
ABSTRACT

Malaria is a major health problem in various 
parts of the world especially affecting the 
tropical countries. It affects the vital organs 
causing severe complicated malaria. Clinical 
syndromes like severe cerebral anaemia, 
coagulation abnormalities, respiratory distress 
and severe anaemia can increase the mortality 
of malaria infected cases. Variation in individual 
susceptibility and severity and type of clinical 
presentations of malaria raises the need for study 
of both the parasite and host immune reactions 
as well as the contribution of inflammatory 
cytokines in malaria pathogenesis. This 
study explored the immunopathological 
basis and advances of severe malaria and 
their importance in pathogenesis of malaria 
and its complications. Previous and ongoing 
studies indicate that changes in endothelium 
during the sequestration of parasites in 
organs causes disruption of endothelial 
barrier function leading to serious effects of 
malaria. Parasite and host factors contribute 
to disturbance of cytokine regulation and 
escape of parasites from the immune system 
of the host. Immunopathological changes 
and dysregulation of cytokine production 
play central role in pathogenesis and disease 
severity in malaria. 

INTRODUCTION 

Malaria caused by the intracellular parasite 
Plasmodium, affects many people in the 
world especially those living in tropical 
countries. It affects the vital organs causing 
severe complicated malaria. Life-threatening 
complications such as cerebral malaria, 
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coagulation abnormalities, respiratory distress 
and severe anaemia can increase the mortality 
of malaria infected cases1. Variation in 
individual susceptibility and severity as well as 
type of clinical presentations of malaria raises 
the need for study of both the parasite and host 
immunopathological mechanisms. Cytokines 
released by the host cells upon induction by 
parasite surface antigens play important role 
in tissue damage and red cell sequestration 
seen in severe malaria. Immunopathological 
basis of severe malaria and their importance 
in outcome prediction and success of 
management should be explored.

Endothelial Activation  and Parasite 
Cytoadherence 

Endothelial activation is a major pathogenetic 
mechanism in malaria pathogenesis. 
Plasmodium falciparum erythrocyte 
membrane protein-1 from parasites (PfEMP) is 
a product of diverse var gene2 – 5.  PfEMP forms 
knobs on the parasitized red cell surface and 
binds ligands including CD36 and E-elastin on 
the endothelial cells which are then activated. 
Increased expression of adhesion molecules 
on endothelial surfaces occur and result in 
sequestration of red blood cells leading to 
ischaemia of the organ affected. Endothelial 
permeability is augmented by cytokine 
cascade3. The sequestration process results 
in firm adhesion of IEs to endothelial cells 
(ECs), monocyte recruitment, microcirculatory 
changes and induction of cytokine cascade 
causing local injury and dysfunction. 
Endothelial surface expression of intercellular 
adhesion molecule-1 (ICAM-1), endothelial 
protein C receptor (EPCR) and PECAM-1 are 
augmented in severe cases of falciparum 
malaria2. These augment the inflammation 
around the minute vessels and lead to tissue 
and endothelial injury of pulmonary and 
brain microvasculature causing acute lung 
injury and disruption of blood brain barrier in 
cerebral malaria. 

 ICAM-1 and EPCR are receptors involved 
in cerebral malaria6. Studies showed that 
some haemoglobinopathies cause limited red 
cell invasion by the parasites. Haemoglobin 
S causes sickling of parasitized red cells 
rendering protection of malaria. Homozygous 
(HbSS) and heterozygous (HbAS) states 
have host microRNA (mRNA) profiles which 
after fusion with parasite mRNA render 
inhibition of parasite growth intracellularly. 
Host polymorphism that affects P. falciparum 
erythrocyte membrane protein-1 (PfEMP-1) 
may protect against malaria by impairing 
the parasite’s ability to cytoadherence to 
microvessels7 – 9. Spleen is a major organ to 
remove malaria parasites from the circulation. 
Cytoadherence of malaria parasites is vital to 
the parasite survival to escape from splenic 
removal10.  Virulence of the parasites differs 
according to the ability of cytoadherence 
through several parasite receptors such as 
plasmodium EMP1 (PfMP1). PfEMP1 proteins 
mediate cytoadhesion of parasitized red cells 
lining cells of the organ microvasculature. 
pfEMP1 has dual binding specificity and these 
structures can be divided into group A (EPCR 
binders) and group B (CD 36 binders). Cerebral 
malaria is caused by dual binding of PfEMP 
to ICAM-1 and endothelial protein C receptor 
(EPCR) and this fact can be implicated in 
prevention of cerebral malaria in future11 – 13. 

Host Immunopathogenesis

In endemic areas of malaria, there is 
development of immunity by forming 
acquired antibodies against variant surface 
antigen (VSA) such as PfEMP, MSP3 and GLURP 
(RO)11. Microparticles derived from platelets or 
parasitized RBC are seen in association with 
cerebral malaria in the sites of inflammation. 
Platelet-derived microparticles activate the 
capillary endothelium and regulate the pro-
inflammatory cytokine production leading 
to increased vascular permeability14, 15. 
Overproduction of TNFα, IL-1β and chemokines 
induced by plasmodium glycophosphoinositol 
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(GPI) are responsible for disease mortality and 
deterioration6, 16. Antibodies to GPI is closely 
correlated with parasitaemia and disease 
severity15 – 18. Cytokine cascade is augmented 
by some chromosomal proteins called high 
mobility group box chromosomal protein 
1 (HMGB1) which is secreted by activated 
mononuclear cells and passively through 
damaged cells.  Levels of  HMGB1 has been 
shown to parallel with disease severity 
and  to induce permeability in endothelial 
cells, induce proinflammatory responses in 
macrophages through activation ofTLR2, 
TLR4, or receptor for advanced glycation end 
products (RAGE)19, 20.  Elevated levels of HMGB1 
can be used as a prognostic marker of disease 
severity in severe malaria20, 21. IFNγ plays a 
crucial role in the clearance of intracellular 
pathogen by inducing the MHC molecules22. It 
also causes expression of gene encoding IDO 
(indoleamine 2, 3-dioxygenase), a rate limiting 
enzyme of tryptophan metabolism that can 
generate quinolinic acid (QA). Increased central 
level of QA is implicated in the causation of 
hyperexcitability, dementia and neurological 
dysfunctions seen in complicated malaria23. 
CD40/CD40 ligand binding is important 
for binding of TNF activated platelets to 
the endothelial cells24, 25. IL-1 increases the 
expression of ICAM1 and the production of 
cytokines (such as IL-6) by endothelial cells24. 
Microparticles or moieties derived from 
blebbing of membranes of platelets and other 
cells during malaria infection. Platelet-derived 
microparticles can modulate the macrophage 
pro-inflammatory cytokine production and 
increase the endothelium permeability 26. 
Cell mediated immunity contributed by CD4+ 
T cells has a major role in immunity against 
malaria infection, both in pre-erythrocytic and 
erythrocytic stage27, 28. They help to produce 
IFNγ and help B cells in control of malaria. 
People living in endemic areas of malaria 
possess IFNγ and IL-10 secreting CD4+ T cells28. 

Cytokines-Enhanced Haematological 
Abnormalities 

Disseminated intravascular coagulation (DIC) 
is a life-threatening disorder occurring as a 
secondary to malaria. Expression of tissue 
factor (TF) is essential in initiation of blood 
coagulation. It occurs when the endothelial 
cells (EC) are exposed to pRBC. Initial stage 
of coagulation cascade after TF expression 
is escalated by amplification, propagation, 
and consolidation contributed by active role 
of sequestered pRBC and activated platelets 
at the sequestered sites29. Severe anaemia 
in malaria can be caused by lysis of infected 
and uninfected RBCs, splenic sequestration 
of RBCs30 dyserythropoiesis and bone marrow 
suppression31, erythrophagocytosis32 and 
chronic transmission of malaria in endemic 
regions. P. falciparum-derived haempozoin 
pigment (PfHz) and cytokines (TNF and 
IFN) promotes the host immune response 
and potentially causes suppression of the 
erythropoietic response32.

Role of Microglial Cells and Apoptosis in 
Malaria 

Plasmodium apoptosis-linked pathogenicity 
factors (PALPF), PALPF-2, PALPF-5 can 
induce endothelial cell death in lining cells 
of microcapillaries in brain and lungs  in 
severe malaria which are responsible for the 
development of acute respiratory distress and 
neurological abnormalities in severe malaria33. 
CD8+ T cells act by direct cytotoxicity on 
endothelial cells by apoptosis or granzyme-
induced lysis of cells. This can lead to disruption 
of blood-brain-barrier and development of 
cerebral malaria. Microglial cells are activated 
in human cerebral malaria and shown to 
produce matrix enzyme, metalloproteinase, 
and induce cytokines which can be applied in 
destruction of blood brain barrier and spread 
of infection to the central nervous system and 
neuron survival34, 35.  



6

Borneo Journal of Medical Sciences 12 (3) Sept, 2018:  3 – 1011 (3): 35 – 38

Malaria Pigment: A Potential Prognostic 
Marker

Accumulation of haemozoin pigment (HZ) in 
the phagocytic cells of the immune system is 
used in the diagnosis and prognosis of malaria36. 
P. falciparum-derived haempozoin pigment 
(PfHz) promotes the host immune response by 
activating NOD-like receptor of macrophages 
and potentially causes suppression of the 
erythropoietic response37, 38.  It can cause 
monocyte and macrophage dysfunction by 
impairing phagocytosis and the expression of 
MHC class II molecules and ICAM1, inhibiting 
dendritic cell (DC) maturation and proliferative 
responses by leucocytes38.

Role of Nuclear Histones

Histones are acid-soluble proteins found in 
chromatin complexes released on rupture of 
parasites and host cells. Level of circulating 
histones in patients with falciparum malaria 
is correlated positively with disease severity39. 
Histones can cause endothelial permeability 
and cytotoxicity by causing disruption of 
junctional proteins leading to cell death. 
Activation of toll like receptor (TLR2) and 
other receptors induces the release of IL-8 
and other inflammatory mediators. Research 
is in progress to find out the potential uses 
of rhAPC that can cleave histones in hope to 
inhibit the cytokine induction and vascular 
permeability40, 41.

Host Susceptibility
  
Susceptibility and severity of malaria infection 
is determined by a variety of host factors. Red 
blood cells carrying haemoglobin S (HbAS), 
HbAE, G6PD deficiency and alpha and beta 
thalassemia have reduced risk of developing 
severe anaemia by various protective effects 
such as reduced red cell invasion or impaired 
multiplication of parasites42. There are 
increased susceptibility and risk of severe 
malaria in individuals with polymorphism 
of adhesion molecules and cytokine such as 

ICAM-1, PECAM1, TLR, CXCL10 and tumour 
necrosis factor (TNF)43 – 48.   

Host and Parasite Macrophage Inhibitory 
Factors (MIF) 

Macrophage migration inhibitory factor 
(MIF) is a cytokine produced mainly by host 
macrophages. It regulates the expression of 
TNF α and inflammatory mediators such as 
nitric oxide and cyclooxygenase 2 (COX 2)49. 
Plasmodium MIF (pMIF) is secreted when 
the parasites ruptured in schizont stage and 
they are exposed to immune cells. Levels 
of plasmodium MIF (pMIF) are positively 
correlated with parasitaemia, TNF a and IL-
10. pMIF attenuates Plasmodium virulence by 
modulating functions of monocytes in host 
immune responses49 – 51.

Vector-Parasite Association Affecting the 
Parasite Virulence

Studies have shown that vector mortality 
varies significantly among the different 
genotypes of parasites and environmental 
conditions52. Mosquitoes not only act as 
vectors but also modify the virulence of 
parasites. Transcriptomic studies showed after 
several blood passages, there is an expression 
of PIR gene in blood-stage parasites and 
increased virulence53. Mosquito transmission 
modifies the diversity and magnitude of gene 
such as rifin and var54 in malaria parasite which 
progress through each step of the lifecycle in 
both vector and host55, 56.  

CONCLUSION

Understanding of basic and advances in 
immunopathological processes that cause 
endothelial barrier dysfunction, sequestration 
of parasites, destructive effects of host and 
parasite factors and cytokine storm in malaria 
infection explains the need for defining 
clinical biomarkers of outcome. It also helps to 
identify possible new targets for management 
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in severe falciparum malaria such as trial of 
rhAPC to regulate the endothelial dysfunction 
and monoclonal anti-cytokine antibody or 
other drugs that block cytokine such as TNF to 
inhibit the activated macrophages.
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