Amplification of Genes Associated with Saxitoxin Biosynthesis in Bacteria Associated with Pyrodinium bahamense var. compressum Using Primers Designed from Other Saxitoxin-Producing Organisms

Authors

  • Sylvia Yahumin
  • Grace Joy Wei Lie Chin
  • Kenneth Francis Rodrigues

DOI:

https://doi.org/10.51200/bijb.v3i.3125

Keywords:

Saxitoxin, bacteria, dinoflagellate, sxt genes

Abstract

Pyrodinium bahamense var. compressum, the primary producer of saxitoxin (STX) in tropical water, poses a palpable threat to public health and safety. Seafood and aquaculture products contaminated with lethal concentrations of the principal neurotoxin, saxitoxin, have been implicated in mortality and morbidity. Previous research revealed that the relationship between bacteria and algae may contribute directly or indirectly to the synthesis of saxitoxin. This study investigates the potential relationship between the dinoflagellate and its associated bacteria; hence the initial step is to determine whether the genes responsible for the STX production in P. bahamense can be found in the associated bacteria. A total of six bacterial species associated with P. bahamense were successfully identified in a previous study. The presence of the sxt genes in the associated bacterial genome was determined using primers that have previously been utilized in other saxitoxin-producing species, such as in dinoflagellates (Alexandrium fundyense) and cyanobacteria (Anabaena and Aphanizomenon gracile). This study showed that the utilized primers were unsuitable as the primers produced non-specific amplification in the bacterial genome. We suggest that specific primers targeting the sxt homolog genes in bacterial species should be designed to obtain the desired genes from the associated bacteria in a future study.

Author Biographies

Sylvia Yahumin

Biotechnology Research Institute,
Universiti Malaysia Sabah, 
Jalan UMS, 88400 Kota Kinabalu, Sabah

Grace Joy Wei Lie Chin

Biotechnology Research Institute,
Universiti Malaysia Sabah, 
Jalan UMS, 88400 Kota Kinabalu, Sabah

Kenneth Francis Rodrigues

Biotechnology Research Institute,
Universiti Malaysia Sabah, 
Jalan UMS, 88400 Kota Kinabalu, Sabah

References

Amin, S. A., Hmelo, L. R., Van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R., Morales, R. L., Berthiaume,a C. T., Berthiaume, M. S., Djunaedi, B., Ingalls, A. E., Parsek M. R., Moran, M. A. & Armbrust, E. V. (2015). Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 522 (7554), 98 – 101. https://doi.org/10.1038/nature14488

Ashen, J. B., & Goff, L. J. (2000). Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Applied and Environmental Microbiology, 66 (7), 3024 – 3030. https://doi.org/10.1128%2Faem.66.7.3024-3030.2000

Azanza, M. P. V., Azanza, R. V., Vargas, V. M. D., & Hedreyda, C. T. (2006). Bacterial endosymbionts of Pyrodinium bahamense var. compressum. Microbial Ecology, 52 (4), 756 – 764. https://doi.org/10.1007/s00248-006-9128-7

Casero, M. C., Ballot, A., Agha, R., Quesada, A., & Cirés, S. (2014). Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. Harmful Algae, 37, 28 – 37. https://doi.org/10.1016/j.hal.2014.05.006

Córdova, J. L., Cárdenas, L., Cárdenas, L., & Yudelevich, A. (2002). Multiple bacterial infection of Alexandrium catenella (Dinophyceae). Journal of Plankton Research, 24 (1), 1 – 8. https://doi.org/10.1093/plankt/24.1.1

Cusick, K. D., & Sayler, G. S. (2013). An overview on the marine neurotoxin, saxitoxin: Genetics, molecular targets, methods of detection and ecological functions. Marine Drugs, 11 (4), 991 – 1018. https://doi.org/10.3390/md11040991

Doucette, G. J. (1995). Characterization of bacteria associated with different isolates of Alexandrium tamarense. Harmful Marine Algal Blooms, 3 (2), 65 – 74. https://doi.org/10.1002/nt.2620030202

Franca, S., Pinto, L., Alvito, P., Sousa, I., Vasconcelos, V., & Doucette, G. J. (1996). Studies on prokaryotes associated with PSP producing dinoflagellates. In T. Yasumoto, Y. Oshima, & Y. Fukuyo (Eds.), Harmful and toxic algal blooms (pp. 347 – 350). International Oceanographic Commission of UNESCO.

Freitas, J. C., Ogata, M., Kodama, M., Martinez, S. C. G., Lima, M. F., & Monteiro, C. K. (1992). Possible microbial source of guanidine neurotoxins is found in the mussel Perna perna (Mollusca, Bivalvia, Mytilidae). In P. Gopalakrishnakone, & C. K. Tan (Eds.), Recent advances in toxicology research (pp. 589 – 596). National University of Singapore.

Gallacher, S., & Smith, E. A. (1999). Bacteria and paralytic shellfish toxins. Protist, 150 (3), 245 – 255. https://doi.org/10.1016/S1434-4610(99)70027-1

Gallacher, S., Flynn, K. J., Franco, J. M., Brueggemann, E. E., & Hines, H. B. (1997). Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture. Applied and Environmental Microbiology, 63 (1), 239 – 245. https://doi.org/10.1128/aem.63.1.239-245.1997

Gallacher, S., Flynn, K. J., Leftley, J., Lewis, J., Munro, P. D., & Birkbeck, T. H. (1996). Bacterial Production of Sodium Channel Blocking Toxins. In T. Yasumoto, Y. Oshima, & Y. Fukuyo (Eds.), Harmful and toxic algal blooms (pp. 355 – 358). International Oceanographic Commission of UNESCO.

Grattan, L. M., Holobaugh, S., & Morris Jr, J. G. (2016). Harmful algal blooms and public health. Harmful Algae, 57, 2 – 8. https://doi.org/10.1016/j.hal.2016.05.003

Hackett, J. D., Wisecaver, J. H., Brosnahan, M. L., Kulis, D. M., Anderson, D. M., Bhattacharya, D., & Erdner, D. L. (2013). Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Molecular Biology and Evolution, 30 (1), 70 – 78. https://doi.org/10.1093/molbev/mss142

Hallegraeff, G., Enevoldsen, H., & Zingone, A. (2021). Global harmful algal bloom status reporting. Harmful Algae, 102, 101992. https://doi.org/10.1016/j.hal.2021.101992

Kellmann, R., & Neilan, B. (2007). Biochemical characterization of paralytic shellfish toxin biosynthesis in vitro. Journal of Phycology, 43, 497 – 508. https://doi.org/10.1111/j.1529-8817.2007.00351.x

Kellmann, R., Mihali, T. K., Jeon, Y. J., Pickford, R., Pomati, F., & Neilan, B. A. (2008). Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Applied and Environmental Microbiology, 74, 4044 – 4053. https://doi.org/10.1128/AEM.00353-08

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41 (1), e1. https://doi.org/10.1093/nar/gks808

Kodama, M., Ogata, T., & Sato, S. (1988). Bacterial production of saxitoxin. Agricultural and Biological Chemistry, 52 (4), 1075 – 1077. https://doi.org/10.1080/00021369.1988.10868793

Kodama, M., Ogata, T., Sakamoto, S., Sato, S., Honda, T., & Miwatani, T. (1990). Production of paralytic shellfish toxins by a Bacterium moraxella sp. isolated from Protogonyaulax tamarensis. Toxicon, 2, 707 – 714. https://doi.org/10.1016/0041-0101(90)90259-A

Lee, T. C. H., Fong, F. L. Y., Ho, K. C., & Lee, F. W. F. (2016). The mechanism of diarrhetic shellfish poisoning toxin production in Prorocentrum spp.: Physiological and molecular perspectives. Toxins, 8 (10), 272. https://doi.org/10.3390/toxins8100272

Levasseur, M., Monfort, P., Doucette, G. J., & Michaud, S. (1996). Preliminary study of bacteria as PSP producers in the Gulf of St. Lawrence, Canada. In T. Yasumoto, Y. Oshima, & Y. Fukuyo (Eds.), Harmful and toxic algal blooms (pp. 363 – 366). International Oceanographic Commission of UNESCO.

Lin, S. (2011). Genomic understanding of dinoflagellates. Research in Microbiology, 162 (6), 551 – 569. https://doi.org/10.1016/j.resmic.2011.04.006

Lukowski, A. L., Denomme, N., Hinze, M. E., Hall, S., Isom, L. L., & Narayan, A. R. (2019). Biocatalytic detoxification of paralytic shellfish toxins. ACS Chemical Biology, 14 (5), 941 – 948. https://doi.org/10.1021/acschembio.9b00123

Lynch, M. (2006). The origins of eukaryotic gene structure. Molecular Biology and Evolution, 23 (2), 450 – 468. https://doi.org/10.1093/molbev/msj050

Mihali, T. K., Kellmann, R., & Neilan, B. (2009). Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochemistry, 10, 8. https://doi.org/10.1186/1471-2091-10-8

Murray, S. A., Diwan, R., Orr, R. J. S., Kohli, G. S., & John, U. (2015). Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates. Molecular Phylogenetics and Evolution, 92, 165 – 180. https://doi.org/10.1016/j.ympev.2015.06.017

Murray, S. A., Wiese, M., Stüken, A., Brett, S., Kellmann, R., Hallegraeff, G., & Neilan, B. A. (2011). SxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters. Applied and Environmental Microbiology, 77 (19), 7050 – 7057. https://doi.org/10.1128/AEM.05308-11

Pomati, F., Burns, B. P., & Neilan, B. A. (2004). Identification of an Na(+)-dependent transporter associated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis. Applied and Environmental Microbiology, 70, 4711 – 4719. https://doi.org/10.1128/AEM.70.8.4711-4719.2004

Sako, Y., Yoshida, T., Uchida, A., Arakawa, O., Noguchi, T., & Ishida, Y. (2001). Purification and characterization of a sulfotransferase specific to N-21 of 142 saxitoxin and gonyautoxin 2+3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Journal of Phycology, 37, 1044 – 1051. https://doi.org/10.1046/j.1529-8817.2001.00119.x

Savela, H., Spoof, L., Perälä, N., Preede, M., Lamminmäki, U., Nybom, S., & Vehniäinen, M. (2015). Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae, 46, 1–10. https://doi.org/10.1016/j.hal.2015.04.005

Shimizu, Y., Giorgio, C., Koerting-Walker, C., & Ogata, T. (1996). Nonconformity of bacterial production of paralytic shellfish poisons—neosaxitoxin production by a bacterium strain from Alexandrium tamarense Ipswich strain and its significance. In T. Yasumoto, Y. Oshima, & Y. Fukuyo (Eds.), Harmful and toxic algal blooms (pp. 363 – 366). International Oceanographic Commission of UNESCO.

Shimizu, Y., Norte, M., Hori, A., Genenah, A., & Kobayashi, M. (1984). Biosynthesis of saxitoxin analogues: The unexpected pathway. Journal of American Chemical Society, 106 (21), 6433 – 6434. https://doi.org/10.1021/ja00333a062

Singh, H. T., Oshima, Y., & Yasumoto, T. (1982). Growth and toxicity of Protogonyaulax tamarensis in axenic culture. The Japanese Society of Fisheries Science, 48 (9), 1341 – 1343. https://doi.org/10.2331/suisan.48.1341

Stucken, K., John, U., Cembella, A., Murillo, A. A., Soto-Liebe, K., Fuentes-Valdés, J. J., Friedel, M., Plominsky, A, M., Vásquez, M., & Glöckner, G. (2010). The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. PloS One, 5 (2), e9235. https://doi.org/10.1371/journal.pone.0009235

Stüken, A., Orr, R. J., Kellmann, R., Murray, S. A., Neilan, B. A., & Jakobsen, K. S. (2011). Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PloS One, 6 (5), e20096. https://doi.org/10.1371/journal.pone.0020096

Suikkanen, S., Kremp, A., Hautala, H., & Krock, B. (2013). Paralytic shellfish toxins or spirolides? The role of environmental and genetic factors in toxin production of the Alexandrium ostenfeldii complex. Harmful Algae, 2, 52 – 59. https://doi.org/10.1016/j.hal.2013.04.001

Tan, S., Zhou, J., Zhu, X., Yu, S., Zhan, W., Wang, B., & Cai, Z. (2015). An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. Journal of Phycology, 51 (1), 120 – 132. https://doi.org/10.1111/jpy.12259

Taroncher-Oldenburg, G., & Anderson, D. M. (2000). Identification and characterization of three differentially expressed genes, encoding S-adenosylhomocysteine hydrolase, methionine aminopeptidase, and a histone-like protein, in the toxic dinoflagellate Alexandrium fundyense. Applied and Environmental Microbiology, 66 (5), 2105 – 2112. https://doi.org/10.1128/AEM.66.5.2105-2112.2000

Yahumin, S., Rodrigues, K. F., & Chin, G. J. W. L. (2022a). Bacterial community associated with Pyrodinium bahamense var. compressum during late exponential growth phase based on 16S rRNA gene sequence analysis. Malaysian Journal Microbiology, 18 (1), 113 – 122. https://doi.org/10.21161/mjm.211280

Yahumin, S., Rodrigues, K. F., & Chin, G. J. W. L. (2022b). Characterization of the Saxitoxin Biosynthetic Starting Gene, sxtA, in the Toxic Dinoflagellate, Pyrodinium bahamense var. compressum. Journal of Sustainability Science and Management, 17 (7), 151 – 164. https://doi.org/10.46754/jssm.2022.07.011

Zheng, T. L. (Ed.). (2011). The microbial control of harmful algal bloom. Xiamen University.

Published

2023-12-22 — Updated on 2023-12-01

Versions

How to Cite

Sylvia Yahumin, Grace Joy Wei Lie Chin, & Kenneth Francis Rodrigues. (2023). Amplification of Genes Associated with Saxitoxin Biosynthesis in Bacteria Associated with Pyrodinium bahamense var. compressum Using Primers Designed from Other Saxitoxin-Producing Organisms. Borneo International Journal of Biotechnology (BIJB), 3, 36–48. https://doi.org/10.51200/bijb.v3i.3125 (Original work published December 22, 2023)
Total Views: 64 | Total Downloads: 45