Antifungal Potential of Yellow Bur Head Limnocharis flava (Buchenau, 1868) Against Pathogenic Oomycete, Lagenidium thermophilum
DOI:
https://doi.org/10.51200/bijb.v3i.4718Keywords:
phytobiotic, antibiotic resistance, alternative prevention, disease management, aquacultureAbstract
Fungal infection by marine oomycetes is the main problem that hinders crustacean
production. Therefore, a study to find an alternative fungal treatment that is safer than
chemical treatment is currently needed. One of the potential sources of antifungal
properties is macrophytes. Limnocharis flava, known as yellow bur head, was found
to have antimicrobial properties. Thus, this research was conducted to determine
the potential of L. flava extract as an antifungal agent against the marine oomycetes Lagenidium thermophilum IPMB 1801. In this study, ethanol and methanol solvents were used to extract L. flava. The results showed that the methanol extraction yield of L. flava
is higher (7.03 g, 35.16%) compared to ethanol extract (3.26 g, 16.26%). The antifungal screening test was conducted using the disc diffusion method. Ethanol and methanol extract of L. flava had antifungal activities against the hyphal growth of L. thermophilum.
Continuation from the screening test, the minimum inhibitory concentration for both ethanol and methanol extracts was determined to be at 100 mg/ml respectively. These findings suggest that L. flava has the potential to become an antifungal treatment for
the control of fungal infections in the crustacean industry.
References
Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117 (4), 426 – 436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
Baehaki, A., Lestari, S. D., & Siregar, N. (2019). Phytochemical compounds and antioxidant activity of yellow velvetleaf fruit (Limnocharis Flava) extract. Asian Journal of Pharmaceutical and Clinical Research, 13 (2), 55 – 57. https://doi.org/10.22159/ajpcr.2020.v13i2.36136
Castillo, F., Hernandez, D., Gallegos, G., Rodríguez, R., & Aguilar, C. N. (2012). Antifungal properties of bioactive compounds from plants. In D. Dhanasekaran, N. Thajuddin & A. Panneerselvam (Eds.), Fungicides for plant and animal diseases. InTech. https://doi.
org/10.5772/26598
Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22 (3), 296 – 302. https://doi.org/10.1016/j.jfda.2013.11.001
Fareed, M. F., Haroon, A. M., & Rabeh, S. A. (2008). Antimicrobial activity of some macrophytes from lake Manzalah (Egypt). Pakistan Journal of Biological Sciences, 46 (21), 2454 – 2463. https://doi.org/10.3923/pjbs.2008.2454.2463
Hatai, K. (2012). Disease fish and shellfish cause by marine fungi. In C. Raghukumar (Ed.), Biology of marine fungi (pp. 15 – 52). Springer. https://doi.org/10.1007/978-3-642-23342-5_2
Hatai, K., Kamada, T., Lau, L. M., Kulip, J., Phan, C. S., & Vairappan, C. S. (2018). In vitro inhibitory effects of two Bornean medicinal wild gingers against pathogenic Lagenidium thermophilum infected mud crab Scylla tranquebarica. Biocontrol Science, 23, 35 – 39.
https://doi.org/10.4265/bio.23.35
Hatai, K., Roza, D., & Nakayama, T. (2000). Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience, 41, 565 – 572. https://doi.org/10.1007/BF02460922
Jacoeb, A. M., & Abdullah, A. (2010). Characteristic of microscopic and bioactive compound of yellow velvetleaf (Limnocharis flava) from Situ Gede Bogor. Jurnal Sumberdaya Perairan, 4 (2), 1 – 5. http://ciba.res.in/Books/ciba0509.pdf
Jithendran, K. P., Poornima, M., Balasubramanian, C. P., & Kulasekarapandian, S. (2010). Diseases of mud crabs (Scylla spp.): An overview. Indian Journal of Fisheries, 57(3), 55–63.
Joning, E. J., Annita Seok, K. Y., Suraini, L., Chun, Y. A., Julian, R., Sano, M., Dan, S., Hamasaki, K., Azman, K. N., & Tamrin, M. L. (2021). Antifungal Prospect of Bacillus cereus Postbiotic on Crustacean Pathogen, Lagenidium thermophilum. Biocontrol Science, 26 (4), 201 – 205. https://doi.org/10.4265/bio.26.201
Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens (Basel, Switzerland), 10(2), 165. https://doi.org/10.3390/pathogens10020165
Lee, Y. N., Hatai, K., & Kurata, O. (2016). First report of Lagenidium thermophilum isolated from eggs and larvae of mud crab (Scylla tranquebarica) in Sabah, Malaysia. Bulletin-European Association of Fish Pathologists, 36 (3), 111 – 117.
Lee, Y. N., Hatai, K., & Kurata, O. (2017). Haliphthoros milfordensis isolated from eggs and larvae of mud crab (Scylla tranquebarica) in Sabah, Malaysia. Bulletin of the European Association of Fish Pathologists, 37 (6), 226 – 234.
Malathy, R., & Stanley, S. A. (2015). Studies on the potential therapeutic effects on the aquatic macrophytes namely Cabomba aquatica, Ceratophyllum demersum and Hygrophila corymbosa. Journal of Chemical and Pharmaceutical Research, 7 (4), 479 – 483.
Mohd Nazri, N. A. A., Ahmat, N., Adnan, A., Syed Mohamad, S. A., & Syaripah Ruzaina, S. A. (2011). In vitro antibacterial and radical scavenging activities of Malaysian table salad. African Journal of Biotechnology, 10 (30), 5728 – 5735. https://www.ajol.info/index.php/ajb/article/view/94445/83818
Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25 (2), 361 – 366. https://doi.
org/10.1016/j.sjbs.2017.02.004
Muraosa, Y., Lawhavinit, O. A., & Hatai, K. (2006). Lagenidium thermophilum isolated from eggs and larvae of black tiger shrimp, Penaeus monodon in Thailand. Fish Pathology, 41 (1), 35 – 40. https://doi.org/10.3147/jsfp.41.35
Nakamura, K., Nakamura, M., Hatai, K., & Zafran. (1995). Lagenidium infection in eggs and larvae of mangrove crab (Scylla serrata) produced in Indonesia. Mycoscience, 36 (4), 399 – 404. https://doi.org/10.1007/BF02268623
Ngamkhae, N., Monthakantirat, O., Chulikhit, Y., Boonyarat, C., Maneenet, J., Khamphukdee, C., Kwankhao, P., Pitiporn, S., & Daodee, S. (2022). Optimization of extraction method for Kleeb Bua Daeng formula and comparison between ultrasound-assisted and microwave-assisted extraction. Journal of Applied Research on Medicinal and Aromatic Plants, 28, 100369. https://doi.org/10.1016/j.jarmap.2022.100369
Pal, A., Kamthania, M., & Kumar, A. (2014). Bioactive Compounds and Properties of Seaweeds—A Review. Open Access Library Journal, 1, 1 – 17. https://doi.org/10.4236/oalib.1100752
Panchai, K., Hanjavanit, C., Rujinanont, N., Wada, S., Kurata, O., & Hatai, K. (2014). Freshwater oomycete isolated from net cage cultures of Oreochromis niloticus with water mold infection in the Nam Phong River, KhonKaen Province, Thailand. AACL Bioflux, 7, 529 –
http://www.bioflux.com.ro/docs/2014.529-542.pdf
Saito, H., & Lal, T. M. (2019). Antimycotic activity of seaweed extracts (Caulerpa lentillifera and Eucheuma cottonii) against two genera of marine oomycetes, Lagenidium spp. and Haliphthoros spp. Biocontrol Science, 24 (2), 73 – 80. https://doi.org/10.4265/bio.24.73
Treves-Brown, K. M. (2000). Applied fish pharmacology. Kluwer Academic Publishers.
Truong, D. H., Nguyen, D. H., & Ta, N. T. A., (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality, 8178294. https://doi.org/10.1155/2019/8178294