientific Reports, 3, 2501. DOI:

https://doi.org/10.1038/srep02501

Ikura, T., & Ito, N. (2007). Requirements for peptidyl-prolyl isomerization activity: a

comprehensive mutational analysis of the substrate-binding cavity of FK506-binding

protein 12. Protein Science, 16 (12), 2618 – 2625. DOI: 10.1110/ps.073203707

Inoue, Y., Ogawa, Y., Kinoshita, M., Terahara, N., Shimada, M., Kodera, N., … Minamino, T. (2019).

Structural insights into the substrate specificity switch mechanism of the type III

protein export apparatus. Structure, 27 (6), 965 – 976. DOI: 10.1016/j.str.2019.03.017

Janowski, B., Wöllner, S., Schutkowski, M., & Fischer, G. (1997). A protease-free assay for

peptidyl prolyl cis/trans isomerases using standard peptide substrates. Analytical

Biochememistry, 252 (2), 299 – 307. DOI: 10.1006/abio.1997.2330

Kyte, J., & Doolittle, R. F. (1983). A simple method for displaying the hydropathic character of a

protein. Journal of Molecular Biology, 157 (1), 105 – 132.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of

bacteriophage. Nature, 227, 680 – 685.

Lau, T. Y., Joveen-Neoh, W. F., & Chong, K. L. (2011). High Incidence of Plasmodium knowlesi

Infection in the Interior Division of Sabah, Malaysian Borneo. International Journal of

Bioscience, Biochemistry and Bioinformatics, 1 (2), 163 – 167. DOI: 10.7763/IJBBB.2011.

V1.30

Kofron, J. L., Kuzmic, P., Kishore, V., Gemmecker, G., Fesik, S. W., & Rich, D. H. (1992). Lithium

chloride perturbation of cis-trans peptide bond equilibria: effect on conformational

equilibria in cyclosporin A and on time-dependent inhibition of cyclophilin. Journal

of the American Chemical Society, 114 (7), 2670 – 2675. DOI: https://doi.org/10.1021/

ja00033a047

Parker, J. L., Corey, R. A., Stansfeld, P. J., & Newstead, S. (2019). Structural basis for substrate

specificity and regulation of nucleotide sugar transporters in the lipid bilayer. Nature

Communications, 10, 4657. DOI: https://doi.org/10.1038/s41467-019-12673-w

Parsell, D. A., & Sauer, R. T. (1989). The structural stability of a protein is an important determinant

of its proteolytic susceptibility in Escherichia coli. The Journal of Biological Chemistry,

(13), 7590 – 7595.

Rahfeld, J. U., Rucknagel, K. P., Schelbert, B., Ludwig, B., Hacker, J., Mann, K., & Fischer, G. (1994).

Confirmation of the existence of a third family among peptidyl-prolyl cis/trans

isomerases. Amino acid sequence and recombinant production of parvulin. FEBS

Letters, 352 (2), 180 – 184. DOI: https://doi.org/10.1016/0014-5793(94)00932-5

Rahfeld, J. U., Rucknagel, K. P., Stoller, G., Horne, S. M., Schierhorn, A., Young, K. D., & Fischer, G.

(1996). Isolation and amino acid sequence of a new 22-kDa FKBP-like peptidyl-prolyl

cis/trans-isomerase of Escherichia coli similarity to Mip-like proteins of pathogenic

bacteria. The Journal of Biological Chemistry, 271 (36), 22130 – 22138.

Rajharam, G. S., Cooper, D. J., William, T., Grigg, M. J., Anstey, N. M., & Barber, B. E. (2019).

Deaths from Plasmodium knowlesi Malaria: Case series and systematic review. Clinical

Infectious Diseases, 69 (10), 1703 – 1711. DOI: 10.1093/cid/ciz011

Schiene, C., Reimer, U., Schutkowski, M., & Fischer, G. (1998). Mapping the stereospecificity

of peptidyl prolyl cis/trans isomerases. FEBS Letter, 432 (3), 202 – 206. DOI: 10.1016/

s0014-5793(98)00871-0

Schiene-fischer, C., Habazetti, J., Tradler, T., & Fischer, G. (2002). Evaluation of similarities in the

cis/trans isomerase function of trigger factor and DnaK. Biological Chemistry, 383, 1865

– 1873. DOI: 10.1515/BC.2002.210

Silvester, J., Lindang, H. U., Chin, L. P., Ying, L. T., & Budiman, C. (2017). Structure and molecular

dynamic regulation of FKBP35 from Plasmodium knowlesi by structural homology

modeling and electron microscopy. Journal of Biological Sciences, 17 (8), 369 – 380.

DOI: 10.3923/jbs.2017.369.380

Singh, B., & Daneshvar, C. (2013). Human infections and detection of Plasmodium knowlesi.

Clinical Microbiology Reviews, 26 (2), 165 – 184. DOI: 10.1128/CMR.00079-12

Singh, B., Sung, L. K., Matusop, A., Radhakrishnan, A., Shamsul, S. S. G., Cox-Singh, J., ... Conway,

D. J. (2004). A large focus of naturally acquired Plasmodium knowlesi infections in

human beings. Lancet, 363 (9414), 1017 – 1024. DOI: 10.1016/S0140-6736(04)15836-4

Thomson, R., Hodgman, T. C., Yang, Z. R., & Doyle, A. K. (2003). Characterizing proteolytic

cleavage site activity using bio-basis function neural networks. Bioinformatics, 19 (14),

– 1747. DOI: 10.1093/bioinformatics/btg237

William, T., Jelip, J., Menon, J., Anderios, F., Mohammad, R., Mohammad, T. A. A., ... Barber, B. E.

(2014). Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of

Plasmodium knowlesi. Malaria Journal, 13 (1), 390. DOI: https://doi.org/10.1186/1475-

-13-390

Yoon, H. R., Kang, C. B., Chia, J., Tang, K., & Yoon, H. S. (2006). Expression, purification, and

molecular characterization of Plasmodium falciparum FK506-binding protein 35

(PfFKBP35). Protein Expression and Purification, 53 (1), 179 – 185. DOI: https://doi.

org/10.1016/j.pep.2006.12.019

Published

2020-12-23

How to Cite

Budiman, C., Goh Kah Wun, C. ., Lee Ping Chin, Razali, R. ., & Thean Chor Leow. (2020). REASSESSMENT OF THE CATALYTIC ACTIVITY AND SUBSTRATE SPECIFICITY OF FKBP35 FROM Plasmodium knowlesi USING PROTEASE-FREE ASSAY. Borneo International Journal of Biotechnology (BIJB), 1, 125–143. https://doi.org/10.51200/bijb.v1i.2602
Total Views: 374 | Total Downloads: 327