Investigation of bacterial antigenic fragments OMPs as a potential vaccine candidate against vibriosis in TGGG
Keywords:
aquaculture, TGGG hybrid grouper, vaccine, immune responseAbstract
Aquaculture holds a crucial position in the economies of developing nations, making significant contribution to both food security and income. Despite its importance, aquaculture encounters challenges including bacterial infections threats like vibriosis that caused by Vibrio spp. Concerns regarding antibiotic resistance have prompted a shift towards usage of vaccine as a sustainable alternative treatment method. This study focused on the development of a fusion fragment protein GADPH-OmpK as a potential vaccine candidate against vibriosis in hybrid TGGG Grouper (Epinephelus fuscoguttatus x E. lanceolatus) and the impact it has on the expression of immune genes. The fusion fragment protein was successfully overexpressed and used to intraperitoneally immunize hybrid TGGG grouper. The immunogenetic expression of Interleukin-2, Interleukin-6 and Interferon-ϒ in the results indicated that the vaccine elicits a considerable immune response in the fish, demonstrating its potential in enhancing aquaculture sustainability. Overall, this research presents a promising avenue for advancing aquaculture practices and mitigating antibiotic resistance issues in fish farming since recombinant protein vaccine offer various advantages.
References
Baker‐Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & Martínez-Urtaza, J. (2018). Vibrio spp. infections. Nature Reviews Disease Primers, 4(1), 1–19.
Biller-Takahashi, J. D., & Urbinati, E. C. (2014). Fish Immunology. The modification and manipulation of the innate immune system: Brazilian studies. Anais Da Academia Brasileira De Ciencias, 86(3), 1484–1506.
Budiman, C., Rahim@Roslam, R. H., Nik Asri, N. A. A., & Amin, Z. (2022). In silico Analysis and Preliminary Expression of Antigenic Fragments of OmpK and GAPDH of Vibrio species. Malaysia Journal of Microbiology. [Manuscript submitted for publication]
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218.
Chong, R., Bousfield, B., & Brown, R. (2011). Fish Disease Management. In http://www.afcd.gov.hk/english/quarantine/qua_vb/qua_vb.html. Agriculture, Fisheries and Conservation Department, Hong Kong.
Cole, D., Cole, R., Gaydos, S., Gray, J. R., Hyland, G., Jacques, M. L., Powell-Dunford, N., Sawhney, C., & Au, W. W. (2009). Aquaculture: Environmental, toxicological, and health issues. International Journal of Hygiene and Environmental Health, 212(4), 369–377.
El-Galil, M. A., & Mohamed, M. (2012). First Isolation of Vibrio alginolyticus from Ornamental Bird Wrasse Fish (Gomphosus caeruleus) of the Red Sea in Egypt. Journal of Fisheries and Aquatic Science, 7(6), 461–467.
He, Y., Guo, X., Tan, B., Dong, X., Liu, H., Zhang, S., & Chi, S. (2021). Replacing fish meal with fermented rice protein in diets for hybrid groupers (Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂): Effects on growth, digestive and absorption capacities, inflammatory-related gene expression, and intestinal microbiota. Aquaculture Reports, 19, 100603.
Ina‐Salwany, M. Y., Al‐saari, N., Mohamad, A., Mursidi, F., Mohd‐Aris, A., Amal, M. N. A., Kasai, H., Mino, S., Sawabe, T., & Zamri‐Saad, M. (2018). Vibriosis in Fish: A review on Disease Development and Prevention. Journal of Aquatic Animal Health, 31(1), 3–22.
Kurniawan, S. B., Ahmad, A., Rahim, N. F. M., Said, N. S. M., Alnawajha, M. M., Imron, M. F., Abdullah, S. R. S., Othman, A. R., Ismail, N. I., & Hasan, H. A. (2021). Aquaculture in Malaysia: Water-related environmental challenges and opportunities for cleaner production. Environmental Technology and Innovation, 24, 101913.
Liao, I. C. and Leaño, E. M. (Eds.). (2008). The aquaculture of groupers. Asian Fisheries Society.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.
Makesh, M., Satyanarayana, N. V., Muddukrishnaiah, K., Kumar, S., Thiagarajan, G., Jangam, A. K., Subburaj, R., Kailasam, M., & Vijayan, K. (2023). Humoral immune response in Asian seabass vaccinated with inactivated and recombinant viral nervous necrosis vaccine. Aquaculture, 569, 739384.
Monir, M. S., Yusoff, M. S., Zamri‐Saad, M., Amal, M. N. A., Mohamad, A., Azzam-Sayuti, M., & Yasin, I. S. M. (2022). Effect of an Oral Bivalent Vaccine on Immune Response and Immune Gene Profiling in Vaccinated Red Tilapia (Oreochromis spp.) during Infections with Streptococcus iniae and Aeromonas hydrophila. Biology, 11(9), 1268.
Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., Atakpa, E. O., Agu, C. V., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29(46), 69241–69274.
Tall, A., Hervio-Heath, D., Teillon, A., Boisset-Helbert, C., Delesmont, R., Bodilis, J., & Touron-Bodilis, A. (2013 Diversity of Vibrio spp. isolated at ambient environmental temperature in the Eastern English Channel as determined by pyrH sequencing. Journal of Applied Microbiology, 114(6), 1713–1724.
Vinitnantharat, S., Gravningen, K., & Greger, E. (1999). Fish vaccines. In Advances in Veterinary Medicine (pp. 539–550).
Yang, X., Zhao, X., Wang, G., Dong, X., Yang, Q., Liu, H., Zhang, S., Tan, B., & Chi, S. (2022). Improvement of hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) by enzyme-digested poultry by-product: Growth performance, amino acid and peptide transport capacity, and intestinal morphology. Frontiers in Nutrition, 9.
Zhang, C., Yu, L., & Qian, R. (2007). Characterization of OmpK, GAPDH and their fusion OmpK-GAPDH derived from Vibrio harveyi outer membrane proteins: their immunoprotective ability against vibriosis in large yellow croaker (Pseudosciaena crocea). Journal of Applied Microbiology, 103(5), 1587–1599.