Optimization of a GC-MS method for the detection of bioactive compounds from the green peel of pomelo cultivar ‘PO52’
DOI:
https://doi.org/10.51200/bijb.v2i.3129Keywords:
GC-MS, pomelo, albedo, flavedo, bioactive compounds, TenomAbstract
Pomelo is the largest and most popular citrus fruit known to possess diverse health benefits. Sabah’s fruit basket, Tenom, is famous for pomelo production. Among the pomelo cultivars being planted in Tenom, the PO52 cultivar is the most abundant one. To date, the bioactive compounds of the PO52 cultivar are not well studied. Although numerous aroma-active compounds from the peels of Malaysian pomelo have been reported, there are still many potential non-aromatic bioactive compounds that are yet to be discovered. In this study, we analysed the peel extract of pomelo PO52 using gas chromatography coupled to a single quadrupole mass spectrometry (GC-MS) approach. We first analysed the pomelo peel extracts using two different GC-MS methods, one can detect 45 organic compounds with good separation, while the other can detect phytosterols and pentacyclic triterpenoids in Clinacanthus nutans roots. In our study, these two methods were able to detect bioactive compounds from the pomelo peels but with a longer running time and the generated total ion chromatograms (TIC) were also not smooth. Therefore, we further optimized the two methods by changing the temperature ramping and holding times of the GC-MS. Compared to the first two methods, the optimized method had the shortest total running time (38 min) and the total ion chromatogram (TIC) produced was smooth throughout the run time. Furthermore, bioactive compounds that have not been reported for pomelo peel before, such as osthole, α-tocopherol, gamma-sitosterol, friedelan-3-one and others were also detected using this optimized method. In conclusion, the optimized method is suitable for the detection of non-aromatic compounds present in the PO52 peels that can be subsequently applied in the next stage for large-scale analysis.
References
Abudayeh, Z. H., Al Khalifa, I. I., Mohammed, S. M., & Ahmad, A. A. J. P. R. (2019). Phytochemical content and antioxidant activities of pomelo peel extract. Pharmacognosy Res., 11 (3), 244. Doi: 10.4103/pr.pr_180_18. https://doi.org/10.4103/pr.pr_180_18
Awad, A. B., Williams, H., & Fink, C. S. (2003). Effect of phytosterols on cholesterol metabolism and MAP kinase in MDA-MB-231 human breast cancer cells. J Nutr Biochem., 14 (2), 111 – 119. https://doi.org/10.1016/S0955-2863(02)00274-7
Barrion, A. S., Hurtada, W. A., Papa, I. A., Zulayvar, T. O., & Yee, M. G. (2014). Phytochemical composition, antioxidant and (Citrus maxima (Burm.)) Merr. against Escherichia typhimurium. Food Nutr Sci., 5 (9), 749 – 758. https://doi.org/10.4236/fns.2014.59085
Chai, J. W., Kuppusamy, U. R., & Kanthimathi, M. S. (2008). Beta-Sitosterol induces apoptosis in MCF-7 cells. Malaysian J Biochem Mol Biol., 16, 28 – 30.
Chang, S. Q., & Azrina, A. (2017). Antioxidant content and activity in different parts of pomelo [Citrus grandis (L.) Osbeck] by-products. ISHS Acta Horticulturae 1152: International Conference on Agricultural and Food Engineering, 27 – 34. https://doi.org/10.17660/
ActaHortic.2017.1152.4
Cheong, M. W., Liu, S. Q., Yeo, J., Chionh, H. K., Pramudya, K., Curran, P., & Yu, B. (2011). Identification of aroma-active compounds in Malaysian pomelo (Citrus grandis (L.) Osbeck) peel by chromatography-olfactometry. J Essential Oil Res., 23 (6), 34 – 42. https://doi.org/10.1080/10412905.2011.9712279
Getting Sabahans involved in agriculture. (2020, May 21). Daily Express. Retrieved from https://www.dailyexpress.com.my/news/153127/getting-sabahans involved-in-agriculture/ on 25 May 2021.
Dias, D. A., Hill, C. B., Jayasinghe, N. S., Atieno, J., Sutton, T., & Roessner, U. (2015). Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. J Chromatography B., 1000, 1 – 13. https://doi.org/10.1016/j.
jchromb.2015.07.002
Kontush, A., Finckh, B., Karten, B., Kohlschütter, A., & Beisiegel, U. (1996). Antioxidant and prooxidant activity of alpha-tocopherol in human plasma and low density lipoprotein.
J Lipid Res., 37 (7), 1436 – 1448. https://doi.org/10.1016/S0022-2275(20)39128-8 Mäkynen, K., Jitsaardkul, S., Tachasamran, P., Sakai, N., Puranachoti, S., Nirojsinlapachai, N.,
Chattapat, V., Caengprasath, N., Ngamukote, S., & Adisakwattana, S. (2013). Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food Chemistry, 139 (1 – 4), 735 – 743. https://doi.
org/10.1016/j.foodchem.2013.02.017
Musthafa, K. S., Balamurugan K., Pandian S. K., & Ravi A. V. (2012). 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J.
Basic Microbiol., 52 (6), 679 – 686. https://doi.org/10.1002/jobm.201100292 Odeh, I. C., Tor-Anyiin, T. A., Igoli, J. O., & Anyam, J. V. (2016). In vitro antimicrobial properties of friedelan-3-one from Pterocarpus santalinoides L’Herit, ex Dc. Afr J Biotech., 15 (14),
– 538. https://doi.org/10.5897/AJB2015.15091
Premathilaka, U. L. R. R., & Silva, G. M. S. W. (2016). Bioactive compounds and antioxidant activity of Bunchosia aemeniaca. World Journal of Pharmacy and Pharmaceutical Sciences, 5 (10), 1237 – 1247.
Ramdas, P., Rajihuzzaman, M., Veerasenan, S. D., Selvaduray, K. R., Nesaretnam, K., & Radhakrishnan, A. K. (2011). Tocotrienol-treated MCF-7 human breast cancer cells show down-regulation of API5 and up-regulation of MIG6 genes. Cancer Genomics Proteomics, 8, 19 – 32.
Sundarraj, S., Thangam, R., Sreevani, V., Kaveri, K., Gunasekaran, P., Achiraman, S., & Kannan, S. (2012). c-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J Ethnopharmacol., 141 (3), 803 –
https://doi.org/10.1016/j.jep.2012.03.014
Stein, S. E. (1999). An integrated method for spectrum extraction and compound identification from gas chromatography-mass spectrometry data. J American Soc Mass Spec., 10 (8), 770 – 781. https://doi.org/10.1016/S1044-0305(99)00047-1
Tocmo, R., Pena-Fronteras, J., Calumba, K. F., Mendoza, M., & Johnson, J. J. (2020). Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Comp Rev Food Sci and Food Safety, 19 (4),
– 2012. https://doi.org/10.1111/1541-4337.12561
Teoh, P. L., Cheng, A. Y. F., Liau, M., Lem, F. F., Kaling, G. P., Chua, F. N., & Cheong, B. E. (2017). Chemical composition and cytotoxic properties of Clinacanthus nutans root extracts. Pharmaceutical Biol., 55 (1), 394 – 401. https://doi.org/10.1080%2F13880209.2016.1242145
Toh, J. J., Khoo, H. E., & Azrina, A. (2013). Comparison of antioxidant properties of pomelo [Citrus Grandis (L) Osbeck] varieties. Int Food Res J., 20 (4), 1661 – 1668.
Yang, S. M., Chan, Y. L., Hua, K. F., Chang, J. M., Chen, H. L., Tsai, Y. J., Hsu, Y. J., Chao, L. K., Feng-Ling, Y., Tsai, Y. L., Wu, S. H., Wang, Y. F., Tsai, C. L., Chen, A., & Ka, S. M. (2014). Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by
activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated COX-2 expression and apoptosis. Free Rad Biol and Med., 73, 260 – 269. https://doi.org/10.1016/j.freeradbiomed.2014.05.009
Zarina, Z., & Tan, S. Y. (2013). Determination of flavonoids in Citrus grandis (pomelo) peels and their inhibition activity on lipid peroxidation in fish tissue. Int. Food Res. J., 20 (1), 313 – 317.
Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., Zhang, X., Xu, Z., & Chen, T. (2013). In vitro antioxidant and antiproliferative activities of 5-Hhydroxymethylfurfural. J. Agri and Food Chem., 61 (44), 10604 – 10611. https://doi.org/10.1021/jf403098y