Antibiofilm Activity of Pseudomonas Sp. (Mb273n) Cell-Free Supernatant Against Pathogenic Bacteria

Authors

  • Izzah Mardhiyyah Nurrohmah
  • Anto Budiharjo
  • Zarina Amin

Keywords:

Bacterial biofilms, cell-free supernatant (CFS), biofilms of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus

Abstract

Bacterial biofilms pose a significant global health challenge due to their resistance to antibiotics and the host immune system, leading to persistent infections. Developing effective strategies to control biofilm formation is therefore crucial for preventing persistent infections. This study investigated the antibiofilm potential of the cell-free supernatant (CFS) from Pseudomonas sp. (MB273N) against biofilms of Escherichia coliPseudomonas aeruginosaStaphylococcus aureus, and Chromobacterium violaceum. Additionally, the study examined biofilm structural changes following CFS treatment. The CFS was obtained by centrifuging bacterial cultures three times at 11,000 rpm for 15 minutes. A biofilm inhibition assay was conducted to assess the antibiofilm activity of CFS at a sub-lethal concentration, and biofilm morphology was examined using scanning electron microscopy (SEM). Statistical analysis was performed using SPSS version 26. The CFS significantly (p<0.05) inhibited biofilm formation, with inhibition rates of 14.15% for E. coli, 32.46% for P. aeruginosa, 30.83% for S. aureus, and 37.5% for C. violaceum. SEM analysis revealed that untreated biofilms formed dense, multilayered structures, while CFS-treated biofilms appeared less dense, more dispersed, and exhibited altered cell morphology. The CFS of Pseudomonas sp. (MB273N) demonstrates potential as an antibiofilm agent against E. coliP. aeruginosaS. aureus, and C. violaceum, highlighting its possible application in biofilm control strategies.

Author Biographies

Izzah Mardhiyyah Nurrohmah

Department of Biology,
Faculty of Science and Mathematics,
Diponegoro University, Jl. Prof. Soedarto,
SH, Tembalang, 50275 Semarang,
Central Java, Indonesia.

Anto Budiharjo

Biotechnology Study Program,
Faculty of Science and Mathematics,
Diponegoro University, Jl. Prof. Soedarto,
SH, Tembalang, 50275 Semarang,
Central Java, Indonesia

Zarina Amin

Biotechnology Research Institute,
University Malaysia Sabah,
Jalan UMS, 88450, Kota Kinabalu,
Sabah, Malaysia.

References

Aiyer, K. S. and Vijayakumar, B. S. (2019). An improvised microtiter dish biofilm assay for non-invasive biofilm detection on microbial fuel cell anodes and studying biofilm growth conditions. Brazilian Journal of Microbiology 50(3), 769-775.

Al-Barhawee, N. I. K. and Al-Rubyee S. S. (2024). Inhibition of Biofilm Formation in Agrobacterium tumefaciens by Cell-Free Supernatants of Pseudomonas aeruginosa Analyzed by GC-MS. Baghdad Science Journal 21(7), 2222-2236.

Alisjahbana, B., Debora, J., Susandi, E. and Darmawan, G. (2021). Chromobacterium violaceum: a review of an unexpected scourge. International journal of general medicine 14, 3259-3270.

Alshammari, M., Ahmad, A. AlKhulaifi, M., Al Farraj, D., Alsudir, S., Alarawi, M., Takashi, G. and Alyamani, E. (2023). Reduction of biofilm formation of Escherichia coli by targeting quorum sensing and adhesion genes using the CRISPR/Cas9-HDR approach, and its clinical application on urinary catheter. Journal of Infection and Public Health 16(8), 1174-1183.

Arampatzi, S. I., Giannoglou, G. and Diza, E. (2011). Biofilm formation: A complicated microbiological process. Aristotle University Medical Journal 38(2), 21-29.

Asma, S.T., Imre, K., Morar, A., Herman, V., Acaroz, U., Mukhtar, H., Arslan-Acaroz, D., Shah, S. R. A. and Gerlach, R. (2022). An Overview of Biofilm Formation–Combating Strategies and Mechanisms of Action of Antibiofilm Agents. Life 2022 12(8), 1110.

Baquero, F., Moreno-Blanco, A. and del-Campo, R. (2024). Environmental Stress, Bacterial Cell Differentiation, and Antimicrobial Resistance.

Chaichana, N., Muneerungsee, N., Sukpondma, Y. and Sermwittayawong, N. (2023). Escherichia coli virulence inhibition by cell-free supernatants from mangrove forest bacteria producing quorum sensing inhibitor. LWT 185, 115182.

Chythanya, R., Karunasagar I. and Karunasagar. I (2002). Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain. Aquaculture 208(1-2), 1-10.

Davis, R. and Brown, P. D. (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. Journal of medical microbiology 65(4), 261-271.

Dimitrova, P. D., Ivanova, V., Trendafilova, A. and Paunova-Krasteva, T. (2024). Anti-Biofilm and Anti-Quorum-Sensing Activity of Inula Extracts: A Strategy for Modulating Chromobacterium violaceum Virulence Factors. Pharmaceuticals 17(5), 573.

Drumond M. M., Tapia-Costa, A. P., Neumann, E., Nunes, Á. C., Barbosa, J. W., Kassuha, D.E. and Mancha-Agresti, P. (2023). Cell-free supernatant of probiotic bacteria exerted antibiofilm and antibacterial activities against Pseudomonas aeruginosa: A novel biotic therapy. Front. Pharmacol 14, 1152588.

Duraisamy, S., Balakrishnan, S., Ranjith, S., Husain, F., Sathyan, A., Peter, A. S., Prahalathan, C. and Kumarasamy, A. (2020). Bacteriocin—a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environmental Science and Pollution Research 27: 44922-44936.

Famuyide, I. M., Aro, A. O., Fasina, F. O., Eloff, J. N. and McGaw, L. J. (2019). Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC complementary and alternative medicine 19, 1-13.

Famuyide, I. M., Fasina, F. O., Eloff, J. N and McGaw, L. J. (2020). The ultrastructural damage caused by Eugenia zeyheri and Syzygium legatii acetone leaf extracts on pathogenic Escherichia coli. BMC veterinary research 16(1), 326.

Ghrairi, T., Braiek, O. B. and Hani, K. (2014). Detection and characterization of a bacteriocin, putadicin T01, produced by Pseudomonas putida isolated from hot spring water. Apmis 123(3), 260-268.

Haney, E. F., M. J. Trimble, J. T. Cheng, Q. Vallé and R. E. W. Hancock. (2018). Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8(2), 29.

Haris, Z. and Ahmad, I. (2024). Green synthesis of silver nanoparticles using Moringa oleifera and its efficacy against gram-negative bacteria targeting quorum sensing and biofilms. Journal of Umm Al-Qura University for Applied Sciences 10(1), 156-167.

Husain F. M., Ahmad, I. Khan, M. S., Ahmad, E., Tahseen, Q., Khan, M. S. and Alshabib, N. A. (2015). Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Frontiers in microbiology 6, 420.

Kamer, A. M. A., Abdelaziz, A. A. Al-Monofy, K. B. and Al-Madboly, L. A. (2023). Antibacterial, antibiofilm, and anti-quorum sensing activities of pyocyanin against methicillin-resistant Staphylococcus aureus: in vitro and in vivo study. BMC microbiology 23(1), 116.

Kim, D. H., Kim Y. C. and Choi, U. K. (2011). Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Staphylococcus aureus using evolutionary operation factorial design technique. International journal of molecular sciences 12(4), 2395-2407.

Kim, Y. J., Yu, H. H., Park, Y. J., Lee, N. K. and Paik, H. D. (2020). Anti-biofilm activity of cell-free supernatant of Saccharomyces cerevisiae against Staphylococcus aureus. Journal of Microbiology and Biotechnology 30(12), 1854.

Liu, H., Zhang, R., Zhang, Q., Tian, M., Ren, X., Wang, L. and Wang, X. (2023). Antifungal Activity of Cell-Free Supernatants from Lactobacillus pentosus 86 against Alternaria gaisen. Horticulturae 9(8), 911.

Liu, J., Madec, J. Y., Bousquet-Mélou, A., Haenni, M. and Ferran, A. A. (2021). Destruction of Staphylococcus aureus biofilms by combining an antibiotic with subtilisin A or calcium gluconate. Scientific reports 11(1), 6225.

Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W. and Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis 141, 103980.

Matijašević, D., Pantić, M., Rašković, B., Pavlović, V., Duvnjak, D., Sknepnek, A. and Nikšić, M. (2016). The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella Enteritidis. Frontiers in Microbiology 7, 1226.

Meroni, G., Panelli, S., Zuccotti, G., Bandi, C., Drago, L. and Pistone, D. (2021). Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon?. Microbiology Research 12(4), 916–937.

Mishra, R., Panda, A. K., De Mandal, S., Shakeel, M., Bisht, S. S. and Khan, J. (2020). Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Frontiers in microbiology 11, 566325.

Mombeshora, M. and Mukanganyama, S. (2017). Development of an accumulation assay and evaluation of the effects of efflux pump inhibitors on the retention of chlorhexidine digluconate in Pseudomonas aeruginosa and Staphylococcus aureus. BMC research notes 10, 1-9.

Mulya, E. and Waturangi, D. E. (2021). Screening and quantification of anti-quorum sensing and antibiofilm activity of Actinomycetes isolates against food spoilage biofilm-forming bacteria. BMC microbiology 21, 1-8.

Mukti, K. (2019). Biofilm Inhibition of Pathogenic Bacteria by Mangrove Plant Extracts. Dissertation. Biotechnology Research Institute, University Malaysia Sabah, Malaysia.

Panphut, W., Budsabun, T. and Sangsuriya, P. (2020). In vitro antimicrobial activity of Piper retrofractum fruit extracts against microbial pathogens causing infections in human and animals. International Journal of Microbiology 2020(1), 5638961.

Raab, N. and Bachelet, I. (2017). Resolving biofilm topography by native scanning electron microscopy. Journal of Biological Methods 4(2), 1-5.

Ray, S., Jin, J. O., Choi, I. and Kim, M. (2023). Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity against Staphylococcus aureus. Applied Biochemistry and Biotechnology 195(9), 5379-5393.

Sanchez, C. J., Ward, C. L., Romano, D. R., Hurtgen, B. J., Hardy, S. K., Woodbury, R. L., Trevino, A. V., Rathbone, C. R. and Wenke, J. C. (2013). Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC musculoskeletal disorders 14, 1-11.

Saptami, K., Arokia Balaya Rex, D., Chandrasekaran, J. and Rekha, P. D. (2022). Competitive interaction of thymol with cviR inhibits quorum sensing and associated biofilm formation in Chromobacterium violaceum. International Microbiology 25(3), 629-638.

Snopková, K., Dufková, K., Chamrád, I., Lenobel, R., Čejková, D., Kosina, M., Hrala, M., Holá, V., Sedláček, I. and Šmajs, D. (2022). Pyocin‐mediated antagonistic interactions in Pseudomonas spp. isolated in James Ross Island, Antarctica. Environmental Microbiology 24(3), 1294-1307.

Theodora, N. A., Dominika, V. and Waturangi, D. E. (2019). Screening and quantification of anti-quorum sensing and antibiofilm activities of phyllosphere bacteria against biofilm forming bacteria. BMC research notes 12, 1-5.

van Teeseling, M. C., de Pedro, M. A. and Cava, F. (2017). Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Frontiers in microbiology 8, 1264.

Venkatramanan, M., Ganesh, P. S., Senthil, R., Akshay, J., Ravi, A. V., Langeswaran, K., Vadivelu, J., Nagarajan, S., Rajendran, K. and Shankar, E. M. (2020). Inhibition of quorum sensing and biofilm formation in Chromobacterium violaceum by fruit extracts of Passiflora edulis. ACS omega 5(40), 25605-25616.

Wahi, A. K., Singh, A. and Singh, A. K. (2011). Determination of minimum inhibitory concentration (MIC) of some novel triazole derivative. International Journal of Research in Pharmacy and Chemistry 1(4), 1108-1114.

Yu, S., Jiang, B., Jia, C., Wu, H., Shen, J., Hu, X. and Xie, Z. (2020). Investigation of biofilm production and its association with genetic and phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Annals of clinical microbiology and antimicrobials 19, 1-9.

Zagaglia, C., Ammendolia, M. G., Maurizi, L., Nicoletti, M. and Longhi, C. (2022). Urinary tract infections caused by uropathogenic Escherichia coli strains—new strategies for an old pathogen. Microorganisms 10(7), 1425.

Published

2025-12-25

How to Cite

Izzah Mardhiyyah Nurrohmah, Anto Budiharjo, & Zarina Amin. (2025). Antibiofilm Activity of Pseudomonas Sp. (Mb273n) Cell-Free Supernatant Against Pathogenic Bacteria. Borneo International Journal of Biotechnology (BIJB), 5. Retrieved from https://jurcon.ums.edu.my/ojums/index.php/bijb/article/view/7280
Total Views: 1 | Total Downloads: 1