

MICROBIOLOGICAL ASSESSMENT OF NOODLES SOLD AT RAMADAN BAZAAR IN KUCHING, SARAWAK, MALAYSIA

Nurul Azyla Azmi^{1,3}, Sharifah Aminah Syed Mohamad^{1,2*}, Khadijah Mohamad³, Suryani Jemain³,
Abu Muslim Ahmad³, Najihah Mohd Sani³,
Wan Azman Wan Abu Bakar³, Siti Roha Ab Mutalib¹ and Fazdlina Sapee³

¹*Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.*

²*Microbial Metabolite Laboratory, Atta-Ur-Rahman Institute of Natural Product (AURIns), Level 9, FF3 Building, UiTM Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia.*

³*Food Safety and Quality Laboratory Sarawak, Sarawak State Health Department 93590 Kuching, Sarawak, Malaysia*

**Corresponding author: sharifah459@uitm.edu.my*

Received 21st August 2023; accepted 28th September 2023

Available online 1st November 2024

Doi: <https://doi.org/10.51200/bsj.v45i1.5477>

ABSTRACT. *The Ramadan bazaar offers a diverse array of food for numerous customers during the month of Ramadan; however, the rising incidence of food poisoning raises concerns about the microbiological safety of these foods. This study aims to evaluate the microbial quality of various noodle types sold at the Ramadan bazaar in Kuching, Sarawak. A total of thirty-three (33) samples were collected from different sites and analyzed for Aerobic Plate Count, coliform bacteria, *Escherichia coli*, *Staphylococcus aureus*, *Bacillus cereus*, and *Salmonella* spp. Among the samples tested, 88%, 3%, 21%, 6%, and 16% exceeded acceptable limits for APC, coliforms, *E. coli*, *S. aureus*, and *B. cereus*, respectively, while all samples tested negative for *Salmonella* spp. Additionally, local specialties such as *laksa Sarawak*, *kolo mee*, and *mee Jawa* showed the highest levels of contamination with *E. coli*, *S. aureus*, and *B. cereus*. The presence of these microorganisms indicates cross-contamination likely due to insufficient hygiene practices before and after the cooking process.*

KEYWORDS: Food safety, noodles, microbiological quality, Ramadan bazaar, street food.

INTRODUCTION

The Ramadan bazaar in Malaysia is an annual event that takes place throughout the month of Ramadan. It features a diverse selection of food, ranging from drinks to main courses. Each state in Malaysia showcases unique dishes at their Ramadan bazaars that reflect the local culture, all at affordable prices accessible to all age groups and socioeconomic classes. For instance, Sarawak is renowned for its delicious noodle dishes such as *laksa Sarawak*, *kolo mee*, and *mee jawa*, which can be found at every Ramadan bazaar.

While the food at the Ramadan bazaar is a popular choice, it has often been associated with foodborne illnesses. The food offered is typically ready-to-eat and sold as takeout, intended for immediate consumption or for breaking the fast. Several factors can contribute to the contamination of food at these bazaars, leading to potential foodborne illnesses. Key issues include poor hygiene practices among food handlers, cross-contamination, and improper time and temperature management during food storage. In 2023, the Malaysian Ministry of Health issued 2,188 notices during inspections of 51,849 Ramadan bazaar locations across 640 areas nationwide. Violations included failure to complete food handler training, lack of anti-typhoid vaccinations, and non-compliance with food handler attire requirements. There were also 17 complaints related to food safety at the Ramadan bazaars, but only two reports of food poisoning were associated with food purchased at these events (The Sun, 2023).

Additionally, food samples from the Ramadan bazaar were examined for microbial contamination. The Kelantan State Health Department reported that one sample contained *S. aureus* in duck egg curry, while chicken-based dishes were found to have *Salmonella spp.* (Berita Harian, 2022). Furthermore, Mat Zin *et al.* (2017) conducted a microbiological analysis of meat samples at the Ramadan bazaar in Kelantan, Malaysia, which yielded unsatisfactory results for coliforms, *Staphylococcus spp.*, *E. coli*, and *Salmonella spp.* Moreover, in October 2023, a food handler at a Ramadan bazaar in Limbang, Sarawak, was fined RM1,000 for selling food contaminated with pathogenic bacteria during last Ramadan (Utusan Borneo, 2023). Although there have been no reported cases of food poisoning associated with food and drinks sold at Ramadan bazaar stalls across Sarawak, there remains a risk of contamination with pathogenic bacteria, as evidenced by the situation in Limbang. Abdul-Mutalib *et al.* (2015) noted that foodborne diseases are prevalent in Malaysia, yet not all cases are reported, particularly less severe ones. Thus, this study aims to assess the microbial quality of noodle delicacies sold at the Ramadan bazaar in Kuching, Sarawak. Given the popularity of noodles among consumers in Sarawak and their potential for contamination, this research focuses specifically on noodles. The findings of this study may provide valuable insights for regulatory agencies to take appropriate action in the future.

MATERIALS AND METHOD

2.1 Sample Collection and Preparation

The sampling activities took place at six Ramadan bazaars across three locations in Kuching, Sarawak, Malaysia: Kuching North (18 samples), Kuching South (5 samples), and Padawan (10 samples). During the month of Ramadan, a total of 33 samples, representing eight types of noodles (see Figure 1), were collected aseptically for laboratory analysis. Each sample was assigned a serial number, transported in a cool box, and maintained at a temperature of 4 °C. The samples were either examined immediately or stored in a refrigerator to be tested within 24 hours of collection. All analyses were conducted in accordance with standard methods, assessing the samples for APC, coliforms, *E. coli*, *S. aureus*, *B. cereus*, and *Salmonella spp.*

Figure 1: Types of noodles collected from the Ramadan bazaar in Kuching, Sarawak.

2.2 Microbiological analysis

A 10-fold serial dilution was carried out on the homogenized samples. Following this, 1 mL of each appropriate dilution was plated in triplicate on the selected media. This study utilized five standard methods for microbiological analysis: (1) AOAC International Official Method 990.12:2002 for Aerobic Count Plate (AOAC, 2002a), (2) AOAC International Official Method 991.14:2002 for Coliform and *E. coli* Plate (AOAC, 2002b), (3) AOAC International Official Method 2003.07 for Staph Express Count Plate (AOAC, 2003), (4) ISO 7932:2004 (E), which describes the horizontal method for the enumeration of presumptive *B. cereus* using the colony-count technique at 30°C, and (5) ISO 6579:2002 (E), detailing the horizontal method for detecting *Salmonella* spp. The contamination levels of APC, coliforms, *E. coli*, *S. aureus*, *B. cereus*, and *Salmonella* spp. were assessed against the standards set by the Food Standards Australia New Zealand (FSANZ) Compendium of Microbiological Criteria for Food (2022).

2.3 Statistical Analysis

All statistical analyses were conducted using IBM's Statistical Package for Social Sciences (SPSS), Version 26. Descriptive statistics were employed to assess the quantities of aerobic plate count (APC), coliforms, *E. coli*, *S. aureus*, *B. cereus*, and *Salmonella* spp. present in the food items sold at the Ramadan bazaar in Kuching, Sarawak, Malaysia. This analysis aimed to provide a comprehensive overview of the microbial contamination levels in the food products, contributing valuable insights into food safety and public health at the bazaar.

RESULTS AND DISCUSSION

3.1 Microbiological Count

The bacterial counts, including aerobic plate count (APC), coliforms, *E. coli*, *S. aureus*, and *B. cereus* in the noodles sold at the Ramadan bazaar in Kuching, are detailed in Table 1. Samples collected from the Ramadan bazaar in Kuching North exhibited the highest levels of APC, coliforms, *E. coli*, and *S. aureus* contamination, with mean values of 5.188 ± 0.445 log CFU/g, 4.246 ± 0.695 log CFU/g, 2.343 ± 0.910 log CFU/g, and 2.205 ± 0.489 log CFU/g, respectively. In contrast, samples from the Ramadan bazaar in Padawan recorded the highest contamination of *B. cereus*, with a mean value of 3.156 ± 0.848 log CFU/g. Notably, *Salmonella* spp. was absent in all noodle samples analyzed during this study.

Bacterial loads can vary significantly from one location to another due to a range of factors, including environmental conditions and hygiene practices (Amare *et al.*, 2019; Nguendo, 2018). In this instance, the Ramadan bazaar in Kuching South is equipped with adequate handwashing facilities, whereas both Kuching North and Padawan only have a single water source available at each bazaar. This limitation often forces food handlers to retrieve water in buckets or large bottles for handwashing and utensil cleaning, hindering proper hygiene practices. Additionally, it is noteworthy that most food handlers were observed using bare hands when preparing food, which could contribute to cross-contamination.

The presence of APC in all samples, with an overall mean value of 5.035 ± 0.622 log CFU/g, indicates that the noodles sold at the Ramadan bazaar in Kuching, Sarawak, were contaminated with various pathogens. APC is utilized to assess the overall bacterial contamination levels in food and beverage samples, reflecting hygiene and sanitation conditions at the point of sale, as documented by Mohd Nawawee *et al.* (2019) and Salamandane *et al.* (2021). It serves as a valuable tool for monitoring food handling processes, and its results can reveal the cleanliness of food preparation and storage practices (Upadhyaya *et al.*, 2017). Furthermore, food items with elevated APC levels are deemed potentially harmful, even in the absence of identified pathogens (Reda *et al.*, 2017). Hence, these findings clearly indicate that the noodles sold at the Ramadan bazaar in Kuching, Sarawak, are prepared under inadequate hygiene practices by food handlers.

In this study, coliform bacteria were detected in all samples, yielding a total mean value of 3.974 ± 0.763 log CFU/g. While coliforms are generally harmless to humans, they can occasionally be associated with serious waterborne diseases (Thi *et al.*, 2021). The water used for food preparation and utensil cleaning can be a potential contamination source, as food handlers often recycle water for washing and cleaning purposes. As a subgroup of fecal coliform, *E. coli* serves as an indicator of sanitary conditions (Reda *et al.*, 2017) and was present across all locations in this study. The mean *E. coli* count observed is consistent with previous research conducted by Mumu *et al.* (2021), which reported *E. coli* levels in noodles from street food carts ranging between 102 CFU/g to 103 CFU/g. Additionally, *E. coli* was isolated in noodles by Tamilnila *et al.* (2018) and Siddabathuni (2019). The presence of *E. coli* in food suggests either inadequate heat processing or fecal contamination resulting from poor hygiene practices among food handlers (Amare *et al.*, 2019).

S. aureus, the most found pathogen on hands (Amare *et al.*, 2019; Woh *et al.*, 2017), was also detected in this study, indicating cross-contamination likely due to insufficient hand washing practices by food handlers. The washing of hands and utensils was identified as a significant risk factor, especially as food handlers often store water for cleaning in buckets due to the distance from the vending site to the water source. The repeated use of this water can elevate the risk of cross-contamination, resulting in pathogen transfer to food products (Birgen *et al.*, 2020). Similarly, *S. aureus* has been found in noodles by Tamilnila *et al.* (2018) and Siddabathuni (2019), although Mumu *et al.* (2021) reported no *S. aureus* contamination in noodles, instead isolating other bacteria such as *Klebsiella* spp. and *Pseudomonas* spp. Other studies have documented the presence of *S. aureus* in cooked foods, including meat, rice, and fried snacks (Birgen *et al.*, 2020; Vadesh & Neel, 2017; Abd Rahim *et al.*, 2019).

Previous research has shown that *B. cereus* is also present in various food items, such as cooked rice and fried snacks (Saba *et al.*, 2019; Fahani *et al.*, 2019; Khasnabis *et al.*, 2017). In the current study, *B. cereus* was detected in 21% of the samples, with a total mean value of 3.276 ± 0.837 log CFU/g; however, it was absent from samples taken at the Ramadan bazaar in Kuching South. *B. cereus* is a gram-positive, endospore-forming, motile rod-shaped bacterium commonly found in food and soil, and it produces two types of toxins (Yeo *et al.*, 2018). According to Fahani *et al.* (2019), leftover food stored in refrigeration for sale the following day can promote toxin formation, leading to food poisoning.

Importantly, no *Salmonella* spp. was detected in any of the noodle samples from the Ramadan bazaar in Kuching, Sarawak. This finding aligns with Mumu *et al.* (2021), which similarly found no *Salmonella* spp. in noodles sampled in Dhaka City, India. Additionally, it corroborates Salamandane *et al.* (2021), who noted that *Salmonella* spp. is rarely found in cooked foods but is often present in street foods due to post-contamination. However, Tamilnila *et al.* (2018) reported potential *Salmonella* spp. contamination in street food noodles in Thanjavur City, India, attributed to poor environmental conditions.

Table 1: Microbiological counts of APC, coliform, *E. coli*, *S. aureus*, *B. cereus* and *Salmonella* spp. in noodles at Ramadan bazaar in Kuching, Sarawak.

Parameter	District	N ¹ (%)	Mean ²	SD
APC	Kuching North	18 (100)	5.188	0.445
	Kuching South	5 (100)	4.798	0.944
	Padawan	10 (100)	4.880	0.709
	Total	33 (100)	5.035	0.622
Coliform	Kuching North	18 (100)	4.246	0.695
	Kuching South	5 (100)	3.193	0.478
	Padawan	10 (100)	3.877	0.750
	Total	33 (100)	3.974	0.763

<i>E. coli</i>	Kuching North	7 (39)	2.343	0.910
	Kuching South	1 (20)	2.491	.
	Padawan	1 (10)	2.204	.
	Total	9 (27)	2.344	0.791
<i>S. aureus</i>	Kuching North	13 (72)	2.205	0.489
	Kuching South	4 (80)	2.251	0.169
	Padawan	4 (40)	3.147	0.584
	Total	21 (64)	2.393	0.583
<i>B. cereus</i>	Kuching North	1 (6)	4.000	.
	Kuching South	0(0)	.	.
	Padawan	6 (60)	3.156	0.848
	Total	7 (21)	3.276	0.837
<i>Salmonella</i> spp.	Kuching North	0(0)	.	.
	Kuching South	0(0)	.	.
	Padawan	0(0)	.	.
	Total	0(0)	.	.

¹Number of positive samples

²Mean bacterial counts expressed in Log (CFU/g), SD: standard deviation

3.2 Comparison of Bacterial Count with Microbiology Standard

Table 2 illustrates the contamination levels of APC, coliforms, *E. coli*, *S. aureus*, *B. cereus*, and *Salmonella* spp. in noodles, in comparison with the Food Standards Australia New Zealand (FSANZ) Compendium of Microbiological Criteria for Food (2022). Based on the results, 12% of the total samples were classified as marginal, while 88% were rated as unsatisfactory for APC contamination. The elevated bacterial counts in the noodles may be attributed to the addition of gravy and condiments, such as chopped spring onions and chilies, after the cooking process. Previous studies have also reported high levels of APC contamination exceeding 5.0 Log CFU/g in various food types, including cooked meats, fried snacks, vegetables, and beverages (Mehboob & Abbas, 2019; Mohd Nawawee *et al.*, 2019; Alem *et al.*, 2020; Thi *et al.*, 2021).

In terms of coliform contamination, 97% of the samples were found to fall within the marginal range, while only 3% were deemed unsatisfactory. This finding contradicts several studies that have indicated a high prevalence of unsatisfactory coliform levels in various foods, such as sandwiches, beverages, cooked rice, and fried snacks (Mohd Nawawee *et al.*, 2019; Abd Rahim *et al.*, 2019; Salamandane *et al.*, 2021). As noted by Mohd Nawawee *et al.* (2019), the presence of these bacteria may result from direct contact with the hands or bodies of food handlers or from the

use of unboiled water during food preparation. Furthermore, a significant presence of coliforms in food is indicative of unsanitary conditions during processing, handling, distribution, and post-handling contamination (Abd Rahim *et al.*, 2019).

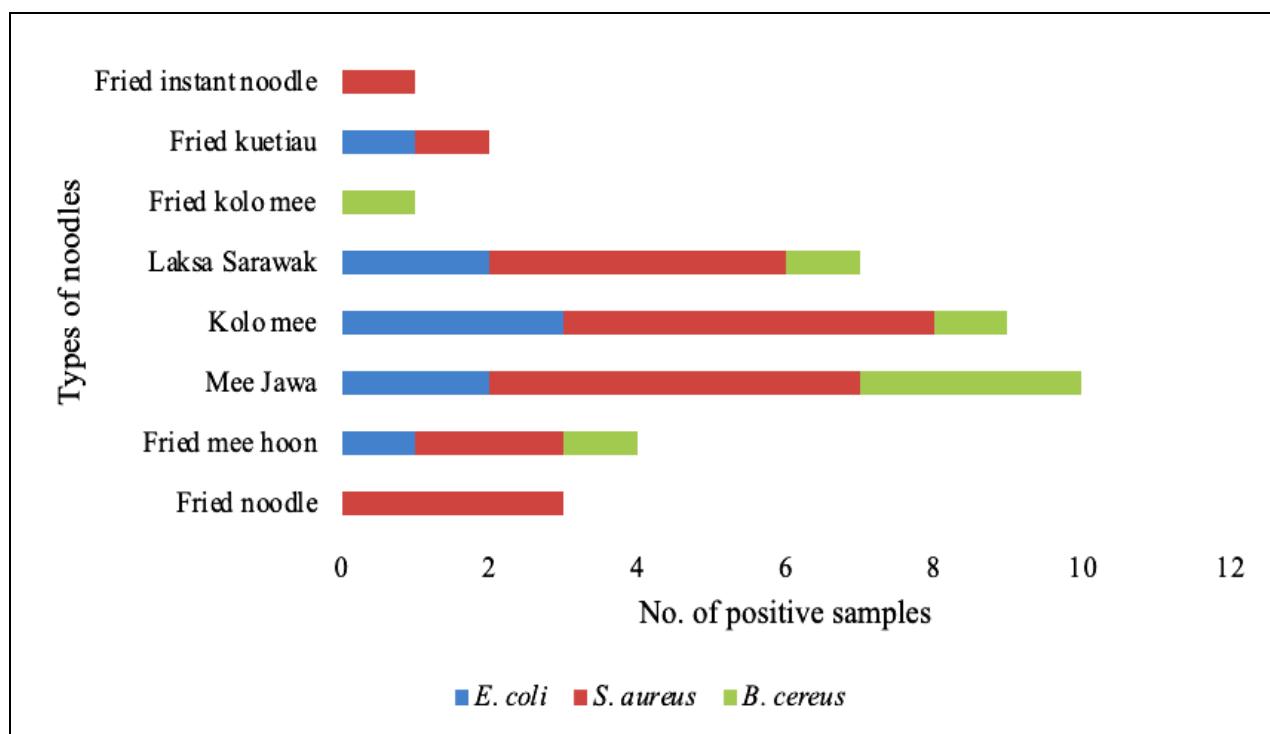
Regarding *E. coli* contamination, 73% of the samples were considered satisfactory, with 6% at a marginal level and 21% classified as unsatisfactory. Abd Rahim *et al.* (2019) reported that only two samples in their research were contaminated with *E. coli*, and both exceeded acceptable standards. The main factors contributing to *E. coli* contamination in their samples were identified as food handlers failing to adhere to proper hygiene practices, such as washing their hands after using the restroom and before handling food. Mumu *et al.* (2021) indicated that *E. coli* counts exceeding permitted food safety standards suggest that many food handlers do not practice appropriate food handling measures, including smoking while working and serving food without gloves or protective coverings for hair and masks. Additionally, a lack of consistent supervision by relevant food safety authorities contributes to the non-compliance of food safety practices among food handlers.

For *S. aureus* contamination, nearly half of the samples achieved satisfactory levels (46%), while 48% were at a marginal level, and only 6% were rated as unsatisfactory. A study by Abd Rahim *et al.* (2019) found that 33% of samples sold in Chow Kit, Kuala Lumpur, were contaminated with *S. aureus*, with mean values surpassing 4 Log CFU/g. Moreover, Afreen *et al.* (2019) reported that 100% of street drinks tested were classified as unsatisfactory for *S. aureus* contamination, identifying several risk factors associated with *S. aureus*, including the type of juice, vending location, water source, food covering, serving food with bare hands, and the cleaning of utensils. In this study, 79% of the total samples for *B. cereus* contamination were satisfactory, followed by 6% at a marginal level and 16% that were unsatisfactory. A study conducted in Ghana by Saba *et al.* (2019) reported a higher prevalence of unsatisfactory food samples from enclosed vendors, with fried rice having the highest incidence of unsatisfactory results.

Table 2: Level of contamination level for APC, coliform, *E. coli*, *S. aureus*, *B. cereus* and *Salmonella* spp. in noodles at Ramadan bazaar in Kuching, Sarawak.

Parameter	No. of Satisfactory Samples (%)	No. of Marginal Samples (%)	No. of Unsatisfactory Samples (%)
APC	0 (0%)	4 (12%)	29 (88%)
Coliform	0 (0%)	32 (97%)	1 (3%)
<i>E. coli</i>	24 (73%)	2 (6%)	7 (21%)
<i>S. aureus</i>	15 (46%)	16 (48%)	2 (6%)
<i>B. cereus</i>	26 (79%)	2 (6%)	5 (15%)
<i>Salmonella</i> spp.	33 (100%)	0 (0%)	0 (0%)

3.3 Distribution of *E. coli*, *S. aureus* and *B. cereus* in Different Types of Noodles


Figure 2 illustrates the distribution of *E. coli* (9 isolates), *S. aureus* (21 isolates), and *B. cereus* (7 isolates) across eight different types of noodles. The popular local noodle, *mee jawa*, showed the highest level of contamination, closely followed by *kolo mee* and *laksa Sarawak*. This pattern indicates that these foods are susceptible to contamination due to the various ingredients used in their preparation. These types of noodles are typically served with gravy and an array of condiments, including meat, sliced spring onions, chilies, bean sprouts, and fried onions. The addition of these condiments increases the likelihood of contamination, particularly from insufficient personal hygiene and poor food handling practices. Food handlers often use their bare hands to add these toppings, raising concerns about their hand hygiene, especially given the limited hand washing facilities available at the Ramadan bazaar. Previous studies have demonstrated that bacterial loads on food handlers' hands can exceed safe limits (Lee *et al.*, 2017), and a lack of hand-washing habits is a recognized risk factor for microbial contamination (Afreen *et al.*, 2019). While disposable gloves can be effective in preventing cross-contamination if used correctly, they should not replace hand washing (Trafialek *et al.*, 2018; Afreen *et al.*, 2019). It is also advisable to utilize clean tongs, forks, or spoons when handling food (Birgen *et al.*, 2020). Therefore, it is crucial to emphasize proper hand hygiene and effective hand-washing techniques, particularly to new, young, and inexperienced food handlers (Anowai *et al.*, 2019).

Despite the presence of good hand washing facilities at the Ramadan bazaar in Kuching South, other risk factors for microbial contamination were identified, as contamination by *S. aureus* still occurred in nearly all samples. The noodle gravy can also act as a contamination source if not stored and handled correctly by food handlers. Noodle gravy is typically prepared with coconut milk or chili paste and made in advance at home. Improper handling and storage practices of coconut milk may lead to cross-contamination. Previous studies by Nurul *et al.* (2017) and Sari *et al.* (2019) have highlighted the presence of *E. coli* and *S. aureus* in coconut milk due to inadequate personal protective equipment and improper storage practices.

Additionally, fried noodles, such as fried *mee hoon*, fried *kolo mee*, and fried *kuetiau*, were found to contain *E. coli*, *S. aureus*, and *B. cereus*. These fried noodles are often left uncovered during sales, exposing them to flies and dust, which can contribute to contamination. Moreover, cooked foods that remain out for extended periods can create favorable conditions for pathogenic microorganisms to grow and multiply, resulting in potential infections and foodborne illnesses when consumed (Amare *et al.*, 2019; Mwave *et al.*, 2019).

Previous research by Tamilnila *et al.* (2018) reported the presence of *E. coli*, *S. aureus*, *Salmonella spp.*, and *Clostridium* in street food noodles sold in India. They noted a significant increase in contamination risk due to the extremely unsanitary environment in which these foods are prepared and served. Additionally, a lack of adequate garbage disposal facilities and clean water sources for drinking and cleaning further exacerbates the situation. Similarly, Siddabathuni (2019) found 21 bacterial pathogens, including *S. aureus*, *Proteus spp.*, and *E. coli*, in 79% of contaminated noodle samples, linking these findings to poor hand hygiene among vendors, the use of contaminated water in food preparation, and the contamination of utensils by pathogens carried by flies from nearby sewage and garbage. The findings from both Tamilnila *et al.* (2018) and

Siddabathuni (2019) emphasize that extremely poor environmental conditions and inadequate facilities at food premises are significant contributing factors to food contamination.

Figure 2: Type of noodles contaminated with *E. coli*, *S. aureus* and *B. cereus*

CONCLUSION

The findings of this study indicate that noodles sold at Ramadan bazaars in Kuching, Sarawak, may have been contaminated with harmful microorganisms, including *S. aureus* and *B. cereus*. The presence of these bacteria in food poses potential health risks for consumers. Furthermore, the microbial analysis showed that some noodle samples had contamination levels that exceeded the acceptable standards. Consequently, this study recommends the implementation of more effective health education and food handling training for food vendors at Ramadan bazaars in Kuching, Sarawak, Malaysia. Additionally, it is essential to establish information and training programs for consumers to raise awareness about food safety, thereby protecting them from potential foodborne illnesses.

REFERENCES

Abd Rahim, N. L., Bakar, N. F. A., & Zulfakar, S. S. (2019). Bacterial Contamination in Foods Sold by Street Vendors Around Chow Kit Area. *Asia Pacific Environmental and Occupational Health Journal*, 5(2):23-29.

Abdul-Mutalib, N. A., Syafinaz, A. N., Sakai, K., & Shirai, Y. (2015). An overview of food borne illness and food safety in Malaysia. *International Food Research Journal*, 22(3):896-901.

Afreen, A., Ahmed, Z., Ahmad, H., & Khalid, N. (2019). Estimates and burden of foodborne pathogens in RTE beverages in relation to vending practices. *Food Quality and Safety*, 3(2):107-115.

Alem, K. (2020). Bacterial load assessment of some food items sold in street in Woldia Town, North-East Ethiopia. *Journal of Pure and Applied Microbiology*, 14(3):1845-1854.

Amare, A., Worku, T., Ashagirie, B., Adugna, M., Getaneh, A., & Dagnew, M. (2019). Bacteriological profile, antimicrobial susceptibility patterns of the isolates among street vended foods and hygienic practice of vendors in Gondar town, Northwest Ethiopia: a cross sectional study. *BMC microbiology*, 19: 1-9.

Anowai C. O., Agarry O. O., & Akin-Osanaiye B. C. (2019). Antibiotic Susceptibility Profile of *Staphylococcus aureus* Isolated From Food Handlers in Abuja, Nigeria Review. *World Journal of Research and Review*, 9(1):05-11.

Association of Analytical Communities (AOAC). (2002a). AOAC® Official Method of Analysis 990.12 Aerobic plate count in foods, dry rehydratable film (Petrifilm™ Aerobic Count Plate) method. AOAC Int. Gaithersburg, MD, USA.

Association of Analytical Communities (AOAC). (2002b). AOAC® Official Method of Analysis 991.14 Coliform and *Escherichia coli* counts in foods, dry rehydratable film (Petrifilm™ *E.coli*/Coliform Count Plate™ and Petrifilm™ Coliform Count Plate™) methods. AOAC Int. Gaithersburg, MD, USA.

Association of Analytical Communities (AOAC). (2003). AOAC® Official Method of Analysis 2003.07 Enumeration of *Staphylococcus aureus* in selected types of processed and prepared foods, (Petrifilm™ Staph Express Count Plate) Method. AOAC Int. Gaithersburg, MD, USA.

Berita Harian, (2022). 57 notis kompaun dikenakan kepada peniaga sepanjang Ramadan. <https://www.bharian.com.my/berita/wilayah/2022/04/946919/57-notis-kompaun-dikenakan-kepada-peniaga-sepanjang-ramadan>. Downloaded on 15 May 2023.

Birgen, B. J., Njue, L.G., Kaindi, D. M., Ongutu, F. O., & Owade, J. O. (2020). Determinants of Microbial Contamination of street-vended chicken products sold in Nairobi County, Kenya. *International Journal of Food Science*, 20:8.

Fahani, A., Dwiyanti, R. D., & Muhlisin, A. (2019). Contamination of *Bacillus cereus* in Elementary School Snack Food. *Tropical Health and Medical Research*, 1(2): 56-61.

Food Standards Australia New Zealand (FSANZ) (2022). Compendium of Microbiological Criteria for Food.

[https://www.foodstandards.gov.au/publications/Documents/Compendium_revised%20March%2022.pdf](https://www.foodstandards.gov.au/publications/Documents/Compendium_revised%20March%202022.pdf) (Downloaded on 10 June 2022) International Standardization Organization (ISO). (2002). Microbiology of food and animal feeding stuffs - Horizontal method for the detection of *Salmonella* spp. ISO Norm 6579: (2002/COR 1:2004). International Standardization Organization, Geneva, Switzerland.

International Standardization Organization (ISO). (2002). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of presumptive *Bacillus cereus* - Colony-count technique at 30°C. ISO Norm 7932: (2004). International Standardization Organization, Geneva, Switzerland.

Khasnabis, J., Adhikari, P., Chowdhury, D., Rai, C., & Roy, A. (2017). Incidence of multiple drug resistant *Bacillus cereus* in some popular snacks and sweets sold in Kolkata city, India. *Indian Journal Microbiology Research*, 4(1):14-19.

Lee, H. K., Abdul Halim, H., Thong, K. L., & Chai, L. C. (2017). Assessment of food safety knowledge, attitude, self-reported practices, and microbiological hand hygiene of food handlers. *International journal of environmental research and public health*, 14(1), 55.

Mehboob, A., & Abbas, T. (2019). Evaluation of microbial quality of street food in Karachi City, Pakistan: An epidemiological study. *Microbiology Research*, 10(1):7463.

Mohd Nawawee, N. S., Abu Bakar, N. F., & Zulfakar, S. S. (2019). Microbiological safety of street-vended beverages in Chow Kit, Kuala Lumpur. *International Journal of Environmental Research and Public Health*, 16(22), 4463.

Mumu, F., Acharjeel, M., Tun Nur, I., Islam, T., & Hassan, M. M. (2021). Evaluation of Food borne pathogens in ready-to-eat noodles collected from the different shops in the Dhaka City, Bangladesh. *SVOA Microbiology*.

Nguendo, Y. H. B. (2018). Eating to live or eating to damage one's health: microbiological risks associated with street vended foods in a subtropical urban setting (Yaoundé-Cameroon). *Nutrition and Foods Sciences International Journal*, 6(4):1-13.

Nurul, F. M., Noorlis, A., Ain, H. N., & Suwaibah, M. (2017). Enumeration of *Escherichia coli* from fresh coconut milk in Negeri Sembilan, West Malaysia. *International Food Research Journal*, 24(1):455.

Saba, C. K. S., Antwi, M. V., & Adzitey, F. (2019). Prevalence of *Bacillus cereus* in ready-to-eat boiled and fried rice in the Tamale Metropolis of Ghana. *Journal of Food Safety and Hygiene*, 5(1): 19-23.

Salamandane, A., Silva, A. C., Brito, L., & Malfeito-Ferreira, M. (2020). Microbiological assessment of street foods at the point of sale in Maputo (Mozambique). *Food Quality and Safety*, 5:1-9.

Sari, P. M., & Muhlisin, A. (2019). *Staphylococcus aureus* in Traditional Coconut milk Drinks. *Tropical Health and Medical Research*, 1(1):33-38.

Siddabathuni, A. (2019). Bacteriological analysis of ready-to-serve foods from a South Indian City: a potential source for drug resistant pathogens. *Journal of Microbiology and Infectious Diseases*, 9(02):83-89.

Reda, N., Ketema, B., & Tsige, K. (2017). Microbiological quality and safety of some-street-vended foods in Jimma Town, Southwestern Ethiopia. *African Journal of Microbiology Research*, 11(14):574-585.

Tamilnila, M., Mageswari, M., Chinnamani, S., & Sivasuriyan, S. (2018). Analysis of bacteriology of most popular street food (noodles) in Thanjavur. *Asian Journal of Innovative Research*, 3(2):14-18.

The Sun. (2023). MOH issues RM 197600 in fines under Ramadan bazaar Hygiene Safety Op. <https://thesun.my/local/moh-issues-rm197600-in-fines-under-ramadan-bazaar-hygiene-safety-op-A-A10892828>. Downloaded on 15 May 2023.

Thi, A. N. T., Kittirath, P., Abiola, S. D., Duy, L. N. D., & Ha, N. C. (2021). Evaluation of street food safety and hygiene practices of food vendors in Can Tho City of Vietnam. *Current Research in Nutrition and Food Science*, 9(1):158-171.

Trafialek, J., Drosinos, E. H., Laskowski, W., Jakubowska-Gawlik, K., Tzamalis, P., Leksawasdi, N., Surawang, S., & Kolanowski, W. (2018). Street food vendors' hygienic practices in some Asian and EU countries - A survey. *Food Control*, 85:212-222.

Upadhyaya, S., Srivastava, P., Chandra, R., & Arora, N. (2017). Microbiological assessment and hazardous effects of ready-to-eat foods presented for sale in Lucknow City, India. *African Journal of Food Science*, 11(10):346-352.

Utusan Borneo, (2023). Peniaga didenda RM1,000 kerana jual makanan tercemar. <https://www.utusanborneo.com.my/2023/10/24/peniaga-didenda-rm1000-kerana-jual-makanan-tercemar?fbclid=IwAR3guX-oahYOZLGFeykh3NNrC6I15fxPYmWut6i2n-1PXynJHtNLIDg-NQo>. Downloaded on 26 Oct 2023.

Vedesh, R., & Neel, A. (2017). Microbial analysis of street foods of different locations at Chennai city, India. *Indian J. Appl. Biosci*, 11:33-41.

Woh, P. Y., Thong, K. L., Lim, Y. A. L., Behnke, J. M., Lewis, J. W., & Mohd Zain, S. N. (2017). Microorganisms as an indicator of hygiene status among migrant food handlers in Peninsular Malaysia. *Asia Pacific Journal of Public Health*, 29(7), 599-607.

Yeo, F. K. S., Tesfamariam, F., Chong, Y. L., Bilung, L. M., Andriesse, R., & Tahar, A. S. (2018). Presence of *Bacillus cereus* from local unhusked (rough) rice samples in Sarawak, Malaysia. *Journal of Sustainability Science and Management*, 13 (1):181-187.