Optimization of lipid production by locally isolated Rhodotorula toruloides using response surface methodology
DOI:
https://doi.org/10.51200/bijb.v2i.3041Keywords:
Rhodotorula toruloides, lipid production, optimization, response surface methodologyAbstract
Biodiesel has received increasing interest as green and sustainable fuel replacing the depleting fossil-based diesel. Oleaginous yeast has been known able to produce lipids as biodiesel feedstock during nutrient limitation. Recently, an oleaginous yeast identified as Rhodotorula toruloides was successfully isolated from a highly acidic runoff water sample. This study was conducted to evaluate and optimize the lipid production of the Rhodotorula toruloides using response surface methodology. Sudan test was conducted to evaluate the lipid production by the yeast qualitatively. A central composite experimental design was adopted to optimize pH, temperature and C/N ratio for lipid production. The interaction of the process variables was studied. The Sudan test demonstrated colour changes that occurred on media containing yeast, indicating its ability to produce lipids at all tested parameters. Statistical data analysis showed a high coefficient of determination (R2) determined at 0.9183 with a predicted optimum lipid yield of 5.6% produced at pH 5.6, 27.7°C and a C/N ratio of 107.29. The optimized conditions for the yeast were further tested and the resulting observed lipid yield was 7.7%. The finding of this study provides insightful knowledge for the large-scale production of microbial oil using oleaginous yeast.
References
Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90 (4), 1219 – 1227. https://doi.org/10.1007/s00253-011-3200-z
Alok, P., Arora, N., Mehtani, J., Pruthi, V., & Pruthi, P. A. (2017). Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renewable and Sustainable Energy Reviews, 77, 604 – 616. https://doi.org/10.1016/j.rser.2017.04.016
Athenaki, M., Gardeli, C., Diamantopoulou, P., Tchakouteu, S. S., Sarris, D., Philippoussis, A., & Papanikolaou, S. (2017). Lipids from yeasts and fungi: Physiology, production and analytical considerations. Journal of Applied Microbiology, 124 (2), 336 – 367. https://
doi.org/10.1111/jam.13633
Bazerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76 (5), 965 – 977. https://doi.org/10.1016/j.talanta.2008.05.019
Beopoulos, A., & Nicaud, J. M. (2012). Yeast: A new oil producer? OCL, 19 (1), 22 – 28. https://doi.org/10.1051/ocl.2012.0426
Beopoulos, A., Chardot, T., & Nicaud, J. M. (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91 (6), 692 – 696. https://doi.org/10.1016/j.biochi.2009.02.004
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37 (8), 911 – 917. https://doi.org/10.1139/o59-099
Bozbas, K. (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable Sustainable Energy Reviews, 12 (2), 542 – 552. https://doi.org/10.1016/j.rser.2005.06.001
Coradetti, S. T., Pinel, D., Geiselman, G. M., Ito, M., Mondo, S. J., Reilly, M. C., Cheng, Y. F., Bauer, S., Grigoriev, I. V., Gladden, J. M., Simmons, B. A., Brem, R. B., Arkin, A. P., & Skerker, J. M. (2018). Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. eLife, 7, e32110. https://doi.org/10.7554/eLife.32110.041
Fei, Q., Chang, H. N., Shang, L., Kim, N., & Kang, J. (2011). The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology, 102 (3), 2695 – 2701. https://doi.org/10.1016/j.biortech.2010.10.141
Galafassi, S., Cucchetti, D., Pizza, F., Franzosi, G., Bianchi, D., & Compagno, C. (2012). Lipid production for second-generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresource Technology, 111, 398 – 403. https://doi.org/10.1016/j.biortech.2012.02.004
Geoffrey, I., Lie, G. J. C. W., & Misson, M. (2018). Optimization of lipid production for biodiesel feedstock by Rhodotorula Sp. isolated from Mamut Copper Mine, Sabah. Universiti Malaysia Sabah.
Jiru, T. M., Groenewald, M., Pohl, C., Steyn, L., Kiggundu, N., & Abate, D. (2017). Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. Biotech, 7 (2), 145. https://doi.org/10.1007/s13205-017-0769-7
Li, Y. H., Liu, B., Zhao, Z. B., & Bai, F. W. (2006). Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese Journal of Biotechnology, 22 (4), 650 – 656. https://doi.org/10.1016/S1872-2075(06)60050-2
Liang, M. H., & Jiang, J. G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52 (4), 395 – 408. https://doi.org/10.1016/j.plipres.2013.05.002
Low, Y. Y., Chin, G. J. W. L., Joseph, C. G., Musta, B., & Rodrigues, K. F. (2020). Bacterial diversity of the abandoned Mamut Copper Mine in Sabah, Malaysia and its correlation with copper contamination. Malaysian Journal of Microbiology, 16 (5), 414 – 424. https://
doi.org/10.21161/mjm.190610
Madani, M., Enshaeieh, M., & Abdoli, A. (2017). Single cell oil and its application for biodiesel production. Process Safety and Environmental Protection, 111, 747 – 756. https://doi.org/10.1016/j.psep.2017.08.027
Mane, S., & Raut, S. V. (2016). Isolation of lipid producing organisms and their properties as biofuel. Int. J. Curr. Res. Biosci. Plant Biol., 3 (8), 81 – 87. http://dx.doi.org/10.20546/ijcrbp.2016.308.013
Musa, H., Kasim, F. H., Gunny, A. A. N., & Gopinath, S. C. B. (2018). Salt-adapted moulds and yeasts: Potentials in industrial and environmental biotechnology. Process Biochemistry, 69, 33 – 34. https://doi.org/10.1016/j.procbio.2018.03.026
Patel, A., Arora, N., Sartaj, K., Pruthi, V., & Pruthi, P. A. (2016). Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 62, 836 – 855. https://doi.org/10.1016/j.rser.2016.05.014
Qadeer, S., Khalid, A., Mahmood, S., Anjum, M., & Ahmad, Z. (2017). Utilizing oleaginous bacteria and fungi for cleaner energy production. Journal of Cleaner Production, 168, 917 – 928. https://doi.org/10.1016/j.jclepro.2017.09.093
Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1 – 52. https://doi.org/10.1016/S0065-2164(02)51000-5
Saran, S., Mathur, A., Dalal, J., & Saxena, R. K. (2017). Process optimization for cultivation and oil accumulation in an oleaginous yeast Rhodosporidium toruloides A29. Fuel, 188, 324 – 331. https://doi.org/10.1016/j.fuel.2016.09.051
Somacal, S., Pinto, V. S., Vendruscolo, R. G., Somacal, S., Wagner, R., Ballus, C. A., Kuhn, R. C.,Mazutti, M. A., & Menezes, C. R. (2020). Maximization of microbial oil containing polyunsaturated fatty acid production by Umbelopsis (Mortierella) isabellina. Biocatalysis and Agricultural Biotechnology, 30, 101831. https://doi.org/10.1016/j.bcab.2020.101831
Yaakob, H., Malek, R. A., Misson, M., Jalil, M. F. A., Sarmidi, M. R., & Aziz, R. (2011). Optimization of isoflavone production from fermented soybean using response surface methodology. Food Science and Biotechnology, 20 (6), 1525 – 1531. https://doi.org/10.1007/s10068-011-0211-6
Yi, S., Su, Y., Qi, B., Su, Z., & Wan, Y. (2010). Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation
membranes. Separation and Purification Technology, 71 (2), 252 – 262. https://doi. org/10.1016/j.seppur.2009.12.005
Zahan, K. A., & Kano, M. (2018). Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies, 11 (8), 2132. https://doi.org/10.3390/en11082132
Zhao, X., Peng, F., Du, W., Liu, C., & Liu, D. (2012). Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng., 35 (6),
– 1004. https://doi.org/10.1007/s00449-012-0684-6
Zhu, Z., Zhang, S., Liu, H., Shen, H., Lin, X., Yang, F., Zhou, Y. J., Jin, G., Ye, M., Zou, H., & Zhao, Z. K. (2012). A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun, 3, 1112 (2012). https://doi.org/10.1038/ncomms2112
Zlatanov, M., Pavlova, K., Antova, G., Angelova-Romova, M., Georgieva, K., & Rousenova-Videva, S. (2010). Biomass production by antarctic yeast strains: An investigation on the lipid composition. Biotechnology and Biotechnological Equipment, 24 (4), 2096 – 2101. https://doi.org/10.2478/V10133-010-0084-5