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ABSTRACT. Count observations with high frequencies of zero counts abound in diverse fields. In
actuary science, for example, insurance claims are often underreported, leading to a higher frequency
of zero counts. This invariably reduces the mean and leads to over-dispersion. Different techniques to
model such occurrences exist. This study uses the cubic rank transmutation map to compound the
weighted exponential distribution and obtain a new count distribution in the mixed Poisson paradigm.
The zero-inflated form of the proposition is obtained along with some mathematical properties.
Simulated skewness, kurtosis, and dispersion index for the new distributions reveal they are suitable for
model dispersed observation with positive skewness. Five datasets with high frequencies of zero counts
are used to assess the performance of the new distribution along with some popular count distributions
by using the maximum likelihood for parameter estimation. Results show that the natural form of the new
proposition performs creditably better than its zero-inflated forms, even when there is a higher
proportion of zero counts. The classical negative binomial distribution is also observed to outperform
its zero-inflated form in most cases. In contrast, the zero-inflated Poisson distribution better fits the
datasets than the classical Poisson distribution.

KEYWORDS: Mixed Poisson distribution, mixing distribution, rank transmutation map, weighted
exponential distribution, excess zero counts.

INTRODUCTION

Results obtained from count data modelling may be misleading if there are too many or too few zero
counts. Zero-deflation arises when the zero frequency in a dataset is lower than the expected frequency,
while zero inflation occurs when there are too many zero counts. The former is rare, while the latter is
more observed (Conceicéo et al., 2017). The Poisson distribution is often considered for modelling count
data (Tajuddin & Ismail, 2022; Wagh & Kamalja, 2017). The distribution assumes equality of mean and
variance for observations (Ong et al., 2021). Observations with a relatively higher frequency of zero
counts are usually dispersed (Sellers & Raim, 2016). Since most count data are dispersed ( Adetunji &
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Sabri, 2021), there is model misspecification when the classical Poisson distribution is assumed for
dispersed observation (Asamoah, 2016). In order to overcome challenges that characterize the Poisson
distribution, several methods that can handle dispersed count observations with excess zero have been
proposed (Das et al., 2018; Ong et al., 2021). One of the techniques often utilized for modelling such
observation is the mixed Poisson, first proposed in the early 20th century (Greenwood & Yule, 1920)
when the gamma distribution is assumed for the parameter of the classical Poisson distribution resulting
in the negative binomial distribution. The process of obtaining a mixed Poisson distribution involves
assuming a continuous distribution (called the mixing distribution) with positive supports for the
parameter of the Poisson distribution.

Several choices of mixing distributions have been proposed to improve the flexibility and general
applicability of the mixed Poisson paradigm. A detailed survey on the choice of the mixing distribution
is provided in Ong et al. (2021), while Karlis & Xekalaki (2005) gave several properties of the mixed
Poisson distribution.

In this study, the cubic rank transmutation map (Rahman et al., 2019) is used to extend the
weighted exponential distribution (Gupta & Kundu, 2009) and obtain a new mixing distribution assumed
for the parameter of the Poisson distribution. The mixing distribution is used to obtain a new mixed
Poisson distribution and its zero-inflated form.

Zero-inflated distribution is often used to model observations with several zeros by assigning an
extra probability to zero occurrences (Lambert, 1992). The distribution is applied when the frequency of
excess zeros is assumed to have come from two processes; the first, where zero counts are obtained by
chance like the ones, twos, etc., and the second are obtained when some data are constrained to be zeros
(Lambert, 1992; Shahmandi et al., 2020). The claim frequency in actuary science is an example of such
modelling since observed zeros could have been from two scenarios. A policyholder may have no claim
(no case of an accident) reflecting a true zero. Also, there are situations when the policyholder may be
involved in a minor accident and hence, may have no urge to report such for a claim, mainly due to the
usually cumbersome processes and procedures involved in getting the claim.

MATERIALS AND METHOD

Weighted Exponential Distribution
The weighted exponential distribution (Gupta & Kundu, 2009) with the CDF defined in equation (1) as:

G(t) =1->e™%(a+1-e ) 1)

Gupta and Kundu (2009) showed that the shape of equation (1) is identical to that of other two-parameter
continuous distributions like generalized exponential, Weibull, and gamma, hence can be used as their
alternative. The 3-parameter form of the distribution was proposed by Altun (2019). Zamani et al. (2014)
used the mixing distribution to obtain a new mixed Poisson distribution with applications in claim
frequency.
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Cubic Rank Transmutation Map

Several extensions of different baseline distributions have been proposed to improve flexibility and
general applicability. Among many recently proposed techniques are: the Quadratic Transmutation (QT)
map (Shaw & Buckley, 2007); and Cubic Rank Transmutations (CRT) map (Al-kadim, 2018; Aslam et
al., 2018; Rahman et al., 2019). Given a baseline distribution with distribution function G(t), the cubic
rank transmutation map (Rahman et al., 2019) has the CDF given in equation (2) as:

F(t) = 1 -p)6(@) +3p(6®)° - 2p(6®)’
)

Inserting equation (1) into equation (2) gives the distribution function for the Cubic Transmuted
Weighted Exponential Distribution (CTWED) in equation (3) as:

-0t_ ,—(1+a)0t_
F(t) = ((a+1)e :3 + a) (pae—(1+a)9t _ 4p(a + 1)6—(2+a)6t + 2p6—2(1+a)6t _ pa(a +

e % + 2p(a+ 1)%2e2t — a?) (3)
The corresponding PDF is obtained in equation (4) as:

f() = Q(Z:l) [—6p(2a + 3)e=(2a+30t 4 6p(a + 1)(a + 3)e~ @+t 4 g2(p — 1)e~(a+DOL
6pa(a + 2)e~(@+20t 4 gpe=3(a+D)0t 4 gyge=2(a+DOt _ 61 (q + 1)2 739 4 6pa(a + 1)e 20t —
a’(p — De™%] (4)
wn
= 8=0.50, p=0.00, a=0.50
- =050, p=0.25, a=1.50
8=0 50, p=050. a=2 50
< | 6=0.50. p=0.90. a=5 50
o
© |
o
N -
o
N /
o — !
o |

T T I T T
0 2 B 6 8 10

Figure 1. Shapes of the PDF of the CTWED
Figure 1 shows that the PDF of the CTWED is positively skewed and unimodal.

Moment and Moment Generating Function

Proposition 1: If a random variable T has a CTWED, the r' moment is obtained in equation (5) as:
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N _ ((a+D7! —6p 6p(a+1) . a?(p-1) __6pa 2p 3pa _ 2p(a+1)?
E@) = ( a3er ) <(2a+3)r (a+3)"  (a+D)™1  (a+2)" + 3" (a+1)"+1 + 2" (a+1)"H1 37 +
3pa(a+1) 2 _

———a (p 1)) )
Proof

E(t") =ftrf(t) dt

0

zftre(a+1)

= [—6p(2a + 3)e~(a+30t 4 6p(a + 1)(a + 3)e~ @+t 4 g2(p — 1)e~(a+Dot

0 — 6pala + z)e—(a+2)9t + 6pe—3(a+1)9t + 6pae—2(a+1)9t — 6p(a+ 1)26_39t
+ 6pala + 1)e 2% — a?(p — 1)e %] dt
e(z;rl) [-6p(2a + 3) f0°° tTe~(2a*t30qt 4 6p(a + 1)(a + 3) f0°° £~ (@30t e 4 q2(p —
1) f0°° tre—(a+)ot gp _ 6pala + 2) f0°° tTe—(a+2)0t s 4 6p f0°° tTe—3(a+)6t g 4
6pa f0°° tTe~2@tOt g _ 6p(a + 1)2 f0°° t" e=30tdt + 6pa(a + 1) f0°° tTe~20tdt — q?(p —
1) fooo t"e~0dt|

_ (9(a+1)r!) <—6p(2a+3) 6p(a+1)(a+3) = a?(p-1) _ 6pa(a+2) 6p 6pa _ 6p(a+1)?

+
a39r+1 (2a+3)1"+1 (a+3)r+1 (a+1)r+1 (a+2)r+1 3T+1(a+1)‘r'+1 2T+1(a+1)‘r'+1 37+1

6pa(a+1)
T a*(p — 1))

_ ((a+1)r!) —6p 6p(a+1) . a?(p-1) __6pa n 2p n 3pa _ 2p(a+1)? n 3pa(a+1)
—\ a36r (2a+3)"  (a+3)"  (a+1)™1  (a+2)T  3T(a+1)THT  2T(a+1)T+L 37 27
a*(p — 1))

Proposition 2: If a random variable T has a CTWED, the MGF is obtained in equation (6) as:

E(eZt) _ 6(a+1) (—6p(2a+3) 6p(a+1)(a+3) ., a?(p-1) _ 6pa(a+2) 6p n 6pa _ 6p(a+1)? n
T a3 2a60+360 —z af+360-z af+0—z af+20-z 3a0+360—-z 2a60+20-z 30—z
6pa(a+1) a? (p—l))
20—z 60—z (6)

Proof

[ee]
E(e?) = f e?tf(t) dt

0

= fooo et _e(aa+1) [—6p(2a + 3)e=(a+30t 4 6p(a + 1)(a + 3)e~ @+t 4 g2(p — 1)e~(@+DOL

6pa(a + 2)e~(@+20t 4 gpe=3(a+D)0t 4 gy ge=2(a+D0t _ 61 (q + 1)2e 739 4 6pa(a + 1)e =20t —
a?(p — De %] dt
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6(a+1 ‘
= (a3 ).f(_6p(2a+ 3)6_(2a9+39—2)t+6p(a+ 1)(a+3)e—(a9+39—z)t
0

+ aZ(p _ 1)6—(a9+6—z)t _ 6pa(a + Z)e—(a9+29—z)t + 6pe—(3a9+39—z)t
+ 6pae—(2a8+20-2t _ gp(q 4 1)2 ¢=G9-Dt 4 gpa(q + 1)e~20-Dt
—a%(p —1)e @)qe

_ 8(a+1) ( —6p(2a + 3) N 6p(a+ 1)(a + 3) N a’(p—1) B 6pa(a + 2) N 6p

a3 2060 + 30 —z ad +30 —z a@+0—z ab+20—z 3a0+360-—z
N 6pa 6p(a + 1)? +6)0a(a+ 1) a’(p—1)
2a0 + 20 — z 30 —z 20 — z 60—z

Mixed Poisson CTWED

Proposition 3: Given that a random variable X~Poisson(T) and T~CTWED (6,p,a). A discrete
random variable X has a mixed Poisson-CTWED (PCTWED) if its PMF is defined in equation (7) as:

p = 9(a+1)(6p(a+1)(a+3) ___6p(2a+3) a’(p-1) ____6pa(a+2) n 6p n
x a3 (1+af+30)*+t1  (1+2a0+30)*+1 ' (1+a6+60)a+1  (1+af+20)*+1 = (14+3af+36)x+1
6pa _ 6p(a+1)? 6pa(a+1l) az(p—l)) (7)
(142a0+26)*+t1  (1+309)*+1 (1+26)*+1  (1+0)x+1
Proof
x,—t
P, = f ‘ ; H(Cix: L [—6p(2a + 3)e=(a+30t 4 6p(a + 1)(a + 3)e~(a+3)0t

0
+ a2(p _ 1)6—(a+1)9t _ 6pa(a + Z)e—(a+2)9t + 6pe—3(a+1)9t + 6pae—2(a+1)9t

—6p(a+1)% e + 6pala + 1)e 2% —a?(p — e ] dt
f(a+1 r
= (a3—x')] t*(6p(a + 1)(a + 3)e~(1+ad+30)t — 6p(2q + 3)e~(1+2a0+30)t
0

+ az(p _ 1)8—(1+a6+6)t _ 6pa(a + z)e—(1+a9+26)t + 6pe—(1+3a9+36)t
+ 6pae—(1+2a9+26)t _ 6p(a + 1)2 e—(1+39)t + 6pa(a + 1)8—(1+29)t
_ az(p _ 1)8—(1+6)t) dt

_0(a+1)(6pla+1)(a+3) 6p(2a + 3) a’(p—1) 6pa(a + 2)
CE ((1 a0 1300 (1+2a0 +30)° T (1+af +0)1 (1 +ad + 20)°1
6p 6pa 6pla+1)> 6pa(a+1)
T A +3a0 136 T (1+2a0 + 2601 (1 +30)*1 | (11 20)7+1
a’(p—1)
~tra)

Sub-Model: Equation (7) becomes the PMF of the mixed Poisson Weighted Exponential Distribution
(Zamani et al., 2014) when the p = 0.
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Figure 2 shows different shapes of the PCTWED for different parameter values. The figure reveals that
the distribution is suitable for unimodal distribution and observations with excess zeros, resembling the
shapes of the PDF of the CTWED in Figure 1.
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Figure 2. Shapes of the PMF of the PCTWED

The CDF of the PCTWED
Proposition 4: The CDF of a random variable X with the PCTWED is defined in equation (8) as:

F —1_ ( 6p(a+1)? _ 6p(a+1) (p-1) _ 6p(a+1) 2p
(x) - a3(1+ab+36)*t1  a3(1+2a0+30)**1  a(1+ab+0)**t1  a2(1+ab+26)**1 * a3(1+3ab6+30)*+1
3p _ 2p(a+1)3 3p(a+1)? _ (p—l)(a+1)) (8)
aZ(1+2a0+20)**1  a3(1+30)*+t1  a2(1+20)**1 a(1+6)x+1
Proof
F(X) = P(X <x)
=1-PX >x)
—
k=x+1
—1-y2 6(a+1) (6p(a+1)(a+3) ___6p(2a+3) a?(p-1) ___6pa(a+2) 6p
- k=x+1" 43 \(1+a6+30)k*+1  (1+2a0+30)Kt1 ' (1+a6+6)k+1  (1+af+20)k+1 ' (1+3af+36)k+1
6pa _ 6p(a+1)? 6pa(a+l) az(p—l))
(142a0420)k+1  (14360)k+t1 * (1420)k+1  (140)k+1
—1— 6(a+1) ( 6p(a+1)(a+3) _ 6p(2a+3) a?(p-1) _ 6pa(a+2) n
- a3 0(a+3)(1+af+30)*+t1  9(2a+3)(1+2a6+360)*+1 * g(a+1)(1+ab+0)*t1  G(a+2)(1+af+26)x+1

6p n 6pa 6p(a+1)? 6pa(a+1) a?(p-1) )
_— _— Zero-Inflated Poi
30(a+1)(143a0+30)%+1 | 20(a+1)(142a0+20)X+1  30(1+30)*+1 ' 20(1420)%+1  20(1+6)x+1 ) o nratearomsson
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_ 6p(a+1)? 6p(a+1) (p-1) 6p(a+1) 2p
- (a3(1+a9+30)x+1 T a3(1+2a6+36)x+1 + a(1+af+6)*t1  a2(1+af+20)*+1 + a3(1+3a6+36)x+1 +
3p 2p(a+1)3 3p(a+1)? (p—-1)(a+1)
a?2(1+2a6+20)*+1 - a3(1+30)*t1 ° q2(1+20)x+1 - a(1+9)x+1)

Mathematical Properties of the PCTWED

Proposition 5: If f(t) is the PDF of the mixing distribution for a discrete random X, the Probability
Generating Function (PGF) is obtained as:

[00]

P.(2) = f et=D £(r)de

0

r O(a+1
= j et@-1) flat1) = ) [6p(a + 1)(a + 3)e~(+3)0t — gp(2a + 3)e~(2a+3)6t
0

+ a2 (p _ 1)6—(a+1)6t _ 6pa(a + z)e—(a+2)9t + 6pe—3(a+1)9t + 6pae—2(a+1)9t
—6p(a+ 1)? e73% + 6pa(a + 1)e 2% — a2(p — 1)e %]d¢

0(a+1 r
= —( PE ) f(6p(a + 1)(a + 3)e~(1+ab+30-2)t _ (g 4 3)e~(1+2a6+36-2)t
0

+ az(p _ 1)6—(1+a9+9—z)t — 6pala + Z)e—(1+a9+29—z)t + 6pe—(1+3a9+39—z)t
+ 6pae—(1+2a9+9—z)t _ 6p(a + 1)2 e~ (1+36-2)t 6pa(a + 1)6—(1+29—z)t
— aZ(p — 1)6_(1+9_2)t)dt

Therefore, the PGF is obtained in equation (9) as

P (Z) _ 6(a+1) (6p(a+1)(a+3) ___6p(2a+3) a?(p-1) __6pa(a+2) n 6p n

X a3 (1+ab6+36-2) (1+2a6+360-2z) (1+ab+6-z) (1+ab+20-z) (1+3a6+36-2)
6pa 6p(a+1)? = 6pa(a+1) a?(p-1)

(1+2a0+6-2) (1+36-2) = (1+20-2) (1+9—z))

©9)

The Moment Generating Function (MGF) is obtained in equation (10) by replacing z with e in equation

(9).

M (Z) _ 6(a+1) (6p(a+1)(a+3) _ 6p(2a+3) a’(p-1) ___6pa(a+2) 6p
X a3 (1+a6+36-e%) (142a6+36—-e%) (1+ab+6—-e?) (1+ab+26-e2) (1+3a6+36—-e%)
6pa _ 6p(a+1)? 6pa(a+1l) az(p—l)) (10)
(1+2a6+6—-e2) (1+36—e%) (1+20—e%) (1+0-e?%)

The first four central moments are obtained in equations (11) - (14) as:

(12-2p)a*+(102-15p)a3+(318—34p)a®+(432—-38p)a+216—19p

E(X) = 60(a+1)(a+2)(a+3)(2a+3)

(11)
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E(XZ) _ (6(1+a)) (12p(a+1)(a+3) 6p(a+1)(a+3) 12p(2a+3)  6p(2a+3) 2a%(p-1) | a?(p-1) _
a3 (aB+36)3 (aB+30)2 (2a6+360)3  (2a6+36)2 (a6+0)3 (a8+86)2
12pa(a+2) 6pa(a+2) 12p 6p 12pa 6pa 8p(1+a)?-27pa(1+a)+36a?(p—-1)
(a6+20)3  (a0+20)2 ' (3a6+30)% ' (3a0+360)2 ' (2a0+20)3 ' (2a6+20)% 1863 N
4p(1+a)?-9pa(1+a)+6a?(p-1)
662 ) (12)
E(X?’) _ (6(a+1)) ( 36p n 36p n 6p _ 36p(2a+3) _ 36p(2a+3) _ 6p(2a+3)
a3 (3a6+30)*  (3aB+360)3  (3aB+360)2 (2a6+30)* (2a6+30)3 (2a6+36)2
36pa 36pa 6pa 36p(a+1)(a+3) 36p(a+1)(a+3) 6p(a+1)(a+3) 36pa(a+2)
(2a0+20)* ' (2a0+20)3 ' (2a0+26)2 (a0+30)* (a6+36)3 (a0+30)2  (aB+20)*
36pa(a+2) 6pa(a+2) , 6a%(p-1) , 6a%(p-1) . a?(p-1) 216a?(p-1)-81pa(a+1)+16p(a+1)?
(a0+260)3  (aB+260)2 ' (a0+6)* +(a9+9)3 (a6+6)2 3604 -
36a?(p—1)-27pa(a+1)+8p(a+1)? _ 4p(a+1)2—9pa(a+1)+6a2(p—1)) (13)
663 662
E(X4) _ (9(a+1)) ( 144p 216p 84p n 6p _ 144p(2a+3) _ 216p(2a+3) _
a3 (3aB+360)>  (3aB+360)*  (3a6+360)3 = (3aB+30)2 (2a0+30)° (2a0+30)*
84p(2a+3) 6p(2a+3) 144pa 216pa 84pa 6pa 144p(a+1)(a+3)
(2a6+36)3 - (2a8+30)2 ~ (2a0+20)5 + (2a6+20)*  (2a6+268)3  (2a6+20)2 (aB+36)5 +
216p(a+1)(a+3) . 84p(a+1)(a+3) , 6p(a+1)(a+3) 144pa(a+2) 216pa(a+2) 84pa(a+2) 6pala+2)
(af+36)* (a6+36)3 (a0+36)2  (aB+20)5  (a0+20)*  (aB+20)3  (af+26)2
24a?%(p-1) . 36a%(p-1) , 14a%(p-1) . a?(p-1) 32p(a+1)?+1296a?(p—-1)-243pala+1)
(af+6)5 (af+0)* (a8+6)3 ' (aB+6)2 5465 -
16p(a+1)2+216a?(p—-1)-81pa(a+1) 56p(a+1)2+252a%(p-1)-189pala+1) 4p(a+1)?+6a?(a-1)-9pala+1)
604 N 1863 h 602 )
(14)

Skewness and Kurtosis

The skewness and kurtosis for the PCTWED are obtained from the central moments (De Jong & Heller,
2008) as:

_ E(X3)—3E(X2)E(X)+2(E(X))3

Sk 3
(Vvar(x))2
E(X4)—4E(X3)E(X)+6E(X2)(E(X))2—3(E(X))4

Kurt =
w (Var(x))®

Tables 1 — 3 show simulated Skewness, Kurtosis, and Dispersion Index for some parameters distribution.

Table 1. Skewness for some parameters of the PCTWED
a=0.5 a=25 a=17.5
60=0.1 6=2.0 60=10.00=0.1 60=2.0 0=10.0|0=0.1 6=2.0 60=10.0
p=-0.9 168 244 406 | 176  3.08 582 | 1.94 427 8.80
p=-05| 182 248 415| 189  3.13 597 | 203 4.36 9.04
p=00| 200 250 425| 202 318 6.17| 210 4.48 9.38
p=05| 210 246 435| 205 320 6.38| 206 4.59 9.76
p=0.9 177 234 441 174  3.18 655| 180 4.67  10.09
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Table 2. Kurtosis for some parameters of the PCTWED
a=205 a=25 a=75
0=0.1 0=2.0 0=10.060=0.1 60=2.0 60=10.0|0=01 60=2.0 6=10.0
p=-09 6.60 10.61 21.61 7.06 1446  39.12 7.96 23.38  82.65
p=-05 756 1098  22.30 790 14.83  40.80 8.62 2415  86.98
p=0.0 9.02 1125 23.06 9.09 1513  43.03 9.39 2506 93.01
p=05]| 10.40 10.97 23.59 9.93 1501  45.33 959 2576  99.84
p=0.9 8.72 9.82 23.68 8.17 1434  47.16 7.96 26.02 105.97

Table 3. Dispersion Index for some parameters of the PCTWED
a=0.5 a=25 a=75
60=0.1 6=2.0 60=10.00=01 60=20 0=10.0|0=0.1 6=2.0 6=10.0
p=-09| 986 144 1.09| 4.80 1.19 1.04| 256 1.08 1.02
p=-05| 899 140 1.08 | 4.42 1.17 1.03| 241 1.07 1.01
p=00| 767 133 1.07| 3.86 1.14 1.03| 2.18 1.06 1.01
p=05 6.00 1.25 1.05 3.14 1.11 1.02 1.88 1.04 1.01
p=0.9 4.35 1.17 1.03 2.44 1.07 1.01 1.59 1.03 1.01

Remarks:

For fixed p and a, skewness and kurtosis increase while the dispersion index decreases as 6 increases.
When p and 6 are fixed, skewness and kurtosis increase while the dispersion index reduces as a increases.
For fixed a and 8, skewness, kurtosis increase while the dispersion index decreases as p increases in
most cases. Both skewness and kurtosis peak at p = 0.5.

Maximum Likelihood Estimation of the PCTWED

Given random samples of size n drawn from the PCTWED with (6, p, a) as defined in equation (7), the
log-likelihood function for the distribution is obtained in equation (15) as:

_on 6(a+1) (6p(a+t1)(a+3)  6p(2a+3) a?(p-1) ____6pa(a+2) 6p
t= Zi:l log ( a3 ((1+a9+36))x+1 (1+2a6+360)**1 ~ (1+ab+6)**t1  (1+af+20)*+1 T (1+3a6+30)x+1 t
6pa _ 6p(a+1)? 6pa(a+1l) az(p—1)> (15)
(1+2a6+20)*+t1  (1+4309)x+1 (1+26)*t1  (1+0)x+1

Estimators for (8, p,a) denoted with (8,p,a) are the solutions for the log-likelihood function. The
equations form a non-linear equation system that can only be solved numerically. This research uses the
optimr function (Nash et al., 2019) in the R language (R-Core Team, 2020) is used.

Zero-Inflated PCTWED

Proposition 6. If a discrete random variable X has a PCTWED with PMF P, and its realization at x = 0
as Py. If the zero-inflation parameter is denoted with m, then a discrete random variable X, has a zero-
inflated PCTWED if its PMF is defined in equation (16) as:
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szz{n+(1 m)Py,, x =0 (16)
1-mP, x=1,23,...
where
p = 9(a+1)(6p(a+1)(a+3) ____6p(2a+3) a%(p-1) ___6pa(a+2) 6p n
X a3 (1+aB+30)%*t1  (1+2a06+30)**+1 ~ (1+aB+0)atl  (1+a6+20)%+t1 = (1+3a0+30)x+1
6pa 6p(a+1)? 6pa(a+1) a?(p-1)
(1+2a0+20)Xt1  (1+430)X+1 | (1+20)X+1 (1+9)X+1)
and
p = 6(a+1) (6p(a+1)(a+3) __6p(2a+3) a?(p-1) __ 6pa(a+2) 6p 6pa _ 6p(a+1)? n
0™ 43 (1+ab6+30) (1+2a6+30) (1+ab+6) (1+ab+208) (1+3a6+360) (1+2a6+20) (1+30)

6pa(a+1l) a? (p—l))
(1+206) (1+06)
Proof

The proof is obtained by appropriate substitution. Hence the result.

Mathematical Properties of the Zero-Inflated PCTWED

If the PGF of the PCTWED is denoted with P,(z), then the PGF of the Zero-Inflated PCTWED denoted
by PZ(z) is obtained using: PZ(z) = (1 — m)P,(2)
Hence, the PGF of the Zero-Inflated PCTWED is given in equation (17) as:

7 _ _ 6(a+1) (6p(a+1)(a+3) ____6p(2a+3) a’(p-1) __6pa(a+2) 6p
Px (Z) - (1 T[)< (1+a6+36-2) (1+42a6+36-2) (1+ab+6-2) (1+ab+26-2z2) (1+3a6+360-2) T

a3
6pa _ 6p(a+1)? = 6pala+1) _ az(p—l))
(142a6+6-2z) (14360-z) (1+20-z) (14+6-2)
17)
The corresponding MGF is therefore expressed in equation (18) as:
7 _ _ f(a+1) (6p(at1)(a+3) 6p(2a+3) a?(p-1) ___6pa(a+2)
Mx (Z) - (1 T[)< a3 ((1+a9+39—et) (1+2a6+30-et)  (1+ab+6—et) (1+ab+20-et)

6p 6pa _ 6p(a+1)? 6pa(a+1l) az(p—l)) (18)
(143a6+360—et)  (1+2a6+0-et) (1+30-et) (1+20-z) (1+6-e?)

If the r'" raw moment of the PCTWED is denoted by E(X™), then the r'" raw moment of the zero-inflated
PCTWED is generally defined as:

m, =E(Xz) =1 -mEX")

Given the first four raw moments of the PCTWED as E(X), E(X?), E(X?), and E(X*) as obtained in
equations (11) to (14), the first four raw moments of the zero-inflated PCTWED are given in equations
(19) to (22).

m; = (1 —-m)E(X) (19)
m, = (1 —mE(X?) (20)
ms; = (1 —m)EX3) (21)
my, =1 -mEX? (22)
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The variance, dispersion index, skewness, and kurtosis are obtained respectively from equations (19) to
(22) as:

Var(Xz) = m, — [m1]2

. Var(X,)
=
ms — 3mym, + 2(m,)3
Sk = i
(Var(Xz))?
my — 4mgm, + 6m,(m;)? — 3(my)*
kurt =

(Var(x,))

Maximum Likelihood Estimation of the Parameter of Zero-Inflated PCTWED

If a random variable X is assumed to follow the Zero-Inflated PCTWED with PMF PZ indexed with
parameter (6, p, a, ), then the distribution parameters can be estimated using the MLE method. The
likelihood function is defined as:

£(0,p,a,7) = 1_[(71 +(1=m)P,) ﬂ(u —MP(x > 0))

where: n, is the frequency of zero in the observation; n, is the frequency of non-zero observations; the
sample size n = (ny + ny), Py is the realization of P, at x = 0. The log-likelihood function is obtained
as:

L=nyIn(r+ (1 —n)Py) +n;In(1 —m) + Z In(P,)

ng
_ _ (a+1) (6p(a+1)(a+3)  6p(2a+3) a?(p-1) __ 6pa(a+2) 6p
=noln <ﬂ+ (1 n)( a3 ( (1+af+36) (1+2a6+360) = (1+ab+6) (1+ab+20)  (1+3ad+36)
6pa _ 6p(a+1)?  6pala+1) _ a’(p-1) _ 8(a+1) (6p(a+1)(a+3)
(142a6+26) (1+36) T (1+26) (1+6) ))) Ty ln(l n’) T 2"1 ln( a3 ((1+a6+39)x+1
6p(2a+3) a?(p-1) ___6pa(a+2) 6p 6pa 6p(a+1)? 6pa(a+1)

(14+2a6+360)*+*1 ° (1+abB+6)*+*1  (1+af+20)**1 = (1+3af+30)**1 + (14+2a6+20)*+t1  (14360)*+t1 ~ (1+20)*+1
a?(p-1)

(1+9)x+1) )

ot _ no(1-Py) ny

o m+(1-mp, (1-m)

A~ n n P,
vy Y
nq n \1-Py

*_yq

The MLE for parameters space (6, p, a, ) are obtained numerically by solving s—i =0, 2—2 =0, p

and Z—Z = 0. This is done using different algorithms that come with the optimr package (Nash et al.,
2019) in R language (R-Core Team, 2020).
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APPLICATIONS

Data

Five count datasets characterized by many zeros are considered to assess the performance of the
PCTWED and zero-inflated PCTWED. The new propositions are compared with the Poisson and
negative binomial distributions (along with their respective zero-inflated forms). Dataset I consists of the
number of claims on motorcycle insurance from WASA (a Swedish Insurance Firm) from 1994 — 1998.
The data has been previously utilized (Omari et al., 2018) on count distributions. The second dataset is
the number of automobile insurance policies in Australia between 2004 and 2005, as previously presented
in De Jong and Heller (2008). Dataset I11 comprises of frequency of claim insurance in a Belgium firm
in 1993. The data was used to assess claim distributions (Zamani et al., 2014). The fourth dataset is the
frequency of claims of 10, 814 policyholders of a Turkish insurance firm between 2012 and 2014. The
data were assessed on Poisson-related distributions (Meytrianti et al., 2019). The fifth dataset is the yeast
cell counts per square, as previously examined on Poison Lindley distribution (Shanker & Hagos, 2015).
All five datasets are dispersed and positively skewed, with very high percentages of zero counts (table
4).

Table 4. Summary of Datasets

X  Datasetl Dataset Il Dataset Il Dataset IV Dataset V

0 63878 63232 57178 8544 128

1 643 4333 5617 1796 37

2 27 271 446 370 18

3 18 50 81 3

4 2 8 23 1

% of 0 98.96 93.19 90.33 79.01 68.45
Dispersion Index 1.07 1.08 1.08 1.26 1.32
Kurtosis 118.26 18.50 14.59 7.71 2.80
Skewness 10.46 4.07 3.52 2.56 1.75

RESULTS AND DISCUSSION

With the least values of the chi-square statistic and — LL, the proposed distribution (PCTWED) provide
the best fit to the first dataset (table 5) while its zero-inflated form (ZI-PCTWED) performs worst. It is
also observed that the negative binomial distribution (another mixed Poisson distribution) performs better
than its zero-inflated form, while the ZIP performs better than the Poisson distribution.

For the second dataset (table 6), the PCTWED also gives the best fit with the lowest values of
both — LL and chi-square statistic. Like the first data, the ZiNB also performs better than the classical
negative binomial distribution, while the ZIP performs better than the Poisson distribution.

Table 7 shows that the ZiNB best fits the third dataset; the PCTWED follows this. The ZI-
PCTWED gives the worst fit to the data with the highest values of both — LL and chi-square.

Tables 8 and 9 show that the new proposition (PCTWED) best fits both datasets IV and V. The
negative binomial provides a better fit than its zero-inflated form, while the ZIP gives a better fit than

12 | Pa ge https://jurcon.ums.edu.my/ojums/index.php/borneo-science



Transmuted Weighted Exponential Distribution: Properties and Applications
the Poisson distribution for both datasets. Dataset V has the lowest percentage of zero counts among the

five datasets assessed. The ZI-PCTWED gives a relatively better fit in this dataset than the negative
binomial distribution and its zero-inflated form.

Table 5. Data | (Swedish Claim Frequency)

X Freq. PCTWED ZI-PCTWED Poisson ZIP Neg. Bin. ZiNB
0 63878  63878.13 63877.74 63854.63 63878.11 63877.73 63893.56
1 643 642.83 632.94 689.63 643.61 644.62 629.97
2 27 26.76 37.38 3.72 25.58 24.43 23.26
0 89.097 504.897 0.011 0.080 0.154 0.003
Estimates p -4.759 -0.761 0.864 0.934 0.926
-4.926 -3.590 -40.710
T -54.232
—LL 3840.44 3853.79 3872.00 3840.88 384150 3857.32
Chi-Square 0.00 3.04 148.64 0.08 0.27 0.88
Table 6. Data Il (Australian Claim Frequency)
X Freq. PCTWED ZI-PCTWED Poisson ZIP Neg. Bin. ZiNB
0 63232  63230.90 63239.55 63091.61 63230.49 63230.60 63317.89
1 4333 4332.84 4310.28 4593.07 4325.83  4330.57 4252.49
2 271 273.98 305.84 167.19 286.59 276.48 261.98
3 18 17.14 0.33 4.06 12.66 17.22 21.45
4 2 1.07 0.00 0.07 0.42 1.06 1.97
0 15.167 387.325 0.073 0.133 1.157 0.007
Estimates p -0.045 -5.445 0.451 0.941 0.878
a 9.406 -4.253 -76.060
T -135.921
—LL  18049.64 18148.72 18101.50 18052.20 18049.68 18105.58
Chi-Square 0.89 2585.95 177.66 9.07 0.98 48.15
Table 7. Data 111 (Belgium Claim Frequency)
X Freq. PCTWED ZI-PCTWED Poisson ZIP Neg. Bin. ZiNB
0 57178 57178.64 57187.37 56949.763 57177.48 57188.34 57249.63
1 5617 5598.70 5587.71 6019.590 5584.80 5581.31 5558.90
2 446 477.08 523.00 318.135 504.87 485.28 438.37
3 50 40.67 0.91 11.209 30.43 40.47 45.91
4 8 3.57 0.01 0.296 1.38 3.30 5.40
0 9.573 271.157 0.106 0.181 1.279 0.008
Estimates P 0.354 -6.343 0.415 0.924 0.843
a 13.223 -4.312 -71.130
T -111.862
—LL  22063.30 22311.68 22150.54 22075.30 22064.31 22136.57
Chi-Square 9.74 10122.64 413.84 51.55 12.33 2.44
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Table 8. Data IV (Turkish Claim Frequency)

X Freq. PCTWED ZI-PCTWED Poisson ZIP Neg. Bin. ZiNB
0 8544 8545.14 8544.04 8292.42 8544.19  8543.47 8561.78
1 1796 1789.69 1771.07 2201.64 1759.23  1795.62 1807.66
2 370 380.67 49220 292.27 430.75 375.71  331.89
3 81 78.92 6.34 25.87 70.31 78.50 81.03
4 23 15.78 0.33 1.72 8.61 16.39 22.23
0 4.353 41.119 0.266 0.490 1.009 0.006
Ectimates " -0.506 -4.526 0.458 0.792 0.635
a 12.831 -4.408 -82.430
T -19.730
- LL 7029.56 7334.26 7153.16 7038.91 7029.71 7057.06
Chi-Square 2.68 2452.35 484.41 35.02 2.84 4.52
Table 9. Data V (Yeast cell counts per square)

X Freq. PCTWED ZI-PCTWED Poisson ZIP Neg.Bin. ZiNB
0 128 127.31 127.48 118.06 128.00 126.73 180.68
1 37 38.36 35.34 5430 3835 42.08 4.51
2 18 16.72 21.26 12.49 1549 12.84 1.15
3 3 3.86 2.51 1.91 4.17 3.80 0.39
4 1 0.65 0.35 0.22 0.84 111 0.15
0 9.003 97.851 0.4609 0.808 1.195 0.004

Ectimates P -12.457 -0.232 0.431 0.722  0.490
a 0.013 -1.467 -11.720

T -31.216
—LL 168.60 170.31 173.83 168.80 170.02 172.05
Chi-Square 0.53 1.92 12.16 0.81 2.88 517.31
CONCLUSION

The skewness, kurtosis, and dispersion index for some parameter combinations are presented to assess
the behaviour of the distributions. The shapes of the PCTWED show that it can be effectively utilized to
model observations with an unusual frequency of zeros.

Performances of the new propositions are assessed on five count observations with varying
percentages of zero counts. Comparisons are made with the Poisson and negative binomial distributions
(along with the irrespective zero-inflated forms). The maximum likelihood estimation using different
algorithms that come with the optimr package in R-language is used to provide estimates for the
parameters of the distributions. The chi-square goodness of fits and the — LL are used for model selection.
Results show that the PCTWED outperforms its zero-inflated form in particular and all the competing
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distributions in most cases. The classical negative binomial distribution provides a better fit for datasets
with above 70% of zero counts than its zero-inflated form. In contrast, the zero-inflated Poisson
outperforms the Poisson distribution in all cases.

The finding shows that mixed Poisson distributions and the negative binomial distribution (when
the gamma distribution is used as the nixing distribution) are naturally suitable to model observation with
higher than usual zero counts in count observation. Therefore, it is unnecessary to obtain their zero-
inflated form to model observations with many zero counts.
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