Design, cloning and expression of a synthetic gene encoding a grouper iridovirus major capsid protein

Authors

  • Fernandes Opook
  • Teoh Peik Lin
  • B. A. V. Maran
  • Kenneth F. Rodrigues

DOI:

https://doi.org/10.51200/bijb.v2i.2958

Keywords:

grouper iridovirus, major capsid protein, codon optimization, synthetic biology

Abstract

Synthetic biology approaches can be adopted to successfully redesign, clone and express recalcitrant proteins from viruses in a bacterial expression system. The grouper iridovirus major capsid proteins (GI-MCP) is a surface coat protein which has the potential for application as an antigen for the development of vaccines which confer immunity against GI. The native amino acid coding region of the GI-MCP does not lend itself to expression in the Escherichia coli (BL21) (DE3) platform due to the presence of internal motifs which represent the start and stop codons as well as secondary structures. This manuscript reports on the redesigning, cloning and expression of a synthetic GI-MCP in E. coli. The native GI-MCP protein coding region was retrieved from the NCBI GenBank. The sequence was codon optimized, internal start and stop codons were modified and potential secondary structures were resolved. Both the native and modified GI-MCP coding DNA sequences were synthesized and ligated onto an expression plasmid, pET22b (+) followed by transformation, cloning and expression in E. coli (BL21) (DE3). Induction of protein expression was carried out at 12°C, 20°C and 37°C to assess protein solubility. The gene encoding the native GI-MCP failed to express under any of the culture conditions, however, the modified synthetic gene encoding the GI-MCP expressed the recombinant iridovirus coat protein (rGI-MCP) under all the conditions. Gene design and synthesis offer an ideal solution for the recombinant expression of viral proteins in bacterial expression systems for the industrial production of viral antigens.

Author Biographies

Fernandes Opook

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Jalan UMS, 88400 Kota Kinabalu,

Sabah, Malaysia

Teoh Peik Lin

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Jalan UMS, 88400 Kota Kinabalu,

Sabah, Malaysia

B. A. V. Maran

Borneo Marine Research Institute,

Universiti Malaysia Sabah,

Jalan UMS, 88400 Kota Kinabalu,

Sabah, Malaysia

Kenneth F. Rodrigues

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Jalan UMS, 88400 Kota Kinabalu, S

abah, Malaysia

References

Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R., & Lipscombe, R.

(2008). Proteomic analysis of the venom of Heterometrus longimanus (Asian black

scorpion). Proteomics, 8 (5), 1081 – 1096. https://doi.org/10.1002/pmic.200700948

Burgess-Brown, N. A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U., & Gileadi, O. (2008).

Codon optimization can improve the expression of human genes in Escherichia coli:

A multi-gene study. Protein Expression and Purification, 59 (1), 94 – 102. https://doi.

org/10.1016/j.pep.2008.01.008

Hwang, J. Y., Kwon, M. G., Seo, J. S., Hwang, S. D., Jeong, J. M., Lee, J. H., & Jee, B. Y. (2020).

Current use and management of commercial fish vaccines in Korea. Fish and Shellfish

Immunology, 102, 20 – 27. https://doi.org/10.1016/j.fsi.2020.04.004

Kim, M., Qiao, Z., Yu, J., Montefiori, D., & Reinherz, E. L. (2007). Immunogenicity of recombinant

human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a prefusion

state. Vaccine, 25 (27), 5102 – 5114. https://doi.org/10.1016/j.vaccine.2006.09.071

Li, P., Yan, Y., Wei, S., Wei, J., Gao, R., Huang, X., & Qin, Q. (2014). Isolation and characterization

of a new class of DNA aptamers specific binding to Singapore grouper iridovirus

(SGIV) with antiviral activities. Virus Research, 188, 146 – 154. https://doi.org/10.1016/j.

virusres.2014.04.010

Lin, H. Y., Liou, C. J., Cheng, Y. H., Hsu, H. C., Yiu, J. C., Chiou, P. P., & Lai, Y. S. (2014). Development

and application of a monoclonal antibody against grouper iridovirus (GIV) major

capsid protein. Journal of Virological Methods, 205, 31 – 37. https://doi.org/10.1016/j.

jviromet.2014.04.013

Liu, H. I., Chiou, P. P., Gong, H. Y., & Chou, H. Y. (2015). Cloning of the major capsid protein (MCP)

of grouper iridovirus of Taiwan (TGIV) and preliminary evaluation of a recombinant MCP

vaccine against TGIV. International Journal of Molecular Sciences, 16 (12), 28647 – 28656.

https://doi.org/10.3390/ijms161226118

Liu, G. Y., Wang, E. L., Qu, X. Y., Yang, K. C., Zhang, Z. Y., Liu, J. Y., & Wang, G. X. (2020). Single-walled

carbon nanotubes enhance the immune protective effect of a bath subunit vaccine

for pearl gentian grouper against Iridovirus of Taiwan. Fish and Shellfish Immunology,

, 510 – 517. https://doi.org/10.1016/j.fsi.2020.08.003

Matsuura, Y., Terashima, S., Takano, T., & Matsuyama, T. (2019). Status of fish vaccines in Japan.

Fish and Shellfish Immunology, 95, 236 – 247. https://doi.org/10.1016/j.fsi.2019.09.031

Menzella, H. G. (2011). Comparison of two codon optimization strategies to enhance recombinant

protein production in Escherichia coli. Microbial Cell Factories, 10 (1), 1 – 8. https://doi.

org/10.1186/1475-2859-10-15

Munang’andu, H. M., & Evensen, Ø. (2019). Correlates of protective immunity for fish vaccines.

Fish and Shellfish Immunology, 85, 132 – 140. https://doi.org/10.1016/j.fsi.2018.03.060

Ou-Yang, Z., Wang, P., Huang, Y., Huang, X., Wan, Q., Zhou, S., & Qin, Q. (2012). Selection and

identification of Singapore grouper iridovirus vaccine candidate antigens using

bioinformatics and DNA vaccination. Veterinary Immunology and Immunopathology,

(1 – 2), 38 – 45. https://doi.org/10.1016/j.vetimm.2012.05.021

Palmer, I., & Wingfield, P. T. (2012). Preparation and extraction of insoluble (inclusion‐body)

proteins from Escherichia coli. Current Protocols in Protein Science, 70 (1), 6 – 3. https://

doi.org/10.1002/0471140864.ps0603s70

Puigbo, P., Guzman, E., Romeu, A., & Garcia-Vallve, S. (2007). OPTIMIZER: A web server for

optimizing the codon usage of DNA sequences. Nucleic Acids Research, 35 (Suppl 2),

W126 – W131. https://doi.org/10.1093/nar/gkm219

Qin, Q. W., Lam, T. J., Sin, Y. M., Shen, H., Chang, S. F., Ngoh, G. H., & Chen, C. L. (2001). Electron

microscopic observations of a marine fish iridovirus isolated from brown-spotted

grouper, Epinephelus tauvina. Journal of Virological Methods, 98 (1), 17 – 24. https://

doi.org/10.1016/S0166-0934(01)00350-0

Qin, Q. W., Shi, C., Gin, K. Y., & Lam, T. J. (2002). Antigenic characterization of a marine fish iridovirus

from grouper, Epinephelus spp. Journal of Virological Methods, 106 (1), 89 – 96. https://

doi.org/10.1016/S0166-0934(02)00139-8

Sherlock, O., Dobrindt, U., Jensen, J. B., Vejborg, R. M., & Klemm, P. (2006). Glycosylation of the

self-recognizing Escherichia coli Ag43 autotransporter protein. Journal of Bacteriology,

(5), 1798 – 1807. https://doi.org/10.1128/JB.188.5.1798-1807.2006

Seo, J. Y., Chung, H. J., & Kim, T. J. (2013). Codon-optimized expression of fish iridovirus capsid

protein in yeast and its application as an oral vaccine candidate. Journal of Fish Diseases,

(9), 763 – 768. https://doi.org/10.1111/jfd.12037

Shimmoto, H., Kawai, K., Ikawa, T., & Oshima, S. I. (2010). Protection of red sea bream Pagrus

major against red sea bream iridovirus infection by vaccination with a recombinant viral

protein. Microbiology and Immunology, 54 (3), 135 – 142. https://doi.org/10.1111/j.1348-

2010.00204.x

Tsai, C. T., Ting, J. W., Wu, M. H., Wu, M. F., Guo, C., & Chang, C. Y. (2005). Complete genome

sequence of the grouper iridovirus and comparison of genomic organization with those

of other iridoviruses. Journal of Virology, 79 (4), 2010 – 2023. https://doi.org/10.1128/

JVI.79.4.2010-2023.2005

Wang, Q., Ji, W., & Xu, Z. (2020). Current use and development of fish vaccines in China. Fish and

Shellfish Immunology, 96, 223 – 234. https://doi.org/10.1016/j.fsi.2019.12.010

Wei, J., Huang, Y., Zhu, W., Li, C., Huang, X., & Qin, Q. (2019). Isolation and identification of

Singapore grouper iridovirus Hainan strain (SGIV-HN) in China. Archives of Virology,

(7), 1869 – 1872. https://doi.org/10.1007/s00705-019-04268-z

Wu, X., Jörnvall, H., Berndt, K. D., & Oppermann, U. (2004). Codon optimization reveals critical

factors for high level expression of two rare codon genes in Escherichia coli: RNA

stability and secondary structure but not tRNA abundance. Biochemical and Biophysical

Research Communications, 313 (1), 89 – 96. https://doi.org/10.1016/j.bbrc.2003.11.091

Published

2022-12-01

How to Cite

Fernandes Opook, Teoh Peik Lin, BALU ALAGAR VENMATHI MARAN, & Kenneth F. Rodrigues. (2022). Design, cloning and expression of a synthetic gene encoding a grouper iridovirus major capsid protein. Borneo International Journal of Biotechnology (BIJB), 2, 44 –. https://doi.org/10.51200/bijb.v2i.2958
Total Views: 111 | Total Downloads: 103