Extraction methods for Escherichia coli antibacterial assay

Authors

  • Ruzaidi Azli Mokhtar
  • Rukmiyatul Husna Rahim
  • Zarina Amin

DOI:

https://doi.org/10.51200/bijb.v2i.4201

Keywords:

extraction, antibacterial assay, Escherichia coli

Abstract

The recent increased interest in plant-based medication and dietary supplements has resulted in researchers from various fields of ethnopharmacology, botany, microbiology, and natural product chemistry scouring the planet for phytochemicals and “leads” that
might be used to treat infectious diseases. However, even though about 25 to 50% of today’s medications come from plants, none of them is employed as antimicrobials. Western medicine is attempting to replicate the effectiveness of traditional healers who have employed plants for a long time to prevent or treat infectious diseases. Secondary metabolites that have been shown to have antimicrobial activities in vitro include tannins, terpenoids, alkaloids, and flavonoids, which are abundant in plants. Plants comprise a complex variety of metabolites and bioactive compounds. Since extraction is the first step in obtaining herbal plant components, many factors must be considered while choosing the best extraction techniques. The correct extraction techniques employed will ensure that the maximal plant compounds are produced sufficiently for the required antibacterial assays. This review discusses several traditional and more recently developed plant extraction methods specifically used for antibacterial assay and includes an overview of the general idea, benefits, and drawbacks of common extraction techniques.

Author Biographies

Ruzaidi Azli Mokhtar

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

Rukmiyatul Husna Rahim

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

Zarina Amin

Biotechnology Research Institute,

Universiti Malaysia Sabah,

Kota Kinabalu, Sabah, Malaysia

References

Abas, F. A., Zakaria, Z. A., & Ani, F. N. (2018). Antimicrobial properties of optimized microwaveassisted pyroligneous acid from oil palm fiber. Journal of Applied Pharmaceutical Science, 8 (7), 65 – 71. https://doi.org/10.7324/JAPS.2018.8711

Abdennabi, R., Gaboriaud, N., Ahluwalia, V., Tchoumtchoua, J., Elgheryeni, A., Skaltsounis, A. L., & Gharsallah, N. (2017). Microwave-Assisted extraction of phenolic compounds from date palm saps (Phoenix Dactylifera L.) and their antioxidant, antidiabetic and

antibacterial activities evaluation. Mathews Journal of Diabetes & Obesity, 2 (2), 010.

https://www.mathewsopenaccess.com/scholarly-articles/microwave-assistedextraction-of-phenolic-compounds-from-date-palm-saps-phoenix-dactylifera-l-andtheir-antioxidant-antidiabetic-and-antibacterial-activities-evaluation.pdf

Abubakar, A., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy BioAllied Sciences, 12 (1), 1 – 10. https://doi.org/10.4103/jpbs.JPBS_175_19

Alam, G., Sartini, & Alfath, A. (2019). Comparison of microwave assisted extraction (MAE) with variations of power and infusion extraction method on antibacterial activity of rosella calyx extract (Hibiscus sabdariffa). Journal of Physics: Conference Series, 1341, 072002. https://doi.org/10.1088/1742-6596/1341/7/072002

Azwanida, N. N. (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants, 4 (3), 196. https://doi.org/10.4172/2167-0412.1000196

Capuzzo, A., Maffei, M. E., & Occhipinti, A. (2013). Supercritical fluid extraction of plant flavors and fragrances. Molecules, 18 (6), 7194 – 7238. https://doi.org/10.3390/molecules18067194

Carreira-Casais, A., Otero, P., Garcia-Perez, P., Garcia-Oliviera, P., Pereira, A.G., Carpena, M., Soria-Lopez, A., Simal_Gandara, J., & Prieto, M. A. (2021). Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. International Journal of Environmental Research in Public Health, 18 (17), 9153. https://doi.org/10.3390/ijerph18179153

Center for Disease Control (CDC). (2022). E. coli (Escherichia coli). https://www.cdc.gov/ecoli/index.html

Chemat, F., Rombaut , N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A.S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonic Sonochemistry, 34, 540 – 560. https://doi.org/10.1016/j.ultsonch.2016.06.035

Cos, P., Vlietinck, A. J., Berghe, D. V., & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol., 106 (3), 290 – 302. https://doi.org/10.1016/j.jep.2006.04.003

Cunha, I. B. S., Sawaya, A. C. H. F., Caetano, F. M., Shimizu. M. T., Marcucci, M. C., Drezza, F. T., Povia, G. S., & Carvalho, P. O. (2004). Factors that influence the yield and composition of Brazilian propolis extracts. Journal of Brazillian Chemical Society, 15 (6), 964 – 970.

https://doi.org/10.1590/S0103-50532004000600026

De Melo, M. M. R., Silvestre, A. J. D., & Silva, C. M. (2014). Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. The Journal of Supercritical Fluids, 92, 115 – 176. https://doi.org/10.1016/j.

supflu.2014.04.007

Delazar, A., Nahar, L. Hamedeyazdan, S., & Sarker, S. D. (2012). Microwave-assisted extraction in natural products isolation. In S. D. Sarker & L. Nahar (Eds.), Natural Products Isolation (3rd edition, pp. 89 – 116). Humana Press. https://doi.org/10.1007/978-1-61779-624-1_5

Delazar, A., Nahar, L., Hamedeyazdan, S., & Sarker, S. (2012). Microwave-assisted extraction in natural products isolation. In S. D. Sarker & L. Nahar (Eds.), Natural products isolation (3rd Edition, pp. 89 – 115). Humana Totowa. https://doi.org/10.1007/978-1-61779-624-1_5

Ganzler, K., Salgó, A., & Valkó, K. (1986). Microwave extraction: A novel sample preparation method for chromatography. J. Chromatogr. A, 371, 299 – 306. https://doi.org/10.1016/S0021-9673(01)94714-4

Ganzler, K., Salgó, A., & Valkó, K. (1986). Microwave extraction: A novel sample preparation method for chromatography. J. Chromatogr. A, 371, 299 – 306. https://doi.org/10.1016/S0021-9673(01)94714-4

Garcia-Castello, E., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros. R., Conidi, C., & Cassano, A. (2015). Optimization of conventional and ultrasound-assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT – Food Science Technology, 64 (2),

– 1122. https://doi.org/10.1016/j.lwt.2015.07.024

Gwiazdowska, D., Uwineza, P. A., Frak, S., Jus, K., Marchwinska, K., Gwiazdowski, R., & Waskiewicz, A. (2022) Antioxidant, antimicrobial and antibiofilm properties of glechoma hederacea extracts obtained by supercritical fluid extraction, using different extraction conditions. Applied Sciences, 12 (7), 3572. https://doi.org/10.3390/app12073572

Handa, S. S., Khanuja, S. P. S., Longo, G., & Rakesh, D. D. (Eds.). (2008). An overview of extraction techniques for medicinal and aromatic plants extraction technologies for medicinal and aromatic plants. United Nations Industrial Development Organization and the

International Centre for Science and High Technology (UNIDO-ICS).

Hassim, N., Markom, M., Anuar, N., Dewi, K. H., Baharum, S. N., & Noor, N. M. (2015). Antioxidant and antibacterial assays on Polygonum minus extracts: Different extraction methods. International Journal of Chemical Engineering, 826709. https://doi.

org/10.1155/2015/826709 https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates

Huie, C. W. (2002). A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem., 373, 23 – 30. https://doi.org/10.1007/s00216-002-1265-3

Imelda, F., Faridah, D. N., & Kusumaningrum, H. D. (2014). Bacterial inhibition and cell leakage by extract of Polygonum minus Huds. leaves. International Food Research Journal, 21 (2), 553 – 560. http://www.ifrj.upm.edu.my/21%20(02)%202014/18%20IFRJ%2021%20

(02)%202014%20Harsi%20560.pdf

Irshad, S., Butt, M., & Younus, H. (2011). In-vitro antibacterial activity of Aloe Barbadensis Miller (Aloe Vera). International Research Journal of Pharmaceuticals, 1 (2), 59 – 64.

Khaw, K. Y., Parat, M. O., Shaw, P. N., & Falconer, J. R. (2017). Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules, 22 (7), 1186. https://doi.org/10.3390/molecules22071186

Lim, J. Y., Yoon, J., & Hovde, C. J. (2010). A brief overview of Escherichia coli O157:H7 and its plasmid O157. Journal of Microbiology and Biotechnology, 20 (1), 5 – 14. https://doi.org/10.4014/jmb.0908.08007

Martin-Garcia, B., Pasini, F., Verardo, V., Diaz-de-Cerio, E., Tylewicz, U., Gomez-Caravaca, A. M., & Caboni, M. F. (2017). Optimization of sonotrode ultrasonic-assisted extraction of proanthocyanidins from brewers’ spent grains. Molecules, 22 (7), 1186.

Mathur, S., & Hoskins, C. (2017). Drug development: Lessons from nature. Biomedical Report, 6 (6), 612 – 614. https://doi.org/10.3892%2Fbr.2017.909

Moret, S., Conchoine, C., Srbinovska, A., & Lucci, P. (2019). Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods, 8 (10), 503. https://doi.org/10.3390/foods8100503

Mueller, M., & Tainter, C. R. (2022). Escherichia coli. Stat Pearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK564298/

Naviglio, D., Scarano, P., Ciaravolo, M., & Gallo, M. (2019). Rapid solid-liquid dynamic extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods, 8 (7), 245. https://doi.org/10.3390/foods8070245

Nayak, B. K., Mukilarasi, V., & Nanda, A. (2015). Antibacterial activity of leaf extract of Cassia alata separated by soxhlet extraction method. Der Pharmacia Lettre, 7 (4), 254 – 257. https://www.scholarsresearchlibrary.com/articles/antibacterial-activity-of-leaf-extractof-cassia-alata-separated-by-soxhletextraction-method.pdf

Ngaha Njila, M. I., Mahdi, E., Massoma Lembe, D., Nde, Z., & Nyonseu, D. (2017). Review on extraction and isolation of plant secondary metabolites. In 12th International Conference on Latest Trends in Engineering and Technology (ICLTET-2017). International Institute of

Engineers (IIE). https://doi.org/10.15242/IIE.C0517024

Paz, J. E. W., Contreras, C. R., Munguía, A. R., Aguilar, C. N., & Inungaray, M. L. C. (2018). Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Brazilian Journal of Microbiology, 49 (3), 656 – 661. https://doi.

org/10.1016/j.bjm.2017.03.018

Phrompittayarat, W., Putalun, W., Tanaka, H., Jetiyanon, K., Wittaya-areekul, S., & Ingkaninan, K. (2007). Comparison of various extraction methods of Bacopa monnieri. Warasan Maha Witthayalai Naresuan, 15 (1), 29 – 34.

Rezvanpanah, S., Rezaei, K., Golmakani, M. T., & Razavi, S. H. (2011). Antibacterial properties and chemical characterization of the essential oils from summer savory extracted by microwave-assisted hydrodistillation. Brazilian Journal of Microbiology, 42 (4), 1453– 1462. https://doi.org/10.1590/S1517-83822011000400031

Rombaut, N., Tixier, A. S., & Billy, A. (2014). Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioproducts and Biorefinery, 8 (4), 530 – 544. https://doi.org/10.1002/bbb.1486

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, K. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional Complement Alternative Medicines, 8 (1), 1 – 10. https://doi.org/10.4314/ajtcam.v8i1.60483

Situmeang, B., Ibrahim, A. M., Bialangi, N., Musa, W. J., & Silaban, S. (2019). Antibacterial activity and phytochemical screening of Kesambi (Sapindaceae) against Eschericia coli and Staphylococcus aureus. Jurnal Pendidikan Kimia, 11 (1), 14 – 17. https://doi.org/10.24114/jpkim.v11i1.13078

United States Pharmacopeial Convention. (2002). USP-NF. Author. Retrieved from https://online.uspnf.com/.

Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17 (6), 300 – 312. https://doi.org/10.1016/j.tifs.2005.12.004

World Health Organization (WHO). (n.d.). Global health estimates.

Wu, D., Ding, Y., Yao, K., Gao, W., & Wang, Y. (2021) Antimicrobial resistance analysis of clinical Escherichia coli isolates in neonatal ward. Frontiers in Paediatrics, 9, 670470. https://doi.org/10.3389/fped.2021.670470

Xainhiaxang, S., Leksawasdi, N., & Wirjantoro, T. I. (2018). Antimicrobial activities of some herb and spices extracted by hydrodistillation and supercritical fluid extraction on the growth of Escherichia coli, Salmonella typhimurium and Staphylococcus aureus in microbiological media. Food and Applied Bioscience Journal, 6 (Special), 218 – 239. https://li01.tci-thaijo. org/index.php/fabjournal/article/view/133977/102159

Yeo, Y. L., Chia, Y. Y., Lee, C. H., Sow, H. S., & Yap, W. S. (2014). Effectiveness of maceration periods with different extraction solvents on in-vitro antimicrobial activity from fruit of Momordica charantia L. Journal of Applied Pharmaceutical Science, 4 (10), 16 – 23. https://doi.org/10.7324/JAPS.2014.401004

Zygmunt, J. B., & Namiesnik, J. (2003). Preparation of samples of plant material for chromatographic analysis. J Chromatogr Sci., 41 (3), 109 – 116. https://doi.org/10.1093/chromsci/41.3.109

Published

2022-12-01

How to Cite

Ruzaidi Azli Mokhtar, Rukmiyatul Husna Rahim, & Zarina Amin. (2022). Extraction methods for Escherichia coli antibacterial assay. Borneo International Journal of Biotechnology (BIJB), 2, 95 –. https://doi.org/10.51200/bijb.v2i.4201
Total Views: 97 | Total Downloads: 173