Hydrocarbon-Degrading Fungi Isolated from Oil-Contaminated Sites in Northern Peninsular Malaysia

Authors

  • Nurshafiqah Jasme
  • Nabila Nasir
  • Ahmad Ramli Mohd Yahya
  • Nur Asshifa Md Noh

DOI:

https://doi.org/10.51200/bijb.v3i.4057

Keywords:

hydrocarbon-degrading fungi, biodegradation, bioremediation, isolation, oil contaminated environment, waste engine oil

Abstract

Improper waste management from automobile workshops has contributed markedly to environmental contamination. Areas within the vicinity of these workshops are exposed to high amounts of waste engine oils and other hydrocarbon wastes. Bioremediation may provide a practical solution due to better cost-effectiveness and high probability of total mineralisation without causing secondary pollution. Thus, this study aims to isolate, characterise and identify fungi that can utilize and degrade hydrocarbon. The research was conducted by collecting soil and water samples from the oil-contaminated sites including workshops, households and a sewage treatment plant in the Northern region of Peninsular Malaysia. Hydrocarbon-degrading ability was screened by growing fungi on selective agar containing waste engine oil (hydrocarbon) as the sole carbon source. The fungal colonies that grow on the selective agar were streaked and subcultured onto potato dextrose agar until pure isolates were obtained. Further screening by 2,6-dichlorophenol indophenol (DCPIP) assay was carried out to confirm the ability of all fungal isolates to utilise hydrocarbon. The isolated fungi were identified based on morphological characterisation and microscopic observation. Four fungal isolates from an oil-polluted environment were identified as Aspergillus sydowii USM-FH1, Aspergillus westerdijkiae USM-FH3, Curvularia lunata USM-FH6 and Chaetomium globusum USM-FH8. These fungal isolates showed good potential to be applied in the bioremediation of hydrocarbon-contaminated sites.

Author Biographies

Nurshafiqah Jasme

School of Biological Sciences,
Universiti Sains Malaysia,
11800 Penang, Malaysia

Nabila Nasir

School of Biological Sciences,
Universiti Sains Malaysia,
11800 Penang, Malaysia

Ahmad Ramli Mohd Yahya

School of Biological Sciences,
Universiti Sains Malaysia,
11800 Penang, Malaysia

Nur Asshifa Md Noh

School of Biological Sciences,
Universiti Sains Malaysia,
11800 Penang, Malaysia

References

Akash, S., Sivaprakash, B., & Rajamohan, N. (2022). Biotransformation as a tool for remediation of polycyclic aromatic hydrocarbons from polluted environment on toxicity and treatment technologies. Environmental Pollution, 318, 120923. https://doi.org/10.1016/j.envpol.2022.120923

Aust, S. D., Swaner, P. R., & Stahl, J. D. (2004). Detoxification and metabolism of chemicals by white-rot fungi. In J. J. Gan, P. C. Zhu, S. D. Aust, & A. T. Lemley (Eds.), ACS Symposium Series 863: Pesticide decontamination and detoxification (pp. 3 – 14). American Chemical Society.

Bajagain, R., & Jeong, S. W. (2021). Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron. Chemosphere, 270, 128627. https://doi.org/10.1016/j.chemosphere.2020.128627

Bansal, V., & Kim, K. H. (2015). Review of PAH contamination in food products and their health hazards. Environment International, 84, 26 – 38. https://doi.org/10.1016/j.envint.2015.06.016

Barnes, N. M., Khodse, V. B., Lotlikar, N. P., Meena, R. M., & Damare, S. R. (2018). Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech, 8 (1), 21. https://doi.org/10.1007/s13205-017-1043-8

Behera, I. D., Nayak, M., Mishra, A., Meikap, B. C., & Sen, R. (2022). Strategic implementation of integrated bioaugmentation and biostimulation for efficient mitigation of petroleum hydrocarbon pollutants from terrestrial and aquatic environment. Marine Pollution Bulletin, 177, 113492. https://doi.org/10.1016/j.marpolbul.2022.113492

Bidoia, E. D., Montagnolli, R. N., & Lopes, P. R. M. (2010). Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: A case study. Applied Microbiology and Biotechnology, 7, 1277 – 1288.

Brito, E. M., De la Cruz Barrón, M., Caretta, C. A., Goñi-Urriza, M., Andrade, L. H., Cuevas-Rodríguez, G., Malm, O., Torres, J. P., Simon, M., & Guyoneaud, R. (2015). Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential. The Science of the Total Environment, 521 – 522, 1 – 10. https://doi.org/10.1016/j.scitotenv.2015.02.098

Butinar, L., Frisvad, J. C., & Gunde-Cimerman, N. (2011). Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiology Ecology, 77 (1), 186 – 199. https://doi.org/10.1111/j.1574-6941.2011.01108.x

Cajthaml, T., Möder, M., Kacer, P., Sasek, V., & Popp, P. (2002). Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. Journal of Chromatography. A, 974 (1 – 2), 213 – 222. https://doi.org/10.1016/s0021-9673(02)00904-4

Cerniglia, C. E., & Sutherland, J. B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi. In K. N. Timmis (Eds.), Handbook of hydrocarbon and lipid microbiology (pp. 2079 – 2110). Springer. https://doi.org/10.1007/978-3-540-77587-4_151

Chaillan, F., Le Flèche, A., Bury, E., Phantavong, Y. H., Grimont, P., Saliot, A., & Oudot, J. (2004). Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in Microbiology, 155 (7), 587– 595. https://doi.org/10.1016/j.resmic.2004.04.006

da Costa Souza, P. N., Grigoletto, T. L. B., Alberto Beraldo de Moraes, L. A. B., Abreu, L. M., L. H. S., Santos, C., Galvão, L. R., & Cardoso, P. G. (2016). Production and chemical characterization of pigments in filamentous fungi. Microbiology (Reading, England), 162 (1), 12 – 22. https://doi.org/10.1099/mic.0.000168

Dai, X., Lv, J., Yan, G., Chen, C., Guo, S., & Fu, P. (2020). Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. Bioresource Technology, 309, 123305. https://doi.org/10.1016/j.biortech.2020.123305

El Hanafy, A. A., Anwar, Y., Mohamed, S. A. Al-Garni, S. M., Sabir, J. S., Zinadah, O. A., & Ahmed, M. M. (2015). Isolation and molecular identification of two fungal strains capable of degrading hydrocarbon contaminants on Saudi Arabian environment. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnology Engineering, 9 (12), 1215 – 1218.

Fakhrul-Razi, A., Alam, M. Z., Idris, A., Abd-Aziz, S., & Molla, A. H. (2002). Filamentous fungi in Indah Water Konsortium (IWK) sewage treatment plant for biological treatment of domestic wastewater sludge. Journal of environmental science and health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 37 (3), 309 – 320. https://doi.org/10.1081/ese-120002830

García-Olivares, A., Agüero, A., Haupt, B. J., Marcos, M. J., Villar, M. V., & de Pablos, J. L. (2017). A system of containment to prevent oil spills from sunken tankers. The Science of the Total Environment, 593 – 594, 242 – 252. https://doi.org/10.1016/j.scitotenv.2017.03.152

Hamman, S. (2004). Bioremediation capabilities of white rot fungi. Biodegradation, 52, 11.

Hazaimeh, M., Abd Mutalib, S., Abdullah, P. S., Kok Kee, W., & Surif, S. (2014). Enhanced crude oil hydrocarbon degradation by self-immobilized bacterial consortium culture on sawdust and oil palm empty fruit bunch. Annals of Microbiology, 64, 1769 – 1777.

Hock, G. O., Ho, C. C., Bi, V. F. L., Wong, Y.Y., & Wong, L. S. (2018). Isolation and identification of potential fungal species for spent engine lubrication oil remediation in Peninsular Malaysia. Remediation, 28, 91 – 95. https://doi.org/10.1002/rem.21564

Husaini, A., Roslan, H.A., & Hii, K.S.Y. et al. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal of Microbiology and Biotechnology, 24, 2789–97.

Jasme, N., Md Noh, N. A., & Yahya, A. R. M. (2022). Lab-scale bioremediation technology: Ex-situ bio-removal and biodegradation of waste cooking oil by Aspergillus flavus USM-AR1. Bioremediation Journal, 1 – 21. https://doi.org/10.6084/m9.figshare.19492204.v1

Jung, B., Kim, S., & Lee, J. (2014). Microcyle conidiation in filamentous fungi. Mycobiology, 42 (1), 1 – 5. https://doi.org/10.5941/myco.2014.42.1.1

Khan, A.H.A., Tanveer, S., Alia, S., Anees, M., Sultan, A., Iqbal, M., & Yousaf, S. (2017). Role of nutrients in bacterial biosurfactant production and effect of biosurfactant production on petroleum hydrocarbon biodegradation. Ecological Engineering, 104, 158–64. https://doi.org/10.1016/j.ecoleng.2017.04.023

Kiama, C. W. (2015). Isolation and characterization of hydrocarbon biodegrading fungi from oil contaminated soils in Thika, Kenya. (Unpublished doctoral dissertation), Jomo Kenyatta University of Agriculture and Technology.

Liu, H., Wu, M., Gao, H., Liu, Z., Gao, J., & Wang, S. (2023). Crude oil removal by Meyerozyma consortium and nitrogen supplement: Hydrocarbon transformation, nitrogen fate, and enhancement mechanism. Journal of Environmental Chemical Engineering, 11 (1), 109034. https://doi.org/10.1016/j.jece.2022.109034

Mancera-Lopez, M. E., Rodriguez-Casasola, M.T., Rios-Leal, E., Esparza-García, F., Chávez-Gómez, B., Rodríguez-Vázquez, R., & Barrera-Cortés, J. (2007). Fungi and bacteria isolated from two highly polluted soils for hydrocarbon degradation. Acta Chimica Slovenica, 54, 201 – 209.

Mansur, M., Arias, M. E., Copa-Patiño, J. L., Flärdh, M., & González, A. E. (2003). The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia, 95 (6), 1013 – 1020. https://doi.org/10.1080/15572536.2004.11833017

Meng, L., Li, W., Bao, M., & Sun, P. (2019). Great correlation: Biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7’for oil contaminated seawater bioremediation. Water Research, 153, 160 – 168. https://doi.org/10.1016/j.watres.2019.01.021

Mohsenzadeh, F., Nasseri, S., Mesdaghinia, A., Nabizadeh, R., Zafari, D., Khodakaramian, G., & Chehregani, A. (2010). Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicology and Environmental Safety, 73 (4), 613 – 619. https://doi.org/10.1016/j.ecoenv.2009.08.020

Mohsenzadeh, F., Simin, N., Alireza, M. et al. (2010). Phytoremediation of petroleum-polluted soils: Application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicology and Environmental Safety, 73, 613–19.

Nasrawi, H. A. (2012). Biodegradation of crude oil by fungi isolated from Gulf of Mexico. Journal of Bioremediation and Biodegradation, 3, 1 – 6.

Negi, B. B., Sinharoy, A., & Pakshirajan, K. (2020). Selenite removal from wastewater using fungal pelleted airlift bioreactor. Environmental Science and Pollution Research International, 27 (1), 992 – 1003. https://doi.org/10.1007/s11356-019-06946-6

Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57 (1 – 2), 20 – 33. https://doi.org/10.1007/s002530100745

Pradeep, F. S., & Pradeep, B. V. (2013). Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Culture. International Journal of Pharmaceutical Science, 5 (Suppl 3), 526 – 535.

Ritz, K., & Young, L.M. (2004). Interactions between soil structure and fungi. Mycologist, 18 (2), 52 – 59. https://doi.org/10.1017/S0269915X04002010

Sajid, S., de Dios, V. R., Zveushe, O. K., Nabi, F., Shen, S., Kang, Q., Zhou, L., Ma, L., Zhang, W., Zhao, Y., Han, Y., & Dong, F. (2023). Newly isolated halotolerant Aspergillus sp. showed high diesel degradation efficiency under high salinity environment aided with hematite. Journal of Hazardous Materials, 443 (Pt B), 130324. https://doi.org/10.1016/j.jhazmat.2022.130324

Singh, H. (2006). Mycoremediation: Fungal bioremediation. John Wiley & Sons.

Tiwari, M., & Saraf, A. (2017). Isolation, screening and identification of hydrocarbon degrading potential of indigenous fungus from oil contaminated soil of Modha Para automobile shop. International Journal of Advanced Research in Science Engineering, 6, 782 – 795.

Wang, X. W., Houbraken, J., Groenewald, J. Z., Meijer, M., Andersen, B., Nielsen, K. F., Crous, P. W., & Samson, R. A. (2016). Diversity and taxonomy of Chaetomium and Chaetomium-like fungi from indoor environments. Studies in Mycology, 84 (1), 145 – 224. https://doi.org/10.1016/j.simyco.2016.11.005

Xenia, M. E., & Refugio, R. V. (2016). Microorganisms metabolism during bioremediation of oil contaminated soils. Journal of Bioremediation and Biodegradation, 7, 2. https://doi.org/10.4172/2155-6199.1000340

Xu, R., & Obbard, J. P. (2004). Biodegradation of polycyclic aromatic hydrocarbons in oil-contaminated beach sediments treated with nutrient amendments. Journal of Environmental Quality, 33 (3), 861 – 867. https://doi.org/10.2134/jeq2004.0861

Yuan, X., Zhang, X., Chen, X., Kong, D., Liu, X., & Shen, S. (2018). Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresource Technology, 264, 190 – 197. https://doi.org/10.1016/j.biortech.2018.05.072

Zhou, H., Chen, C., Zhang, N., Huang, X., Tong, Z., Lu, M., Zhang, C., & Ma, Y. (2023). Succession of fungal communities and fungal-bacterial interactions in biofilm samples within a multistage bio-contact oxidation reactor during the treatment of low-COD and high-salinity produced water. Environmental Engineering Research, 28 (6), 220765. https://doi.org/10.4491/eer.2022.765

Published

2023-12-22 — Updated on 2023-12-31

Versions

How to Cite

Nurshafiqah Jasme, Nabila Nasir, Ahmad Ramli Mohd Yahya, & Nur Asshifa Md Noh. (2023). Hydrocarbon-Degrading Fungi Isolated from Oil-Contaminated Sites in Northern Peninsular Malaysia. Borneo International Journal of Biotechnology (BIJB), 3, 22–35. https://doi.org/10.51200/bijb.v3i.4057 (Original work published December 22, 2023)
Total Views: 229 | Total Downloads: 353