Evaluation of antioxidant activity and total phenolics of selected mangrove plants in Sabah

Authors

  • R.A.M. Mokhtar Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • M.F. Misrah Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • T. Kansil Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Z. Amin Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • N.A. Yusof Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • C. Budiman Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.51200/bijb.v2i.3330

Keywords:

mangrove, total phenolic content , antioxidant activity

Abstract

In recent years, research on medicinal plants has attracted much attention due to their wide range of pharmacological significance. Mangroves are biochemically unique, producing a wide array of natural products with unique bioactivity due to their ability
to survive in stressful conditions of high salinity, and low air humidity as well as strong variations therein. Six species of mangrove (Avicennia marina, Bruguiera gymnorrhiza, Ceriops tagal, Rhizohora apiculata, Rhizophora mucronata and Xylocarpus granatum)
from different parts of the leaves, stem and roots were extracted successively with ethanol and water. This study aims to measure quantitatively the total phenolic content and assess the radical scavenging activity of the 26 mangrove extracts. All the extracts
were subjected to the Follin-Ciocalteu assay for their phenolic content and the DPPH scavenging assay for the antioxidant activity respectively. Based on the results, the highest phenolic content was observed in ethanol extracts of C. tagal leaves (471.78 ± 0.056 mgGAE/g) while the lowest amount of phenolic was observed in water extract of A. marina root (20.40 ± 0.001 mgGAE/g). Interestingly, the ethanolic extract of C. tagal leaves also exhibited the strongest antioxidant activity with an IC50 value of 9.37 ppm. Among the six species investigated, C. tagal leaves extracts showed high total phenolic content and strong antioxidant activities and may be used as a potential source of natural antioxidants against free radical-associated diseases. 

References

Bandaranayake, W. M. (2002). Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetland Ecol Manag., 10, 421 – 452. https://doi.org/10.1023/A:1021397624349

Banerjee, D., Chakrabarti, S., Hazra, A. K., Banerjee, S., Ray, J., & Mukherjee, B. (2008). Antioxidant activity and total phenolics of some mangroves in Sundarbans. Afr. J. Biotechnol., 7 (6), 805 – 810.

Buatong, J., Phongpaichit, S., Rukachaisirikul, V., & Sakayaroj, J. (2011). Antimicrobial of crude extracts from mangrove fungal endophytes. World J Microbiol Biotechnol, 27 (12), 3005 – 3008. https://doi.org/10.1007/s11274-011-0765-8

Cantrell, C. L., Fischer, N. H., Urbatsch, L., McGuire, M. S., & Franzblau, S. G. (1998). Antimycobacterial crude plant extracts from South, Central, and North America. Phytomedicine, 5 (2), 137– 145. https://doi.org/10.1016/S0944-7113(98)80011-1

Carocho, M., & Ferreira, I. C. F. R. (2013). A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 51, 15 – 25. https://doi.org/10.1016/j.fct.2012.09.021

Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 5, 87. https://doi.org/10.3389/fnut.2018.00087

Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15 (10), 7313 – 7352. https://doi.org/10.3390/molecules15107313

Das, G., Gouda, S., Mohanta, Y. K., & Patra, J. K. (2015). Mangrove plants: A potential source for anticancer drugs. Indian J. Geo-Mar. Sci., 44 (5), 666 –672.

Golder, M., Sadhu, S. K., Biswas, B., & Isalam, T. (2020). Comparative pharmacologic profiles of leaves and hypocotyls of a mangrove plant: Bruguiera gymnorrhiza. Adv Tradit Med, 20, 395 – 403. https://doi.org/10.1007/s13596-019-00423-8

Hatano, T., Edamatsu, R., Mori, A., Fujita, Y., Yasukara, T., & Yoshida, T. (1989). Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical and on 1, 1’-diphenyl-2-picrylhydrazyl radical.

Chem Pharmaceut Bull, 37 (8), 2016 – 2021. https://doi.org/10.1248/cpb.37.2016

Javanmardi, J., Stushnoff, C., Locke, E., & Vivanco, J. M. (2003). Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chemistry, 83 (4), 547 – 550. https://doi.org/10.1016/S0308-8146(03)00151-1

Jing, L., Ma, H., Fan, P., Gao, R., & Jia, Z. (2015). Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement Altern Med, 15 (1), 287. https://

doi.org/10.1186/s12906-015-0820-3

Jun, M., Fu, H. Y., Hong, J., Wan, X., Yang, C. S., & Ho, C. T. (2003). Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria labata Ohwi). J Food Sci Technol., 68 (6), 2117 – 2122. https://doi.org/10.1111/j.1365-2621.2003.tb07029.x

Jyoti, S., & Rajeshwari, S. (2012). Evaluation of phytochemical constituents in conventional and non-conventional species of curcuma. Int. Res. J. Pharm., 3, 203 – 204.

Kanniah, K. D., Sheikhi, A., Cracknell, A. P., Goh, H. C., Tan, K. P., Ho, C. S. & Rasli, F. N. (2015). Satellite images for monitoring mangrove cover changes in a fast growing economic region in southern Peninsular Malaysia. Remote Sens., 7 (11), 14360 – 14385. https://

doi.org/10.3390/rs71114360

Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. In A. J. Southward, P. A. Tyler, C. M. Young, & L. A. Fuiman (Eds.), Advances in marine biology (Vol. 40, pp. 84 – 251). Academy Press. https://doi.org/10.1016/S0065-2881(01)40003-4

Kowalczyk, D., Świeca, M., Cichocka, J., & Gawlik-Dziki, U. (2013). The phenolic content and antioxidant activity of the aqueous and hydroalcoholic extracts of hops and their pellets. J. Inst. Brew., 119 (3), 103 – 110. https://doi.org/10.1002/jib.73

Krishnamoorthy, M., Sasikumar, J. M., Shamna, R., Pandiarajan, C., Sofia, P., & Nagarajan, B. (2011). Antioxidant activities of bark extract from mangroves, Bruguiera cylindrica (L.) Blume and Ceriops decandra Perr. Indian J. Pharmacol., 43 (5), 557 – 562. https://doi.

org/10.4103/0253-7613.84972

Maisuthisakul, P., Suttajit, M., & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem., 100 (4), 1409-418. https://doi.org/10.1016/j.foodchem.2005.11.032

Mathew, S., Zakaria, Z. A., & Musa, N. F. (2015). Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass. Process Biochem, 50 (11), 1985–1992. https://doi.org/10.1016/j.procbio.2015.07.007

Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000 – 2012. Proc. Natl Acad. Sci., 113 (2), 344 – 349. https://doi.org/10.1073/pnas.1510272113

Roby, M. H. H., Sarhan, M. A., Selim, K. A., & Khalil, K. I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod, 43, 827–831. https://doi.org/10.1016/j.indcrop.2012.08.029 Rosas-Burgos, E. C., Burgos-Hernández, A., Noguera-Artiaga, L., Miroslava Kačániová, M., Hernández-García, F., Cárdenas-López, J. L., & Carbonell-Barrachina, A. A. (2017).

Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J. Sci. Food Agric, 97 (3), 802 – 810. https://doi.org/10.1002/jsfa.7799

Shamsuzzaman, M., Kalaiselvi, K., & Prabakaran, M. (2021). Evaluation of antioxidant and anticorrosive activities of Ceriops tagal plant extract. Appl. Sci, 11 (21), 10150. https://doi.org/10.3390/app112110150

Shoib, A. B., & Shahid, A. M. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci, 9 (4), 449 – 454. https://doi.org/10.1016/j.jtusci.2014.11.001

Singh, R. P., Chidambara Murthy, K. N., & Jayaprakash, G. K. (2002). Studies on antioxidant polyphenol content of aqueous extracts from pomegranate peel and seed extracts using in vitro models. J Agric Food Chem., 50 (1), 86 – 89. https://doi.org/10.1021/

jf010865b

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol, 299, 152 – 178. https://doi.org/10.1016/S0076-6879(99)99017-1

War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signal Behav., 7(10), 1306 – 1320. https://doi.org/10.4161/psb.21663

Zahin, M., Aqil, F., & Ahmad, I. (2009). The in-vitro antioxidant activity and total phenolic content of four Indian medicinal plants. Int. J. Pharm. Pharm. Sci., 1 (1), 88 – 95.

Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem., 49 (11), 5165 – 5170. https://doi.org/10.1021/jf010697n

Published

2022-12-01

How to Cite

Mohd Mokhtar, R. A., Misrah, M. F., Kansil, T. ., Amin, Z. ., Yusof, N. A. ., & Budiman, C. . (2022). Evaluation of antioxidant activity and total phenolics of selected mangrove plants in Sabah. Borneo International Journal of Biotechnology (BIJB), 2, 14–21. https://doi.org/10.51200/bijb.v2i.3330
Total Views: 170 | Total Downloads: 188