Characterization of Lipase-Immobilized Polymethacrylate-based Monolith at Different Porogen Contents, Diameter, and Number of Holes for the Immobilization Process

Authors

  • Eryati Derman
  • Rahmath Abdulla
  • Clarence M. Ongkudon

Keywords:

Diameter, immobilization, lipase, polymethacrylate-based monoliths, porogen concentration

Abstract

Polymethacrylate-based monoliths have attracted a lot of attention due to their exceptional properties, such as reusability, solvent tolerance, and higher stability. This study investigates the physical characteristics and immobilization yield of lipase on polymethacrylate-based monoliths fabricated with varying porogen contents, hole diameters, and hole numbers. By systemically altering these structural parameters, this study aimed to elucidate their influence on monolith morphology, surface area, and pore architecture, which are critical for enzyme loading and catalytic performance. Immobilization yield was quantified via protein loading. Results revealed that the highest immobilization yield was achieved at 60% porogen concentration when varying the diameter and number of holes, with a yield of 58.67 ± 0.69%.At a diameter of 0.4 mm (18 holes) under varied porogen concentrations, immobilization yields of 57.50 ± 0.95% were obtained. In comparison, the simulation data predicted that the highest immobilization yield at a diameter of 0.3 mm (24 holes) with varied porogen concentration, yielding 55.90 ± 1.12% and immobilization yield of 58.90 ± 0.31% at 60% porogen content with different diameters and numbers of holes. These findings are crucial as they provide valuable insights into the design of tailored monolithic supports for biocatalytic applications, particularly in sustainable biodiesel production.

Author Biographies

Eryati Derman

Biotechnology Research Institute,
Universiti Malaysia Sabah,
Jalan UMS, 88400,Kota Kinabalu,
Sabah, Malaysia

Rahmath Abdulla

BioAgriTech Research Group,
Faculty of Science and Technology,
Universiti Malaysia Sabah,
Jalan UMS, 88400, Kota Kinabalu,
Sabah, Malaysia

Clarence M. Ongkudon

Biotechnology Research Institute,
Universiti Malaysia Sabah,
Jalan UMS, 88400, Kota Kinabalu,
Sabah, Malaysia

References

Afandizadeh, S., & Foumeny, E. A. (2001). Design of packed bed reactors :guides to catalyst shape , size , and loading selection. 21.

Aghabeigi, F., Nikkhah, H., Zilouei, H., & Bazarganipour, M. (2023). Immobilization of lipase on the graphene oxides magnetized with NiFe2O4 nanoparticles for biodiesel production from microalgae lipids. Process Biochemistry, 126(January), 171–185. https://doi.org/10.1016/j.procbio.2023.01.012

Bié, J., Sepodes, B., Fernandes, P. C. B., & Ribeiro, M. H. L. (2022). Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. In Processes (Vol. 10, Issue 3). https://doi.org/10.3390/pr10030494

Boudrant, J., Woodley, J. M., & Fernandez-Lafuente, R. (2020). Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 90, 66–80. https://doi.org/10.1016/j.procbio.2019.11.026

Chan, Y. W., Kansil, T., & Ongkudon, C. M. (2017). Analytical and preparative polymethacrylate monolith fabrication: effect of porogen content and column size on pore morphology. Colloid Polymer Science, 295, 2373–2382.

Cheng, W., Li, Y., Li, X., Bai, W., & Liang, Y. (2019). Preparation and characterization of PDA/SiO2 nanofilm constructed macroporous monolith and its application in lipase immobilization. Journal of the Taiwan Institute of Chemical Engineers, 104, 351–359. https://doi.org/10.1016/j.jtice.2019.09.013

Cornejo, I. (2021). A model for correcting the pressure drop between two monoliths. Catalysts, 11(11), 1–13. https://doi.org/10.3390/catal11111314

Coutinho, T. C. (2020). Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase. In Federal University of São Carlos, Graduate Program of Chemical Engineering. https://repositorio.ufscar.br/handle/ufscar/12468

Dharmegowda, I. Y., Muniyappa, L. M., Siddalingaiah, P., Suresh, A. B., Chandrashekarappa, M. P. G., & Prakash, C. (2022). MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization. Sustainability, 14, 11132.

Gustafsson, H. (2012). Enzyme Immobilization in Mesoporous Silica. Chalmers University of Technology.

Haghighi, F. H., Binaymotlagh, R., Palocci, C., & Chronopoulou, L. (2024). Magnetic Iron Oxide Nanomaterials for Lipase Immobilization: Promising Industrial Catalysts for Biodiesel Production. Catalysis Today, 14, 336.

Hermawan, B. A., Mutakin, & Hasanah, A. N. (2021). Role of porogenic solvent type on the performance of a monolithic imprinted column. Chemical Papers, 75(4), 1301–1311. https://doi.org/10.1007/s11696-020-01399-5

Kamin, Z., Abdulrahim, N., Misson, M., Chel Ken, C., Sarbatly, R., Krishnaiah, D., & Bono, A. (2020). Melt blown polypropylene nanofiber template for homogenous pore channels monoliths. IOP Conference Series: Materials Science and Engineering, 736(5), 052006. https://doi.org/10.1088/1757-899X/736/5/052006

Kar, R. K. (2025). Introduction to Metabolic Engineering and Application. Biologically-Inspired Systems Springer, Cham. https://doi.org/10.1007/978-3-031-93189-5_4. In D. Lahiri, M. Nag, D. Bhattacharya, & S. Ghosh (Eds.), Introduction to Metabolic Engineering and Application. Biologically-Inspired Systems (pp. 105–119). Springer Cham. https://doi.org/10.1007/978-3-031-93189-5

Luangon, B., Siyasukh, A., Winayanuwattikun, P., Tanthapanichakoon, W., & Tonanon, N. (2012). Flow-through immobilization of Candida rugosa lipase on hierarchical micro-/macroporous carbon monolith. Journal of Molecular Catalysis B: Enzymatic, 75, 80–85. https://doi.org/10.1016/j.molcatb.2011.11.017

Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. (2023). Enzyme Immobilization Technologies and Industrial Applications. ACS Omega, 8, 5184–5196. https://doi.org/10.1021/acsomega.2c07560

Panakkal, E. J., Cheenkachorn, K., Gundupalli, M. P., Kitiborwornkul, N., & Sriariyanun, M. (2021). Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol. Journal of the Indian Chemical Society, 98(12), 100264. https://doi.org/10.1016/j.jics.2021.100264

Parandi, E., Mousavi, M., Kiani, H., Rashidi Nodeh, H., Cho, J., & Rezania, S. (2023). Optimization of microreactor-intensified transesterification reaction of sesame cake oil (sesame waste) for biodiesel production using magnetically immobilized lipase nano-biocatalyst. Energy Conversion and Management, 295(September). https://doi.org/10.1016/j.enconman.2023.117616

Parandi, E., Safaripour, M., Abdellattif, M. H., Saidi, M., Bozorgian, A., Rashidi Nodeh, H., & Rezania, S. (2022). Biodiesel production from waste cooking oil using a novel biocatalyst of lipase enzyme immobilized magnetic nanocomposite. Fuel, 313(December 2021), 123057. https://doi.org/10.1016/j.fuel.2021.123057

Rahman, S. K. A., Yusof, N. A., Abdullah, A. H., Mohammad, F., Idris, A., & Al-lohedan, H. A. (2018). Evaluation of porogen factors for the preparation of ion imprinted polymer monoliths used in mercury removal. PLoS ONE, 13(4), 1–14. https://doi.org/10.1371/journal.pone.0195546

Rajnish, K. N., Samuel, M. S., J, A. J., Datta, S., Chandrasekar, N., Balaji, R., Jose, S., & Selvarajan, E. (2021). Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. International Journal of Biological Macromolecules, 182, 1793–1802. https://doi.org/10.1016/j.ijbiomac.2021.05.176

Sajjad, N., Orfali, R., Perveen, S., Rehman, S., Sultan, A., Akhtar, T., Nazir, A., Muhammad, G., Mehmood, T., Ghaffar, S., Al-taweel, A., Jilani, M. I., & Iqbal, M. (2022). Biodiesel Production from Alkali-Catalyzed Transesterification of Tamarindus indica Seed Oil and Optimization of Process Conditions. Molecules, 27, 3230.

Santos, S., Puna, J., & Gomes, J. (2020). A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. Energies, 13, 3013.

Serial, M. R., Schmidt, L., Adrian, M., Brauckmann, G., Benders, S., Bueschler, V., Liese, A., & Penn, A. (2026). A novel method for quantifying enzyme immobilization in porous carriers using simple NMR relaxometry. Biochemical Engineering Journal, 225, 109909. https://doi.org/10.1016/j.bej.2025.109909

Sheldon, R. A., Basso, A., & Brady, D. (2021). New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Royal Society 0f Chemistry: Chem Soc Rev, 50, 5850–5862. https://doi.org/10.1039/d1cs00015b

Silva, J. M. F., dos Santos, K. P., dos Santos, E. S., Rios, N. S., & Gonçalves, L. R. B. (2023). Immobilization of Thermomyces lanuginosus lipase on a new hydrophobic support (Streamline phenylTM): Strategies to improve stability and reusability. Enzyme and Microbial Technology, 163, 110166. https://doi.org/10.1016/j.enzmictec.2022.110166

Simbas, A. F., & Ongkudon, C. M. (2019). Parametric Studies of Polymethacrylate-based Monolith Fabrication. Transactions on Science and Technology, 6(3), 304–309.

Trubac, R. E., Dautzenberg, F. M., Griffin, T. A., Paikert, B., Schmidt, V. R., & Overbeek, R. A. (2001). Micro-engineered catalyst systems : ABB ’ s advancement in structured catalytic packings. 69, 17–24.

Volokitina, M. V., Nikitina, A. V., Tennikova, T. B., & Korzhikova-Vlakh, E. G. (2017). Immobilized enzyme reactors based on monoliths: Effect of pore size and enzyme loading on biocatalytic process. Electrophoresis, 38(22–23), 2931–2939. https://doi.org/10.1002/elps.201700210

Xie, W., & Huang, M. (2020). Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel. Renewable Energy, 158, 474–486. https://doi.org/10.1016/j.renene.2020.05.172

Yeh, S. I., Huang, Y. C., Cheng, C. H., Cheng, C. M., & Yang, J. T. (2016). Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics. Nature Publishing Group, 101, 1–7. https://doi.org/10.1038/srep29288

Zhang, H., Zhu, R., Shi, Y., Yu, X., Zhang, L., Li, Y., & Shi, G. (2023). Lipase immobilization using scalable and biocompatible lignin-based material as a carrier. Industrial Crops and Products, 193, 116241. https://doi.org/10.1016/j.indcrop.2023.116241

Zhao, F., Zhang, H., Zhang, Z., & Liang, Y. (2021). Preparation of mesoporous nanofilm constructed millimeter-sized macroporous SiO2 for lipase immobilization. Microporous and Mesoporous Materials, 323(May), 111227. https://doi.org/10.1016/j.micromeso.2021.111227

Zulqarnain, Mohd Yusoff, M. H., Nazir, M. H., Rahman, M. F. A., Yaqoob, H., Rashid, T., Hai, I. U., & Sher, F. (2023). Hybrid valorization of biodiesel production using sustainable mixed alcohol solvent. Environmental Technology & Innovation, 29, 102963. https://doi.org/10.1016/j.eti.2022.102963

Published

2025-12-31

How to Cite

Eryati Derman, Rahmath Abdulla, & Clarence M. Ongkudon. (2025). Characterization of Lipase-Immobilized Polymethacrylate-based Monolith at Different Porogen Contents, Diameter, and Number of Holes for the Immobilization Process. Borneo International Journal of Biotechnology (BIJB), 5. Retrieved from https://jurcon.ums.edu.my/ojums/index.php/bijb/article/view/7277
Total Views: 1 | Total Downloads: 0