Thermal Diversity of Bacteria and Their Secrets to Cold Survival
Keywords:
Bacteria, Cold adaptation, Cold shock proteins, Extremophiles, GC content, Lipid membrane compositionAbstract
Temperature is a critical physical factor influencing the survival, growth, and metabolic activity of organisms on Earth. Changes in temperature alter molecular kinetic energy, thereby affecting chemical reaction rates and essential cellular processes. While most organisms exhibit optimal growth within a narrow temperature range, many bacteria display remarkable adaptability across diverse thermal conditions. Exposure to sudden decreases in ambient temperature triggers cold shock responses that enable bacterial adaptation to new growth conditions. Previous studies have shown that bacteria share common cold-adaptation strategies, including the upregulation of cold stress genes encoding proteins that facilitate translation by preventing the formation of inhibitory mRNA secondary structures. In addition, bacteria modify the lipid composition of their cell membranes by adjusting fatty acid chain length, saturation, and cis–trans configuration to maintain membrane fluidity under cold stress. Genomic GC content has also been implicated in thermal adaptation, as it influences DNA stability and growth capacity at different temperatures. Importantly, psychrophilic and psychrotolerant bacteria produce cold-active enzymes that remain functional at low temperatures. This review highlights current knowledge on bacterial cold adaptation mechanisms and discusses future research opportunities enabled by advanced multi-omics technologies.
References
Ahmad, S., Muflih, M. H., Al-Qadiri, H. M., & Hani, K. B. (2025). The extremophiles: Adaptation mechanisms and biotechnological applications. Biology, 14(4), 412.
Aliperti, L., Farfañuk, G., Couso, L. L., Soler-Bistué, A., Aptekmann, A. A., & Sánchez, I. E. (2024). r/K selection of GC content in prokaryotes. Environmental Microbiology, 26(2), e16511.
Aouar, B., Arrar, L., & Mezaache-Aichour, S. (2024). Advances in extremophile research: Biotechnological applications through isolation and identification techniques. Microbiology Open, 13(2), e1457
Barria, C., Malecki, M., & Arraiano, C.M. (2013). Bacterial adaptation to cold. Microbiology, 159, 2437-2443.
Basak, S., Mandal, S., & Ghosh, T.C. (2005). Correlations between genomic GC levels and optimal growth temperatures: some comments. Biochemical and Biophysical Research Communications, 327(4), 969-970.
Belozersky, A.N. & Spirin, A.S. 1958. A correlation between composition of deoxyribonucleic and ribonucleic acid. Nature, 182, 111-112.
Bennett, A.F. & Lenski, R.E. (1997). Evolutionary adaptation to temperature. VI. Phenotypic acclimation and its evolution in Escherichia coli. Evolution, 51(1), 36-44.
Beranová, J., Jemioła-Rzemińska, M., Elhottová, D. et al. (2008). Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Biochimica et Biophysica Acta – Biomembranes, 1778(2), 445-453.
Berger, F., Morellet, N., Menu, F. et al. (1996). Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. Journal of Bacteriology, 178(11), 2999-3007.
Cao-Hoang, L., Dumont, F., Marechal, P.A. et al. (2010). Inactivation of Escherichia coli & Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage. Archives of Microbiology, 192, 299-305.
Cavicchioli, R. (2006). Cold-adapted archaea. Nature Reviews Microbiology, 4(5), 331-343.
Champagne, C.P., Laing, R.R., Roy, D. et al. (1994). Psychrotrophs in dairy products: their effects and their control. Critical Reviews in Food Science and Nutrition, 34(1), 1-30.
Chien, A., Edgar, D.B., & Trela, J.M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology, 128(3), 1550-1557.
Dai, R., Sun, X., Zhu, J., Geng, J., & Wang, W. (2025). Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts. Nature Microbiology, 10(3), 856–867.
D’Amico, S., Collins, T., Marx, J. et al. (2006). Psychrophilic microorganisms: challenges for life. EMBO Reports, 7(4), 385-389.
Da Costa, W.L.O., de Aragão Araújo, C.L., Dias, L.M. et al. (2018). Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including arsenic resistance. PLoS One, 13(6), e0198965.
Deming, J. W. (2002). Psychrophiles and polar regions. Current Opinion in Microbiology, 5(3), 301-309.
De Maayer, P., Anderson, D., Cary, C. et al. (2015). Some like it cold: understanding the survival strategies of psychrophiles. EMBO Reports, 15(5), 508-517.
De Maayer, P. (2022). Freezing” Thermophiles: From One Temperature Extreme to Another. Microorganisms, 10(12), 2417.
Doniger, J., Landsman, D., Gonda, M.A., et al. (1992). The product of unr, the highly conserved gene upstream of N-ras, contains multiple repeats similar to the col-shock domain (CSD), a putative DNA binding motif. The New Biologist, 4(4), 389-395.
Farber, J.M. & Peterkin, P.I. (1991). Listeria monocytogenes, a food-borne pathogen. Microbiology Review, 55(3), 476-511.
Feller, G. (2013). Psychrophilic enzymes: from folding to function and biotechnology. Scientifica, 2013(1), 512840.
Freese, E. (1962). On the evolution of the base composition of DNA. Journal of Theoretical Biology, 3(1), 82-101.
Galtier, N. & Lobry, J.R. (1997). Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. Journal of Molecular Evolution, 44(6), 632-636.
Gounot, A.M. (1986). Psychrophilic and psychrotrophic microorganisms. Experientia, 42(11), 1192-1197.
Govil, T., Sharma, W., Salem, D. R., & Sani, R. K. (2021). Multi-omics approaches for extremophilic microbial, genetic, and metabolic diversity. In Extreme Environments (pp. 311-329). CRC Press.
Graumann, P. & Marahiel, M.A. (1998). A superfamily of proteins that contain the cold-shock domain. Trends in Biochemical Sciences, 23, 286-290.
Hamdan, A. (2018). Psychrophiles: ecological significance and potential industrial application. South African Journal of Science, 114(5-6), 1-6.
Hampil, B. (1932). The influence of temperature on the life processes and death of bacteria. The Quarterly Review of Biology, 7(2), 172-196.
Heddi, A., Charles, H., Khatchadourian, C., et al. (1998). Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G+C content of an endocytobiotic DNA. Journal of Molecular Evolution, 47(1), 52-61.
Horn, G., Hofweber, R., Kremer, W. et al. (2007). Structure and function of bacterial cold shock proteins. Cellular and Molecular Life Sciences, 64(12), 1457-1470.
Huber, R., Huber, H., & Stetter, K.O. (2000). Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiology Reviews, 24, 615-623.
Huber, R., Langworthy, T.A., König, H. et al. (1986). Thermotoga maritime sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90oC. Archives of Microbiology, 144(4), 324-333.
Hurst, L.D. & Merchant, A.R. (2001). High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proceedings of the Royal Society B: Biological Sciences, 268(1466), 493-497.
Ingraham, J.L. & Stokes, J.L. (1959). Psychrophilic Bacteria. Bacteriological Reviews, 23, 97-108.
Jin, B., Jeong, K.W., & Kim, Y. (2014). Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochemical and Biophysical Research Communications, 451(3), 402-407.
Jones, P.G., VanBogelen, R.A., & Neidhardt, F.C. (1987). Induction of proteins in response to low temperature in Escherichia coli. Journal of Bacteriology, 169, 2092-2095.
Kahlke, T. & Thorvaldsen, S. (2012). Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core-genome. PLoS One, 7(12), e51761.
Kembel, S. W., & Jones, A. E. (2022). Soil, ocean, hot spring, and host-associated environments reveal unique selection pressures on genomic features of bacteria in microbial communities. Nature Ecology and Evolution, 7(4), 570–580.
Lee, J., Jeong, K.W., Jin, B. et al. (2013). Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium. Biochemistry, 52(14), 2492-2504.
Lentzen, G. & Schwarz, T. (2006). Extremolytes: natural compounds from extremophiles for versatile applications. Applied Microbiology and Biotechnology, 72(4), 623-634.
Liu, B., Zhang, Y.H., & Zhang, W. (2014). RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcogensis, a bacterium harboring a single cold shock protein encoding gene. PLoS One, 9(3), e93289.
Lodish, H., Berk, A., Zipursky, S.L., et al. (2000). Molecular Cell Biology. New York: W.H. Freeman Publisher.
Madigan, M.T. & Martino, J.W. (2006). Brook Biology of Microorganisms (11th ed.). New Pearson Prentice Hall, New York.
Mansilla, M.C., Cybulski, L.E., Albanesi, D. et al. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of
Moyer, C.L. & Morita, R.Y. (2007). Psychrophiles and Psychrotrophs. New Jersey: John Wiley & Sons Ltd.
Musto, H., Naya, H., Zavala, A., et al. (2004). Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Letters, 573(1-3), 73-77.
Musto, H., Naya, H., Zavala, A., et al. (2006). Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochemical and Biophysical Research Communications, 347(1), 1-3.
Naya, H., Romero, H., Zavala, A. et al. (2002). Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. Journal of Molecular Evolution, 55(3), 260-264.
Nishio, Y., Nakamura, Y., Kawarabayasi, Y. et al. (2003). Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Research, 13, 1572-1579.
O’Driscoll, K., Princeton, N.J., Sambrotoo, R. et al. (2014). Bioremediation of persistent organic pollutants using thermophilic bacteria. US 2014/0042087 A1.
Panoff, J.M., Corroler, D., Thammavongs, B. et al. (1997). Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic Gram-positive bacterium, Enterococcus faecalis JH2-2. Journal of Bacteriology, 179(13), 4451-4454.
Plorde, J.J. (2004). Mycobacteria. In: Sherris Medical Microbiology (Ryan, K.J. & Ray, C.G., eds.), pp 439-456. McGraw-Hill Medical Publishing Division, New York.
Rajvaidya, N. & Markandey, D.K. (2006). Industrial Applications of Microbiology. A P H Publishing Corp, New Delhi.
Rajawat, A., Singh, A., & Gupta, P. (2022). Perspectives on the microorganism of extreme environments and their applications. Microbial Cell Factories, 21(1), 143.
Ranawat, P. & Rawat, S. (2017). Stress response physiology of thermophiles. Archive of Microbiology, 199, 391-414.
Russell, N.J. (1984). Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends in Biochemical Sciences, 9(3), 108-112.
Sandle, T. & Skinner, K. (2012). Study of psychrophilic and psychrotolerant micro-organisms isolated in cold rooms used for pharmaceutical processing. Journal of Applied Microbiology, 114(4), 1166-1174.
Stetter, K. O. (2022). A brief history of the discovery of hyperthermophilic life. Extremophiles, 26(6), 1-13.
Sun, B., Fan, C., Shi, X., Hu, Z., and Chen, J. (2025). Cold stress enhances cryotolerance in Lacticaseibacillus rhamnosus B6 via membrane lipid remodeling and differential protein expression. Current Research in Microbial Sciences, 9, 100453.
Teng, W., Liao, B., Chen, M., Shu, W., & Faucher, S. P. (2023). Genomic legacies of ancient adaptation illuminate GC-content evolution in bacteria. Microbiology Spectrum, 11(1), Article e02145-22.
Topanurak, S., Sinchaikul, S., Sookkheo, B. et al. 2005. Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold-shock stress. Proteomics, 5(17), 4456-4471.
Tronelli, D., Maugini, E., Bossa, F. et al. (2007). Structural adaptation to low temperatures – analysis of the subunit interface of oligomeric psychrophilic enzymes. The FEBS Journal, 274(17), 4595-4608.
Vieille, C. & Zeikus, G.J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65(1), 1-43.
Wang, H., Dell, A. I., Sinsabaugh, R. L., & Gittelson, O. D. (2022). A general theory for temperature dependence in biology. Proceedings of the National Academy of Sciences, 119(31), e2120058119.
Wu, H., Zhang., Z., Hu, S., et al. (2012). On the molecular mechanism of GC content variation among eubacterial genomes. Biology Direct, 7, 2.
Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M.D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acid Research, 34(2), 564-574.
Yamanaka, K. (1999). Cold shock respsonse in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 1(2), 193-202.
Yoshimune, K., Kawamoto, J., & Kurihara, T. 2013. Proteins involved in cold adaptation. In: Cold-adapted Microorganisms (Yumoto, I. ed.), pp. 97-107. National Institute of Advanced Industrial Science and Technology, Japan.
Yousefi-Nejad, M., Naderi-Manesh, H., & Khajeh, K. (2011). Proteomics of early and late cold shock stress of thermophilic bacterium, Thermus sp. GH5. Journal of Proteomics, 74(10), 2100-2111.
Zaini, N. A., Ismail, S. S., Low, V. L., Mahmud, M. H., Houssaini, J., Lee, W. Y., & Heo, C. C. (2024). Soil chemical properties associated with penguin carrion in Barton Peninsula, King George Island, Antarctica. Polar Biology, 47(7), 681-691.
Zdanowski, M. K., Zmuda, M. J., & Zwolska, I. (2005). Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biology and Biochemistry, 37(3), 581-595.
Zheng, H. & Wu, H. (2010). Gene-centric association analysis for the correlation between the guanine-cytosine content levels and temperature range conditions of prokaryotic species. BioMed Central Bioinfomatics, 11(11), S7.