Biodegradability Properties of Polyurethane Film Made from Eucalyptus pellita Wood Polyol
DOI:
https://doi.org/10.51200/bijb.v3i.4720Keywords:
polyurethane film, biodegradability, water solubility, FT-IRAbstract
The properties of polyurethane (PU) film are greatly influenced not only by the raw materials but also by the compatibility of polyol and isocyanate. This paper aimed to evaluate the effect of the isocyanate index (NCO/OH ratio) on the biodegradability properties of Eucalyptus pellita PU film. E. pellita wood polyol and polymeric methylene diphenyl diisocyanate (pMDI) were mixed at different NCO/OH ratios (1.8 – 3.0). The PU film was produced through the one-shot method. The effect of the NCO/OH ratio on the biodegradability properties of PU film was evaluated. The rate of biodegradation of PU film by soil burial test decreases proportionally to the NCO/OH ratio. The biodegradation rate is the highest (14.02%) when the NCO/OH ratio is the lowest (1.8). The results of water solubility showed that PU films with low NCO/OH ratios are easily soluble in water. The band associated with the ester compound was detected at nearly 1,060 cm−1. Based on the findings of this study, increasing the NCO/OH ratio made the PU film from E. pellita less degradable. Therefore, lowering the NCO/OH ratio is an ideal option to produce films with better biodegradability.
References
Acik, G., Kamaci, M., Altinkok, C., & Karabulut, H.R.F. (2018). Progress in Organic Coatings Synthesis and properties of soybean oil-based biodegradable polyurethane fi lms. Prog. Org. Coatings 123, 261–266. https://doi.org/10.1016/j.porgcoat.2018.07.020
Amran, U.A., Salleh, K.M., Zakaria, S., Roslan, R., & Chia, C.H. (2021). Production of Rigid Polyurethane Foams Using Polyol from Liquefied Oil Palm Biomass: Variation of Isocyanate Indexes. Polymers (Basel), 13, 3072.
Cakić, S.M., Ristić, I.S., Djordjević, D.M., Stamenković, J. V., & Stojiljković, D.T. (2010). Effect of the chain extender and selective catalyst on thermooxidative stability of aqueous polyurethane dispersions. Prog. Org. Coatings 67, 274–280. https://doi.org/10.1016/j.porgcoat.2009.11.003
Deshmukh, A.R., Aloui, H., Khomlaem, C., Negi, A., Yun, J.H., Kim, H.S., & Kim, B.S. (2021). Biodegradable films based on chitosan and defatted Chlorella biomass: Functional and physical characterization. Food Chem. 337. https://doi.org/10.1016/j.foodchem.2020.127777
Dutta, S., & Karak, N., (2006). Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polym. Int. 55, 49–56. https://doi.org/10.1002/pi.1914
Dutta, S., Karak, N., Saikia, J.P., & Konwar, B.K. (2010). Biodegradation of epoxy and mf modified polyurethane films derived from a sustainable resource. J. Polym. Environ, 18, 167–176. https://doi.org/10.1007/s10924-010-0161-8
Elnaggar, E.M., Elsokkary, T.M., Shohide, M.A., El-Sabbagh, B.A., & Abdel-Gawwad, H.A. (2019). Surface protection of concrete by new protective coating. Constr. Build. Mater, 220, 245–252. https://doi.org/10.1016/j.conbuildmat.2019.06.026
Ertaş, M., Fidan, M.S., & Alma, M.H., (2014). Preparation and characterization of biodegradable rigid polyurethane foams from the liquefied eucalyptus and pine woods. Wood Res. 59, 97–108.
Garca-Pacios, V., Costa, V., Colera, M., & Miguel Martn-Martnez, J. (2010). Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. Int. J. Adhes. Adhes, 30, 456–465. https://doi.org/10.1016/j.ijadhadh.2010.03.006
Gómez, E.F., Luo, X., Li, C., Michel, F.C., & Li, Y. (2014). Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation. Polym. Degrad. Stab, 102, 195–203. https://doi.org/10.1016/j.polymdegradstab.2014.01.008
Gosz, K., Tercjak, A., Olszewski, A., Haponiuk, J., & Piszczyk, Ł. (2021). Bio-based polyurethane networks derived from liquefied sawdust. Materials (Basel), 14, 3138. https://doi.org/10.3390/ma14113138
Halimatul, M.J., Sapuan, S.M., Jawaid, M., Ishak, M.R., & Ilyas, R.A. (2019). Water absorption and water solubility properties of sago starch biopolymer composite films filled with sugar palm particles. Polimery/Polymers 64, 596–604. https://doi.org/10.14314/polimery.2019.9.4
Hammer, J., Kraak, M.H.S., & Parsons, J.R. (2012). Plastics in the marine environment: The dark side of a modern gift. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/978-1-4614-3414-6
Hassan, A., Balachandran, P., & Khamis, K.R. (2021). Early Root development of eucalyptus pellita f. muell. Seedlings from seed and stem cutting propagation methods at nursery stage. Int. J. For. Res. 1–10. https://doi.org/10.1155/2021/6624266
Hii, S.Y., Ha, K.S., Ngui, M.L., Ak Penguang, S., Duju, A., Teng, X.Y., & Meder, R. (2017). Assessment of plantation-grown Eucalyptus pellita in Borneo, Malaysia for solid wood utilisation. Aust. For, 80, 26–33. https://doi.org/10.1080/00049158.2016.1272526
Kurimoto, Y., Takeda, M., Doi, S., Tamura, Y., & Ono, H. (2001). Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol, 77, 33–40. https://doi.org/10.1016/S0960-8524(00)00136-X
Lopes, R.V. V., Loureiro, N.P.D., Quirino, R.L., Gomes, A.C.M., Pezzin, A.P.T., Manzur, L.P., Santos, M.L. dos, & Sales, M.J.A. (2022). Biodegradation Study of Polyurethanes from Linseed and Passion Fruit Oils. Coatings 12, 617.
Mizera, K., & Ryszkowska, J. (2016). Polyurethane elastomers from polyols based on soybean oil with a different molar ratio. Polym. Degrad. Stab,132, 21–31. https://doi.org/10.1016/j.polymdegradstab.2016.05.004
Nurul Hazwani, M. H., Valeritta, L., Gilbert Jesuet, M. S., Salim, S., Lee, S. H., Hori, N., Takemura, A., & Palle, I. (2023). Producing Eucalyptus pellita wood polyol through liquefaction for polyurethane film production. Industrial Crops and Products, 205, 117431. https://doi.org/10.1016/j.indcrop.2023.117431
Palle, I., Lodin, V., Ahmad, A.M.Y., Lee, S.H., Tahir, P., Hori, N., Antov, P., & Takemura, A. (2023). Effects of NCO / OH ratios on bio-based polyurethane film properties made from acacia mangium liquefied wood. Polymers (Basel), 15, 1–15.
Panda, S.S., Panda, B.P., Mohanty, S., & Nayak, S.K. (2017). The castor oil based waterborne polyurethane dispersion; Effect of -NCO/OH content: Synthesis, characterization and properties. Green Process. Synth. 6, 341–351. https://doi.org/10.1515/gps-2016-0144
Rutkowska, M., Krasowska, K., Heimowska, A., Steinka, I., & Janik, H. (2002). Degradation of polyurethanes in sea water. Polym. Degrad. Stab. 76, 233–239. https://doi.org/10.1016/S0141-3910(02)00019-8
Saha, P., Khomlaem, C., Aloui, H., & Kim, B.S. (2021). Biodegradable Polyurethanes Based on Castor Oil and Poly (3-hydroxybutyrate). Polymers (Basel). 13, 1387.
Sahoo, S., Kalita, H., Mohanty, S., & Nayak, S.K. (2018). Degradation Study of Biobased Polyester–Polyurethane and its Nanocomposite Under Natural Soil Burial, UV Radiation and Hydrolytic-Salt Water Circumstances. J. Polym. Environ. 26, 1528–1539. https://doi.org/10.1007/s10924-017-1058-6
Serrano, L., Rincón, E., García, A., Rodríguez, J., & Briones, R. (2020). Bio-degradable polyurethane foams produced by liquefied polyol from wheat straw biomass. Polymers (Basel), 12, 1–14. https://doi.org/10.3390/polym12112646
Su, T., Zhang, T., Liu, P., Bian, J., Zheng, Y., Yuan, Y., Li, Q., Liang, Q., & Qi, Q. (2023). Biodegradation of polyurethane by the microbial consortia enriched from landfill. Appl. Microbiol. Biotechnol. 107, 1983–1995. https://doi.org/10.1007/s00253-023-12418-2
Tuohedi, N., & Wang, Q., (2021). Preparation and evaluation of epoxy resin prepared from the liquefied product of cotton stalk. Processes 9, 1417. https://doi.org/10.3390/pr9081417
Velayutham, T.S., Majid, W.H.A., Ahmad, A.B., Gan, Y.K., & Gan, S.N. (2009). The Physical and mechanical properties of polyurethanes from oleic acid polyols. J. Appl. Polym. Sci, 112, 3554–3559.
Wang, H., Chen, H., Chen, F., & Lu, Z. (2008). Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. Journal of the Chinese Institute of Chemical Engineers, 38 (2), 95–102. https://doi.org/10.1016/j.jcice.2006.10.004
Yeoh, F.H., Lee, C.S., Kang, Y., Wong, S.F., & Cheng, S.F., (2020). Production of biodegradable palm oil-based polyurethane as potential biomaterial. Polymers (Basel). 12, 1842.
Zaiton, S., Sheriza, M.R., Ainishifaa, R., Alfred, K., & Norfaryanti, K. (2020). Eucalyptus in Malaysia: Review on environmental impacts. J. Landsc. Ecoloyg(Czech Republic) 13, 79–94. https://doi.org/10.2478/jlecol-2020-0011
Zhang, H.R., Pang, H., Zhang, L., Chen, X., & Liao, B. (2013). Biodegradability of polyurethane foam from liquefied wood based polyols. J. Polym. Environ. 21, 329–334. https://doi.org/10.1007/s10924-012-0542-2
Zhang, J., Hori, N., & Takemura, A. (2020). Thermal and time regularities during oilseed rape straw liquefaction process to produce bio-polyol. J. Clean. Prod. 277, 124015. https://doi.org/10.1016/j.jclepro.2020.124015
Zheng, Z., Pan, H., Huang, Y., Chung, Y.H., Zhang, X., & Feng, H. (2011). Rapid liquefaction of wood in polyhydric alcohols under microwave heating and its liquefied products for preparation of rigid polyurethane foam. Open Mater. Sci. J. 5, 1–8. https://doi.org/10.2174/1874088X01105010001