Design, cloning and expression of a synthetic gene encoding a grouper iridovirus major capsid protein
DOI:
https://doi.org/10.51200/bijb.v2i.2958Keywords:
grouper iridovirus, major capsid protein, codon optimization, synthetic biologyAbstract
Synthetic biology approaches can be adopted to successfully redesign, clone and express recalcitrant proteins from viruses in a bacterial expression system. The grouper iridovirus major capsid proteins (GI-MCP) is a surface coat protein which has the potential for application as an antigen for the development of vaccines which confer immunity against GI. The native amino acid coding region of the GI-MCP does not lend itself to expression in the Escherichia coli (BL21) (DE3) platform due to the presence of internal motifs which represent the start and stop codons as well as secondary structures. This manuscript reports on the redesigning, cloning and expression of a synthetic GI-MCP in E. coli. The native GI-MCP protein coding region was retrieved from the NCBI GenBank. The sequence was codon optimized, internal start and stop codons were modified and potential secondary structures were resolved. Both the native and modified GI-MCP coding DNA sequences were synthesized and ligated onto an expression plasmid, pET22b (+) followed by transformation, cloning and expression in E. coli (BL21) (DE3). Induction of protein expression was carried out at 12°C, 20°C and 37°C to assess protein solubility. The gene encoding the native GI-MCP failed to express under any of the culture conditions, however, the modified synthetic gene encoding the GI-MCP expressed the recombinant iridovirus coat protein (rGI-MCP) under all the conditions. Gene design and synthesis offer an ideal solution for the recombinant expression of viral proteins in bacterial expression systems for the industrial production of viral antigens.
References
Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R., & Lipscombe, R.
(2008). Proteomic analysis of the venom of Heterometrus longimanus (Asian black
scorpion). Proteomics, 8 (5), 1081 – 1096. https://doi.org/10.1002/pmic.200700948
Burgess-Brown, N. A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U., & Gileadi, O. (2008).
Codon optimization can improve the expression of human genes in Escherichia coli:
A multi-gene study. Protein Expression and Purification, 59 (1), 94 – 102. https://doi.
org/10.1016/j.pep.2008.01.008
Hwang, J. Y., Kwon, M. G., Seo, J. S., Hwang, S. D., Jeong, J. M., Lee, J. H., & Jee, B. Y. (2020).
Current use and management of commercial fish vaccines in Korea. Fish and Shellfish
Immunology, 102, 20 – 27. https://doi.org/10.1016/j.fsi.2020.04.004
Kim, M., Qiao, Z., Yu, J., Montefiori, D., & Reinherz, E. L. (2007). Immunogenicity of recombinant
human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a prefusion
state. Vaccine, 25 (27), 5102 – 5114. https://doi.org/10.1016/j.vaccine.2006.09.071
Li, P., Yan, Y., Wei, S., Wei, J., Gao, R., Huang, X., & Qin, Q. (2014). Isolation and characterization
of a new class of DNA aptamers specific binding to Singapore grouper iridovirus
(SGIV) with antiviral activities. Virus Research, 188, 146 – 154. https://doi.org/10.1016/j.
virusres.2014.04.010
Lin, H. Y., Liou, C. J., Cheng, Y. H., Hsu, H. C., Yiu, J. C., Chiou, P. P., & Lai, Y. S. (2014). Development
and application of a monoclonal antibody against grouper iridovirus (GIV) major
capsid protein. Journal of Virological Methods, 205, 31 – 37. https://doi.org/10.1016/j.
jviromet.2014.04.013
Liu, H. I., Chiou, P. P., Gong, H. Y., & Chou, H. Y. (2015). Cloning of the major capsid protein (MCP)
of grouper iridovirus of Taiwan (TGIV) and preliminary evaluation of a recombinant MCP
vaccine against TGIV. International Journal of Molecular Sciences, 16 (12), 28647 – 28656.
https://doi.org/10.3390/ijms161226118
Liu, G. Y., Wang, E. L., Qu, X. Y., Yang, K. C., Zhang, Z. Y., Liu, J. Y., & Wang, G. X. (2020). Single-walled
carbon nanotubes enhance the immune protective effect of a bath subunit vaccine
for pearl gentian grouper against Iridovirus of Taiwan. Fish and Shellfish Immunology,
, 510 – 517. https://doi.org/10.1016/j.fsi.2020.08.003
Matsuura, Y., Terashima, S., Takano, T., & Matsuyama, T. (2019). Status of fish vaccines in Japan.
Fish and Shellfish Immunology, 95, 236 – 247. https://doi.org/10.1016/j.fsi.2019.09.031
Menzella, H. G. (2011). Comparison of two codon optimization strategies to enhance recombinant
protein production in Escherichia coli. Microbial Cell Factories, 10 (1), 1 – 8. https://doi.
org/10.1186/1475-2859-10-15
Munang’andu, H. M., & Evensen, Ø. (2019). Correlates of protective immunity for fish vaccines.
Fish and Shellfish Immunology, 85, 132 – 140. https://doi.org/10.1016/j.fsi.2018.03.060
Ou-Yang, Z., Wang, P., Huang, Y., Huang, X., Wan, Q., Zhou, S., & Qin, Q. (2012). Selection and
identification of Singapore grouper iridovirus vaccine candidate antigens using
bioinformatics and DNA vaccination. Veterinary Immunology and Immunopathology,
(1 – 2), 38 – 45. https://doi.org/10.1016/j.vetimm.2012.05.021
Palmer, I., & Wingfield, P. T. (2012). Preparation and extraction of insoluble (inclusion‐body)
proteins from Escherichia coli. Current Protocols in Protein Science, 70 (1), 6 – 3. https://
doi.org/10.1002/0471140864.ps0603s70
Puigbo, P., Guzman, E., Romeu, A., & Garcia-Vallve, S. (2007). OPTIMIZER: A web server for
optimizing the codon usage of DNA sequences. Nucleic Acids Research, 35 (Suppl 2),
W126 – W131. https://doi.org/10.1093/nar/gkm219
Qin, Q. W., Lam, T. J., Sin, Y. M., Shen, H., Chang, S. F., Ngoh, G. H., & Chen, C. L. (2001). Electron
microscopic observations of a marine fish iridovirus isolated from brown-spotted
grouper, Epinephelus tauvina. Journal of Virological Methods, 98 (1), 17 – 24. https://
doi.org/10.1016/S0166-0934(01)00350-0
Qin, Q. W., Shi, C., Gin, K. Y., & Lam, T. J. (2002). Antigenic characterization of a marine fish iridovirus
from grouper, Epinephelus spp. Journal of Virological Methods, 106 (1), 89 – 96. https://
doi.org/10.1016/S0166-0934(02)00139-8
Sherlock, O., Dobrindt, U., Jensen, J. B., Vejborg, R. M., & Klemm, P. (2006). Glycosylation of the
self-recognizing Escherichia coli Ag43 autotransporter protein. Journal of Bacteriology,
(5), 1798 – 1807. https://doi.org/10.1128/JB.188.5.1798-1807.2006
Seo, J. Y., Chung, H. J., & Kim, T. J. (2013). Codon-optimized expression of fish iridovirus capsid
protein in yeast and its application as an oral vaccine candidate. Journal of Fish Diseases,
(9), 763 – 768. https://doi.org/10.1111/jfd.12037
Shimmoto, H., Kawai, K., Ikawa, T., & Oshima, S. I. (2010). Protection of red sea bream Pagrus
major against red sea bream iridovirus infection by vaccination with a recombinant viral
protein. Microbiology and Immunology, 54 (3), 135 – 142. https://doi.org/10.1111/j.1348-
2010.00204.x
Tsai, C. T., Ting, J. W., Wu, M. H., Wu, M. F., Guo, C., & Chang, C. Y. (2005). Complete genome
sequence of the grouper iridovirus and comparison of genomic organization with those
of other iridoviruses. Journal of Virology, 79 (4), 2010 – 2023. https://doi.org/10.1128/
JVI.79.4.2010-2023.2005
Wang, Q., Ji, W., & Xu, Z. (2020). Current use and development of fish vaccines in China. Fish and
Shellfish Immunology, 96, 223 – 234. https://doi.org/10.1016/j.fsi.2019.12.010
Wei, J., Huang, Y., Zhu, W., Li, C., Huang, X., & Qin, Q. (2019). Isolation and identification of
Singapore grouper iridovirus Hainan strain (SGIV-HN) in China. Archives of Virology,
(7), 1869 – 1872. https://doi.org/10.1007/s00705-019-04268-z
Wu, X., Jörnvall, H., Berndt, K. D., & Oppermann, U. (2004). Codon optimization reveals critical
factors for high level expression of two rare codon genes in Escherichia coli: RNA
stability and secondary structure but not tRNA abundance. Biochemical and Biophysical
Research Communications, 313 (1), 89 – 96. https://doi.org/10.1016/j.bbrc.2003.11.091