An Overview of the Role of Lactic Acid Bacteria in Fermented Foods and Their Potential Probiotic Properties

Authors

  • Kho Hui Min
  • Fan Hui Yin
  • Zarina Amin
  • Rachel Fran Mansa
  • Clemente Michael Wong Vui Ling

DOI:

https://doi.org/10.51200/bijb.v2i.4186

Keywords:

fermentation, functional food, probiotic, lactic acid bacteria

Abstract

Fermentation is the process by which a complex food compound is broken down into a simpler compound by the action of microorganisms such as yeast, filamentous fungi, and bacteria. Although yeast and fungi play the most important roles in food
fermentation, lactic acid bacteria (LAB), a generally regarded as safe (GRAS) probiotic, is frequently included in the starter culture. In the early stages of food fermentation, LAB created an acidic environment to minimize the prevalence of potentially harmful
microorganisms. The presence of probiotic microorganisms in the finished food also qualifies it as a functional food item. When consumed, probiotics in food can help to maintain the microbial balance in the gut intestinal tract and hence enhance gut
intestinal health. As a result, probiotics can provide extra health benefits in addition to the fundamental nutrient of the fermented product. Lactobacillus, Lactococcus, Pediococcus, Streptococcus, Enterococcus, Oenococcus, and Leuconostoc are some of the common genera of LAB. Good LAB usually has the following properties, including acid and bile tolerance, adherence to human epithelial cells, antibiotic susceptibility, no hemolytic and cytotoxicity activity, and antagonistic activity toward potential
pathogenic bacteria, to serve as a good probiotic (antimicrobial). Scientists and the food industry are constantly isolating new candidates of LABs with better qualities from various food sources and introducing them as unique candidate probiotics in food.

Author Biographies

Kho Hui Min

Faculty of Food Science and Nutrition,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

Fan Hui Yin

Faculty of Food Science and Nutrition,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

Zarina Amin

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

Rachel Fran Mansa

Faculty of Engineering,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

 

Clemente Michael Wong Vui Ling

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

References

Amenu, D. (2013). Antimicrobial activity of lactic acid bacteria isolated from “Ergo”, Ethiopian traditional fermented milk. Current Research in Microbiology and Biotechnology, 1 (6), 278 – 284.

Azat, R., Liu, Y., Li, W., & Kayir, A. (2016). Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 17 (8), 597 – 609. https://doi.org/10.1631/jzus.B1500250

Bechman, A., Phillips, R. D., & Chen, J. (2012). Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage. Journal of Food Science, 77 (6), M318 – M322. https://doi.org/10.1111/j.1750-3841.2012.02691.x

Benmechernene, Z., Chentouf, H. F., Yahia, B., Fatima, G., Quintela-Baluja, M., Calo-Mata, P., & Barros-Velázquez, J. (2013). Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. BioMed Research

International, 2013 (418132), 1 – 14. https://doi.org/10.1155/2013/418132

Bermúdez-Humarán, L. G., Aubry, C., Motta, J.-P., Deraison, C., Steidler, L., Vergnolle, N., Chatel, J. M., & Langella, P. (2013). Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology, 16, 1 – 6. https://doi.org/10.1016/j.mib.2013.06.002

Bhagat, D., Raina, N., Kumar, A., Katoch, M., Khajuria, Y., Slathia, P. S., & Sharma, P. (2020). Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Scientific Reports Nature Research,

(1926), 1 – 11. https://doi.org/10.1038/s41598-020-58676-2

Bintsis, T. (2018). Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4 (4), 665 – 684. https://doi.org/10.3934/microbiol.2018.4.665

Campana, R., van Hemert, S., & Baffone, W. (2017). Strain‑specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathogens, 9, 1 – 12. https://doi.org/10.1186/s13099-017-0162-4

Capozzi, V., Russo, P., Dueñas, M. T., López, P., & Spano, G. (2012). Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Applied Microbiology and Biotechnology, 96, 1383 – 1394. https://doi.org/10.1007/s00253-012-4440-2

Carolina, M., Ribeiro, D. O., Porto, L., & Vandenberghe, D. S. (2014). Evaluation of probiotic properties of Pediococcus acidilactici B14 in association with Lactobacillus acidophilus ATCC 4356 for application in a soy based aerated symbiotic dessert. Brazilian Archives

of Biology and Technology: An International Journal, 57 (5), 755 – 765. https://doi.org/10.1590/S1516-8913201402258

Chen, S., & Xu, Y. (2010). The influence of yeast strains on the volatile flavour compounds of Chinese rice wine. Journal of the Institute of Brewing, 116 (2), 190 – 196. https://doi.org/10.1002/j.2050-0416.2010.tb00417.x

Cheng, H. (2010). Volatile flavor compounds in yogurt: A review. Critical Reviews in Food Science and Nutrition, 50 (10), 938 – 950. https://doi.org/10.1080/10408390903044081

Corcoran, B. M., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2005). Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology, 71 (6), 3060 – 3067. https://doi.org/10.1128/AEM.71.6.3060-

2005

Devi, K. R., Deka, M., & Jeyaram, K. (2015). Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India. International Journal of Food Microbiology, 199, 62 – 71. https://doi.org/10.1016/j.

ijfoodmicro.2015.01.004

Devi, S. M., Subramanian, A., & Halami, P. M. (2016). Discrimination and divergence among Lactobacillus plantarum-group (LPG) isolates with reference to their probiotic functionalities from vegetable origin. Systematic and Applied Microbiology, 39, 562 – 570. https://doi.org/10.1016/j.syapm.2016.09.005

Diana, C. R., Humberto, H. S., & Jorge, Y. F. (2015). Probiotic properties of Leuconostoc mesenteroides isolated from Aguamiel of Agave salmiana. Probiotics and Antimicrobial Proteins, 7 (2), 107 – 117. https://doi.org/10.1007/s12602-015-9187-5

Dimidi, E., Cox, S. R., Rossi, M., & Whelan, K. (2019). Fermented foods: Definitions and characteristics, gastrointestinal health and disease. Nutrients, 11 (1806), 1 – 26. https://doi.org/10.3390/nu11081806

Foulquié Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, 106, 1 – 24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026

Gaggia, F., Di Gioia, D., Baffoni, L., & Biavati, B. (2011). The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends in Food Science and Technology, 22, S58 – S66. https://doi.org/10.1016/j.tifs.2011.03.003

Gasbarrini, G., Bonvicini, F., & Gramenzi, A. (2016). Probiotics History. Journal of Clinical Gastroenterology, 50 (Suppl 2), S116 – S119. https://doi.org/10.1097/MCG.0000000000000697

Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews, 1 – 12. https://doi.org/10.1002/14651858.CD004827.PUB4/ABSTRACT

Haghshenas, B., Haghshenas, M., Nami, Y., Khosroushahi, A. Y., Abdullah, N., Barzegari, A., Rosli, R., & Hejazi, M. S. (2016). Probiotic assessment of Lactobacillus plantarum 15HN and Enterococcus mundtii 50H isolated from traditional dairies microbiota. Advanced Pharmaceutical Bulletin, 6 (1), 37 – 47. https://doi.org/10.15171/apb.2016.007

Hong, S. W., Choi, Y. J., Lee, H. W., Yang, J. H., & Lee, M. A. (2016). Microbial community structure of Korean cabbage kimchi and ingredients with denaturing gradient gel electrophoresis. Journal of Microbiology and Biotechnology, 26 (6), 1057 – 1062. https://doi.org/10.4014/

jmb.1512.12035

Hoque, M. Z., Akter, F., Hossain, K. M., Billah, M. M., Rahman, M. S. M., & Islam, K. M. D. (2010). Isolation, identification and analysis of probiotic properties of Lactobacillus spp from selective regional yoghurts. World Journal of Dairy and Food Science, 5 (1), 39 – 46.

https://idosi.org/wjdfs/wjdfs5(1)/7.pdf

How, Y. H., Ewe, J. A., Song, K. P., Kuan, C. H., Kuan, C. S., & Yeo, S. K. (2020). Soy fermentation by indigenous oral probiotic Streptococcus spp . and its antimicrobial activity against oral pathogens. International Food Research Journal, 27 (2), 357 – 365. http://www.ifrj.upm.edu.my/27%20(02)%202020/17%20-%20IFRJ19824.R1.pdf

Ibrahim, I. A., Naufalin, R., Erminawati, & Dwiyanti, H. (2019). Effect of fermentation temperatureand culture concentration on microbial and physicochemical properties of cow and goat milk yogurt. IOP Conference Series: Earth and Environmental Science, 406 (1), 1 – 8.

https://doi.org/10.1088/1755-1315/406/1/012009

Jeleń, H., Majcher, M., Ginja, A., & Kuligowski, M. (2013). Determination of compounds responsible for tempeh aroma. Food Chemistry, 141 (1), 459 – 465. https://doi.org/10.1016/j.foodchem.2013.03.047

Jiang, L., Su, W., Mu, Y., & Mu, Y. (2020). Major metabolites and microbial community of fermented black glutinous rice wine with different starters. Frontiers in Microbiology, 11 (April), 1 – 13. https://doi.org/10.3389/fmicb.2020.00593

Jiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus , a future additive or probiotic candidate. Microbial Cell Factories, 20 (45), 1 – 14. https://doi.org/10.1186/s12934-021-01537-y

Jung, M. Y., Lee, C., Seo, M. J., Roh, S. W., & Lee, S. H. (2020). Characterization of a potential probiotic bacterium Lactococcus raffinolactis WiKim0068 isolated from fermented vegetable using genomic and in vitro analyses. BMC Microbiology, 20 (136), 1 – 10. https://doi.

org/10.1186/s12866-020-01820-9

Kaur, B., Garg, N., Sachdev, A., & Kumar, B. (2014). Effect of the oral intake of probiotic Pediococcus acidilactici BA28 on Helicobacter pylori causing peptic ulcer in C57BL/ 6 mice models. Applied Biochemistry and Biotechnology, 172, 973 – 983. https://doi.org/10.1007/s12010-

-0585-4

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: A Review. ISRN Nutrition, 2013 (481651), 1 – 7. https://doi.org/10.5402%2F2013%2F481651

Kim, S., Huang, E., Park, S., Holzapfel, W., & Lim, S. D. (2018). Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Korean Journal of Food Science of Animal Resources, 38 (3), 554 – 569.

Kimoto-Nira, H., Aoki, R., Mizumachi, K., Sasaki, K., Naito, H., Sawada, T., & Suzuki, C. (2012). Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: Development of a new starter culture. Journal of Dairy Science, 95, 2176 – 2185.

https://doi.org/10.3168/jds.2011-4824

King, M. S., Boes, C., & Kunji, E. R. S. (2015). Membrane protein expression in Lactococcus lactis. Methods in Enzymology, 556, 77 – 97. https://doi.org/10.1016/bs.mie.2014.12.009

Kot, W., Neve, H., Heller, K. J., & Vogensen, F. K. (2014). Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Frontiers in Microbiology, 5 (186), 1 – 9. https://doi.org/10.3389/fmicb.2014.00186

Lee, N. K., Han, K. J., Son, S. H., Eom, S. J., Lee, S. K., & Paik, H. D. (2015). Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT - Food Science and Technology, 64, 1036 – 1041. https://doi.org/10.1016/j.lwt.2015.07.019

Lee, S. H., Park, M. S., Jung, J. Y., & Jeon, C. O. (2012). Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. International Journal of Systematic and Evolutionary Microbiology, 62, 1098 – 1103. https://doi.org/10.1099/ijs.0.032367-0

Li, B., Zhan, M., Evivie, S. E., Jin, D., Zhao, L., & Chowdhury, S. (2018). Evaluating the safety of potential probiotic Enterococcus durans KLDS6 . 0930 using whole genome sequencing and oral toxicity study bacterial strains and culture conditions. Frontiers in Microbiology, 9 (1943), 1 – 15. https://doi.org/10.3389/fmicb.2018.01943

Linares, D. M., Callaghan, T. F. O., Connor, P. M. O., Ross, R. P., & Stanton, C. (2016). Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA-enriched bioactive yogurt. Frontiers in Microbiology, 7 (1876), 1 – 9. https://doi.org/10.3389/

fmicb.2016.01876

Liong, M. T., & Shah, N. P. (2005). Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. International Dairy Journal, 15 (4), 391 – 398. https://doi.org/10.1016/j.idairyj.2004.08.007

Markowiak, P., & Ślizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9 (9), 1021. https://doi.org/10.3390/nu9091021

Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22 (1255), 1 – 13. https://doi.org/10.3390/molecules22081255

Nagaoka, S. (2019). Yogurt production. Methods in Molecular Biology, 1887, 45 – 54. https://doi.org/10.1007/978-1-4939-8907-2_5

Nami, Y., Bakhshayesh, R. V., Jalaly, H. M., Lotfi, H., Eslami, S., & Hejazi, M. A. (2019). Probiotic properties of Enterococcus isolated from artisanal dairy products. Frontiers in Microbiology, 10 (300), 1 – 13. https://doi.org/10.3389/fmicb.2019.00300

Nazir, Y., Hussain, S. A., Hamid, A. A., & Song, Y. (2018). Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed Research International, 2018 (3428437), 1 – 17. https://doi.org/10.1155/2018/3428437

Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., & Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6 (4), 451 – 469. https://doi.org/10.3934/

MICROBIOL.2020027

Nurdini, A. L., Nuraida, L., Suwanto, A., & Suliantari. (2015). Microbial growth dynamics during tempe fermentation in two different home industries. International Food Research Journal, 22 (4), 1668 – 1674. http://www.ifrj.upm.edu.my/22%20(04)%202015/(50).pdf

Onda, T., Yanagida, F., Uchimura, T., Tsuji, M., Ogino, S., Shinohara, T., & Yokotsuka, K. (2003). Analysis of lactic acid bacterial flora during Miso fermentation. Food Science and Technology Research, 9 (1), 17 – 24. https://doi.org/10.3136/fstr.9.17

Pappalardo, G., & Lusk, J. L. (2016). The role of beliefs in purchasing process of functional foods. Food Quality and Preference, 53, 151 – 158. https://doi.org/10.1016/j.foodqual.2016.06.009

PR Newswire. (2022). Functional food ingredients Global Market Report 2022. Cision. https://www.prnewswire.com/news-releases/functional-food-ingredients-global-marketreport-2022-301709635.html

Quigley, L., O’Sullivan, O., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., & Cotter, P. D. (2011). Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. International Journal of Food Microbiology, 150, 81 – 94. https://doi.org/10.1016/j.

ijfoodmicro.2011.08.001

Quinto, E., Jiménez, P., Caro, I., Tejero, J., Mateo, J., & Girbés, T. (2014) Probiotic lactic acid bacteria: A Review. Food and Nutrition Sciences, 5 (18), 1765 – 1775. http://dx.doi.org/10.4236/fns.2014.518190

Rakhmanova, A., Khan, Z. A., & Shah, K. (2018). A mini review fermentation and preservation: Role of lactic acid bacteria. MOJ Food Processing & Technology, 6 (5), 414 – 416. https://doi.org/10.15406/mojfpt.2018.06.00197

Ravindran, L., Manjunath, N., Darshan, R. P., & Manuel, S. G. A. (2016). In vitro study analysis of antimicrobial properties of lactic acid bacteria against pathogens. Journal of Bio Innovation, 5 (2), 262 – 269. https://www.jbino.com/docs/Issue02_10_2016.pdf

Rhee, S. J., Lee, J. E., & Lee, C. H. (2011). Importance of lactic acid bacteria in Asian fermented foods. Microbial Cell Factories, 10 (S5), 1 – 13. https://doi.org/10.1186/1475-2859-10-S1-S5

Ringø, E., Hoseinifar, S. H., Ghosh, K., Doan, H. Van, Beck, B. R., & Song, S. K. (2018). Lactic acid bacteria in finfish – An update. Frontiers in Microbiology, 9, 1 – 37. https://doi.org/10.3389/fmicb.2018.01818

Rodríguez, L. G. R., Mohamed, F., Bleckwedel, J., Medina, R., Vuyst, L. De, Hebert, E. M., & Mozzi, F. (2019). Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in Northern Argentina. Frontiers in Microbiology, 10 (1091),

– 26. https://doi.org/10.3389/fmicb.2019.01091

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57 (1), 1–24. https://doi.org/10.1007/s00394-017-1445-8

Sewalt, V., Shanahan, D., Gregg, L., La Marta, J., & Carillo, R. (2016). The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Industrial Biotechnology, 12 (5), 295 – 302. https://doi.org/10.1089/ind.2016.0011

Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6 (106), 1 – 20. https://doi.org/10.3390/fermentation6040106

Simon, O. (2005). Micro-organisms as feed additives – Probiotics. Advances in Pork Production, 16, 161 – 167. https://www.banffpork.ca/documents/BO07-SimonO.pdf

Song, Y. R., Lee, C. M., Lee, S. H., & Baik, S. H. (2021). Evaluation of probiotic properties of Pediococcus acidilactici m76 producing functional exopolysaccharides and its lactic acid fermentation of black raspberry extract. Microorganisms, 9 (1364), 1 – 17. https://

doi.org/10.3390/microorganisms9071364

Su, J., Wang, T., Li, Y., Li, J., Zhang, Y., Wang, Y., Wang, H., & Li, H. (2015). Antioxidant properties of wine lactic acid bacteria: Oenococcus oeni. Applied Microbial and Cell Physiology, 99, 5189 – 5202. https://doi.org/10.1007/s00253-015-6425-4

Tarique, M., Abdalla, A., Masad, R., Al-Sbiei, A., Kizhakkayil, J., Osaili, T., Olaimat, A., Liu, S. Q., Fernandez-Cabezudo, M., Al-Ramadi, B., & Ayyash, M. (2022). Potential probiotics and postbiotic characteristics including immunomodulatory effects of lactic acid bacteria isolated from traditional yogurt-like products. LWT – Food Science and Technology, 159 (113207), 1 – 10. https://doi.org/10.1016/j.lwt.2022.113207

Tufariello, M., Capozzi, V., Spano, G., Cantele, G., Venerito, P., Mita, G., & Grieco, F. (2020). Effect of co-inoculation of Candida zemplinina, Saccharomyces cerevisiae and Lactobacillus plantarum for the industrial production of Negroamaro wine in Apulia (Southern Italy).

Microorganisms, 8 (5), 726. https://doi.org/10.3390/microorganisms8050726

Velikova, P., Petrov, K., Lozanov, V., Tsvetanova, F., Stoyanov, A., Wu, Z., Liu, Z., & Petrova, P. (2018). Microbial diversity and health-promoting properties of the traditional Bulgarian yogurt. Biotechnology and Biotechnological Equipment, 32 (5), 1205 – 1217. https://doi.org/10

.1080/13102818.2018.1475255

Yasmin, I., Saeed, M., Khan, W. A., Khaliq, A., Farhan, M., Chughtai, J., Iqbal, R., Tehseen, S., & Naz, S. (2020). In vitro probiotic potential and safety evaluation (hemolytic, cytotoxic activity) of Bifidobacterium strains isolated from raw camel milk. Microorganisms, 8 (3), 354. https://doi.org/10.3390/microorganisms8030354

Yerlikaya, O., Saygili, D., & Akpinar, A. (2021). Evaluation of antimicrobial activity and antibiotic susceptibility profiles of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains isolated from commercial yoghurt starter cultures. Food Science and Technology, 41 (2), 418 – 425. https://www.scielo.br/j/cta/a/hCqCcpHjZwCdYFDsgrnBFsr/?format=pdf

Zabat, M. A., Sano, W. H., Wurster, J. I., Cabral, D. J., & Belenky, P. (2018). Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community. Foods, 7 (77), 1 – 8. https://doi.org/10.3390/foods7050077

Zhang, X., Ali Esmail, G., Fahad Alzeer, A., Valan Arasu, M., Vijayaraghavan, P., Choon Choi, K., & Abdullah Al-Dhabi, N. (2020). Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens.

Saudi Journal of Biological Sciences, 27 (12), 3505 – 3513. https://doi.org/10.1016/j.sjbs.2020.10.022

Zhang, Y. J., Li, S., Gan, R. Y., Zhou, T., Xu, D. P., & Li, H. Bin. (2015). Impacts of gut bacteria on human health and diseases. International Journal of Molecular Sciences, 16 (4), 7493 – 7519. https://doi.org/10.3390/ijms16047493

Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018). In vitro assessment of the probiotic properties and bacteriocinogenic potential of Pediococcus pentosaceus MZF16 isolated from artisanal

Tunisian meat “Dried Ossban”. Frontiers in Microbiology, 9 (2607), 1 – 15. https://doi.org/10.3389/fmicb.2018.02607

Published

2023-01-09

How to Cite

Kho Hui Min, Fan Hui Yin, Zarina Amin, Rachel Fran Mansa, & Clemente Michael Wong Vui Ling. (2023). An Overview of the Role of Lactic Acid Bacteria in Fermented Foods and Their Potential Probiotic Properties. Borneo International Journal of Biotechnology (BIJB), 2, 65–83. https://doi.org/10.51200/bijb.v2i.4186
Total Views: 342 | Total Downloads: 541