Microalgae as Functional Feed in Fish Larval Rearing: Nutritional Value, Ecological Functions, and Future Prospects for Sustainable Aquaculture
Keywords:
Microalgae, Phytoplankton, Sustainable Aquaculture, Health benefit, Aquafeed, Fish Larvae NutritionAbstract
As global fish stocks decline and aquaculture expansion intensifies, sustainable larval rearing remains a critical challenge due to the high dependency on live feed such as rotifers and Artemia. Microalgae, as the foundational feed component, play a pivotal role in supporting larval nutrition, health, and water stability. While numerous reviews have discussed microalgae as nutritional supplements or live feed, few have comprehensively analyzed their multifunctional role as both nutritional and ecological components within larval rearing systems. This review uniquely integrates current understanding on microalgae’s biochemical composition, functional bioactivity, and ecosystem-level interactions that enhance larval survival, immunity, and water quality. It emphasizes the dual role of microalgae in nutrition and bioremediation, presenting an updated synthesis of species-specific applications and their suitability based on biochemical and physiological traits. Additionally, this review identifies emerging technological and bioprocessing innovations such as strain improvement, cell-wall modification, and integration with biofloc and circular bioeconomy systems that address limitations of cost, digestibility, and biochemical variability. By bridging nutritional, physiological, and environmental perspectives, this paper offers a holistic and practice-oriented framework for using microalgae as functional feed to enhance larval growth, health, and rearing sustainability in aquaculture.
References
Abreu, A. P., Martins, R., & Nunes, J. (2023). Emerging applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering, 10(8), 955.
Ahmad, A., W. Hassan, S., & Banat, F. (2022). An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered, 13(4), 9521-9547.
Anjaly, M. A., Sarasan, M., Kachiprath, B., Sukumaran, V., Singh, I. S. B., & Puthumana, J. (2025). Engineering the fish gut microbiome: Could it serve as future-proof strategy for sustainable aquaculture? Blue Biotechnology, 2, Article 6.
Annamalai, S. N., Das, P., Thaher, M. I., Abdul Quadir, M., Khan, S., Mahata, C., & Al Jabri, H. (2021). Nutrients and energy digestibility of microalgal biomass for fish feed applications. Sustainability, 13(23), 13211.
Ansari, F. A., Guldhe, A., Gupta, S. K., Rawat, I., & Bux, F. (2021). Improving the feasibility of aquaculture feed by using microalgae. Environmental Science and Pollution Research, 28(32), 43234-43257.
Arenas-Pardo, M. A., Gaxiola-Cortés, M. G., Barreto-Altamirano, A. F., Del Carmen Paredes-Medina, A., Palomino-Albarrán, I. G., Balam-Uc, P. M., Maldonado-Flores, J. C., & Álvarez-González, C. A. (2024). Changes in Digestive Enzyme Activities during Larval Development of Spotted Seatrout (Cynoscion nebulosus). Aquaculture Nutrition, 2024, 1–12. https://doi.org/10.1155/2024/1309390
Asghari, M., Yeganeh, S., & Hafezieh, M. (2025). Effect of Nannochloropsis oculata and Isochrysis galbana on growth, water quality, biofloc, carcass fatty acids profile, and intestinal bacteria in Nile tilapia (Oreochromis niloticus) raised in zero-water exchange system. Iranian Journal of Fisheries Sciences, 24(2), 305-331.
Bahi, A., Ramos‐Vega, A., Angulo, C., Monreal‐Escalante, E., & Guardiola, F. A. (2023). Microalgae with immunomodulatory effects on fish. Reviews in Aquaculture, 15(4), 1522-1539.
Barsanti, L., & Gualtieri, P. (2022). Algae: anatomy, biochemistry, and biotechnology. CRC press.
Basford, A. J., Makings, N., Mos, B., White, C. A., & Dworjanyn, S. (2021). Greenwater, but not live feed enrichment, promotes development, survival, and growth of larval Portunus armatus. Aquaculture, 534, 736331.
Batista, S., Pintado, M., Marques, A., Abreu, H., Silva, J. L., Jessen, F., Tulli, F., & Valente, L. M. (2020). Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. Journal of Applied Phycology, 32(5), 3429–3446. https://doi.org/10.1007/s10811-020-02185-2
Bayu, A., Noerdjito, D. R., Rahmawati, S. I., Putra, M. Y., & Karnjanakom, S. (2023). Biological and technical aspects on valorization of red microalgae genera Porphyridium. Biomass Conversion and Biorefinery, 13(14), 12395-12411.
Bhattacharjya, R., Marella, T. K., Kumar, M., Kumar, V., & Tiwari, A. (2024). Diatom‐assisted aquaculture: Paving the way towards sustainable economy. Reviews in Aquaculture, 16(1), 491-507.
Bleakley, S., & Hayes, M. (2021). Functional and bioactive properties of protein extracts generated from Spirulina platensis and Isochrysis galbana T-Iso. Applied Sciences, 11(9), 3964.
Bortolini, D. G., Maciel, G. M., Fernandes, I. D. A. A., Pedro, A. C., Rubio, F. T. V., Branco, I. G., & Haminiuk, C. W. I. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5, 100134.
Boyd, C. E., & McNevin, A. A. (2022). Overview of aquaculture feeds: Global impacts of ingredient production, manufacturing, and use. In Feed and feeding practices in aquaculture (pp. 3-28). Woodhead Publishing.
Carrillo, M., & Anchundia, M. (2024). “Antimicrobial and antioxidant capacity of Dunaliella salina, Tetraselmis chuii and Isochrysis galbana and their potential use in food.” a systematic review. CABI Agriculture and Bioscience, 5(1), 108.
Chen, J. Y., & Zeng, C. (2021). The effects of live prey and greenwater on the early larval rearing of orchid dottyback Pseudochromis fridmani. Aquaculture, 543, 737008. https://doi.org/10.1016/j.aquaculture.2021.737008
Chen, J. Y., & Zeng, C. (2021). The effects of live prey and greenwater on the early larval rearing of orchid dottyback Pseudochromis fridmani. Aquaculture, 543, 737008. https://doi.org/10.1016/j.aquaculture.2021.737008
Chuang, K. M. (2024). Development and Evaluation of Novel Microparticulate Technologies for the Delivery of Essential Nutrients to Marine Fish Larvae. The University of Maine.
Dammak, M., Hlima, H. B., Tounsi, L., Michaud, P., Fendri, I., & Abdelkafi, S. (2022). Effect of heavy metals mixture on the growth and physiology of Tetraselmis sp.: Applications to lipid production and bioremediation. Bioresource Technology, 360, 127584.
de Moraes, L. B. S., Santos, R. F. B., Gonçalves Junior, G. F., Mota, G. C. P., Dantas, D. M. D. M., de Souza Bezerra, R., & Olivera Galvez, A. (2022). Microalgae for feeding of penaeid shrimp larvae: an overview. Aquaculture International, 30(3), 1295-1313.
de Morais, E. G., Nunes, I. L., Druzian, J. I., de Morais, M. G., da Rosa, A. P. C., & Costa, J. A. V. (2022). Increase in biomass productivity and protein content of Spirulina sp. LEB 18 (Arthrospira) cultivated with crude glycerol. Biomass Conversion and Biorefinery, 12(3), 597-605.
Dey, T., Hossain, M. S., Kamal, M. M., Ghosh, P. K., Uddin, M. S., Alam, M. T., Mian, S., & Islam, M. J. (2025). Impact of Vitamin C on Growth, Haemato‐Immunological Characteristics and Stress Tolerance Capability of Climbing Perch, Anabas testudineus (Bloch, 1792). Aquaculture Fish and Fisheries, 5(2). https://doi.org/10.1002/aff2.70048
Dikel, S., & Demirkale, I. (2024). Global aquaculture feed market: Trends and challenges. In Proceedings of the 15th International Conference on Agriculture, Animal Science & Rural Development (pp. 24). Aydın, Türkiye.
El-Sayed, H. S., Ghanem, S. F., & Barakat, K. M. (2024). Role of recent feeding protocols, rearing water systems and microbial trends in improving marine larviculture: insights into water quality and larval performance. International Aquatic Research, 16(3).
El‐Sayed, A. F. M., & Izquierdo, M. (2022). The importance of vitamin E for farmed fish—A review. Reviews in Aquaculture, 14(2), 688-703.
Eldessouki, E. A., Elshopakey, G. E., Elbahnaswy, S., Shakweer, M. S., Abdelwarith, A. A., Younis,
E. M., ... & Eissa, E. S. H. (2024). Influence of astaxanthin-enriched Haematococcus pluvialis microalgae on the growth efficacy, immune response, antioxidant capacity, proinflammatory cytokines, and tissue histomorphology of hybrid red tilapia. Aquaculture International, 32(6), 7447-7468.
Fan, J., Bao, Q., Ma, K., Li, X., Jia, J., & Wu, H. (2022). Antioxidant and innate immunity of Danio rerio against Edwardsiella tarda in response to diets including three kinds of marine microalgae. Algal Research, 64, 102689.
Farahin, A. W., Natrah, I., Nagao, N., Yusoff, F. M., Shariff, M., Banerjee, S., ... & Toda, T. (2021). Tolerance of Tetraselmis tetrathele to high ammonium nitrogen and its effect on growth rate, carotenoid, and fatty acids productivity. Frontiers in Bioengineering and Biotechnology, 9, 568776.
Figueroa Villalobos, E., Pereira, W. A., Pérez‐Atehortúa, M., Sandoval‐Vargas, L., Romero, J., Oliveira, R. P., ... & Villasante, A. (2025). Influence of dietary fatty acids on fish sperm tolerance to Cryopreservation. Reviews in Aquaculture, 17(1), e12968.
Food and Agriculture Organization of the United Nations. (2024). The State of World Fisheries and Aquaculture 2024. FAO.
Food and Agriculture Organization of the United Nations. (2025). Review of the State of World Marine Fishery Resources – 2025. FAO. https://www.fao.org/family-farming/detail/en/c/1742236/
Fraser, T. W., Witten, P. E., Albrektsen, S., Breck, O., Fontanillas, R., Nankervis, L., Thomsen, T. H., Koppe, W., Sambraus, F., & Fjelldal, P. G. (2019). Phosphorus nutrition in farmed Atlantic salmon (Salmo salar): Life stage and temperature effects on bone pathologies. Aquaculture, 511, 734246. https://doi.org/10.1016/j.aquaculture.2019.734246
Gao, S., Chen, W., Cao, S., Sun, P., & Gao, X. (2024). Microalgae as fishmeal alternatives in aquaculture: Current status, existing problems, and possible solutions. Environmental Science and Pollution Research, 31(11), 16113-16130.
Goodrich, H. R. (2025). Fish gut plasticity and its role as a potential mechanism for coping with warming and hypoxia. Journal of Experimental Biology, 228(14), jeb249672.
Han, P., Lu, Q., Fan, L., & Zhou, W. (2019). A review on the use of microalgae for sustainable aquaculture. Applied Sciences, 9(11), 2377. https://doi.org/10.3390/app9112377
Hossain, M. S., Small, B. C., & Hardy, R. (2023). Insect lipid in fish nutrition: Recent knowledge and future application in aquaculture. Reviews in Aquaculture, 15(4), 1664-1685.
Hossain, S., Khatoon, H., Jamal, F., Islam, Z., & Kasan, N. A. (2022). Characterization of nitrogen stress-induced growth proximate and pigment contents of Nannochloropsis sp. Journal of Aquaculture Livestock Production, 115(3), 2-9.
Hounslow, E., Evans, C. A., Pandhal, J., Sydney, T., Couto, N., Pham, T. K., ... & Wright, P. C. (2021). Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. Biotechnology for Biofuels, 14(1), 121 International. https://doi.org/10.1007/s10499-023-01228-y
Islam, S. I., Mahfuj, S., Baqar, Z., Asadujjaman, M., Islam, M. J., Alsiwiehri, N., Almehmadi, M., Sanjida, S., & Ahammad, F. (2024). Bacterial diseases of Asian sea bass (Lates calcarifer): A review for health management strategies and future aquaculture sustainability. Heliyon, 10(9),e29793. https://doi.org/10.1016/j.heliyon.2024.e29793
Jang, B. I., Olowe, O. S., & Cho, S. H. (2022). Evaluation of the optimal protein required in granulated microdiets for rockfish (Sebastes schlegeli) larvae. Aquaculture Nutrition, 2022(1), 2270384.
Joly, L. J., Loots, C., Meunier, C. L., Boersma, M., Collet, S., Lefebvre, V., ... & Giraldo, C. (2021). Maturation of the digestive system of Downs herring larvae (Clupea harengus, Linnaeus, 1758): identification of critical periods through ontogeny. Marine Biology, 168(6), 82.
Jusidin, M. R., Othman, R., Shaleh, S. R. M., Ching, F. F., Senoo, S., & Oslan, S. N. H. (2022). In Vitro Antibacterial Activity of Marine Microalgae Extract against Vibrio harveyi. Applied Sciences, 12(3), 1148. https://doi.org/10.3390/app12031148
Khan, N. S., & Rahman, M. S. (2025). Zooplankton in Aquaculture: A Perspective on Nutrition and Cost‐Effectiveness. Aquaculture Research, 2025(1), 5347147.
Kousoulaki, K., Sveen, L., Norén, F., & Espmark, Å. (2022). Atlantic salmon (Salmo salar) performance fed low trophic ingredients in a fish meal and fish oil free diet. Frontiers in Physiology, 13, 884740.
Koven, W., Yanowski, E., Gardner, L., Nixon, O., & Block, B. (2024). Docosahexaenoic acid (DHA) is a driving force regulating gene expression in bluefin tuna (Thunnus thynnus) larvae development. Scientific Reports, 14(1), 23191.
Lahnsteiner, F., Lahnsteiner, E., & Duenser, A. (2023). Suitability of different live feed for first feeding of freshwater fish larvae. Aquaculture Journal, 3(2), 107–120. https://doi.org/10.3390/aquacj3020010
Lall, S. P., & Kaushik, S. J. (2021). Nutrition and metabolism of minerals in fish. Animals, 11(9), 2711. https://doi.org/10.3390/ani11092711
Li, X., Zheng, S., & Wu, G. (2021). Nutrition and functions of amino acids in fish. In Amino acids in nutrition and health: amino acids in the nutrition of companion, zoo and farm animals (pp. 133-168). Cham: Springer International Publishing.
Lim, C. E., Webster, C. D., & Li, M. H. (2024). Feeding practices. In Tilapia (pp. 547-559). CRC Press.
Liu, T., Chen, Z., Xiao, Y., Yuan, M., Zhou, C., Liu, G., ... & Yang, B. (2022). Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga Chlorella vulgaris. Microorganisms, 10(3), 566.
López-Pacheco, I. Y., Ayala-Moreno, V. G., Mejia-Melara, C. A., Rodríguez-Rodríguez, J., Cuellar-Bermudez, S. P., González-González, R. B., ... & Parra-Saldívar, R. (2023). Growth behavior, biomass composition and fatty acid methyl esters (FAMEs) production potential of Chlamydomonas reinhardtii, and Chlorella vulgaris cultures. Marine Drugs, 21(8), 450.