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ABSTRACT. This study presents a numerical method using a second-order 

Redlich-Kister Finite Difference (RKFD) discretization scheme to approximate 

the two-point boundary value problems (TPBVPs). The approach creates a 

linear system for the given problem by using the first two derivatives to create 

the RKFD approximation equation. Two iterative approaches are used to solve 

the linear system: Gauss-Seidel (GS) and Successive Over-Relaxation (SOR). 

Two model examples that assess each approach according to its number of 

iterations, execution time, and maximum norm over five different mesh sizes 

indicate the effectiveness of these proposed iterative methods. The results show 

that the SOR method outperforms the GS methods in providing an extremely 

accurate approximation of the known exact solution. 
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INTRODUCTION 

 

In recent years, there has been increasing interest in creating, applying, and studying numerical methods 

for boundary value problems due to the difficulties in deriving analytical solutions (Aarao et al., 2010). 

One such equation, the two-point boundary value problem, has widespread applications in science, 

engineering, and physics research areas (Gupta, 2012; Wang & Guo, 2008). Many researchers have 

devoted their efforts to designing accurate numerical solutions for TPBVPs and recognize the difficulties 

associated with obtaining them. Previous studies have explored various numerical techniques to address 

the TPBVPs. Mohsen and El-Gamel (2008) used the Galerkin and collocation methods to numerically 

simulate this problem, while Liu et al. (2011) proposed a polynomial spline implementation as a 

numerical solution. Furthermore, researchers have investigated a B-spline method (Caglar & Caglar, 

2009) to tackle the diffusion problem. Additionally, the literature provides a range of other numerical 

solutions for TPBVPs (Al-Towaiq, 2023; Pandey, 2023; Rashidinia & Sharifi, 2015; Wang, 2023; 

Zhanlav et al., 2024 ), which can be applied to the study of TPBVPs. 

 

Based on the method mentioned in the previous paragraph, we propose a new approach called 

the RKFD method to solve the boundary value problem. This method is based on the Redlich-Kister 

(RK) function, which is widely used in physics and chemistry to obtain solutions but has been less 
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commonly utilised in other fields (Babu et al., 2019; Gayathri et al., 2019; Komninos & Rogdakis, 

2020). Over time, its application has been extended to solve numerical analysis problems. The 

background of this method in numerical analysis started with the study (Hasan et al., 2010), in which 

the piecewise RK polynomial model has been used, focusing on the construction of first- and third-order 

models and on analysing the relationship between Gauss-Seidel iteration and mesh sizes. The findings 

indicated that the third Redlich-Kister model offers good accuracy compared to the first model. 

 

Following this research, subsequent research has gone deeper into the application of RK 

functions to numerical analysis fields. For example, in Suardi and Sulaiman (2021b), the authors 

suggested the use of RK polynomials to solve a one-dimensional boundary value problem. Furthermore, 

Suardi & Sulaiman (2021a, 2022) proposed RKFD, which combines the RK polynomial and finite 

difference methods to solve a problem of two-point boundary value problems. The use of the RKFD 

approximation equation generates the system of the RKFD equation, which will be solved by iterative 

methods, which is the SOR method, as a linear solver. In literature, Young (1970) explored the various 

SOR methods for solving linear equation systems of 𝐴𝑢 = 𝑏 and discovered that the SOR methods with 

optimal relaxation parameters produce small radio waves. In addition, Sampoorna and Bueno (2010) 

tested the partial atomic redistribution problems by using the Gauss-Seidel method and the SOR, and 

they then found that the SOR method could solve the problem in a short time. This is supported by 

Radzuan et al. (2018), who mentioned that the SOR method can accelerate the convergence of linear 

equation solutions using optimal relaxation parameters. Inspired by all those studies, the paper aims to 

develop numerical solutions for problems involving TPBVPs in Equation 1. 

 
𝑑2𝑈

𝑑𝑥2 + 𝑍(𝑥)
𝑑𝑈

𝑑𝑥
+ 𝐺(𝑥)𝑈(𝑥) = 𝑟(𝑥) (1) 

 

With the Dirichlet conditions 

 

𝑈(0) = 𝜑0, 𝑈(𝜙) = 𝜑1.  

 

 

RKFD APPROXIMATION EQUATION 

 

Before the numerical process begins for Equation 1, the two newly established RKFD 

approximation equations must be constructed, as described in the preceding section. To construct 

these approximation equations, a discretisation process based on the Redlich–Kister (RK) function 

is required. Defining the general formula of the RK function is in Equation 2. 

 

𝑈𝑛(𝑥) = ∑ 𝑎𝑘 ∙ 𝑇𝑘(𝑥)𝑛
𝑘=0   (2) 

 

where 𝑎𝑘 , 𝑘 = 0,1,2, … , 𝑛 are the unknown parameters. 

 

Before calculating the unknown parameters in equation 2, the distribution of the mesh sizes 

utilised is depicted in Figure 1. The size of the mesh shown in Figure 1 provides an understanding 

of the formulation of the first three Redlich-Kister (RK) functions, as depicted in Figure 2. 

 

 
 

Figure 1. Distribution of mesh sizes considered. 
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T1 T2 T3
 

 

Figure 2. The path for 𝑇0, 𝑇1, and 𝑇2. 

 

Applying the concept of Figure 2 to Equation 2 can mean that the second-order RK 

approximation function is expressed in Equation 3. 

 

𝑈(𝑥) = 𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + 𝑎2𝑇2(𝑥)  (3) 

 

Where the first three RK functions are defined as 

 

𝑇0(𝑥) = 1,     𝑇1(𝑥) = 𝑥,     𝑇2(𝑥) = 𝑥(1 − 𝑥).  
 

Then, the grid network shown in Figure 1 is set up as a reference domain for equation 3 by 

applying the node points, 𝑥𝑐 = 𝑥0 + 𝑐ℎ, 𝑐 = 0,1,2, … , 𝑛 and defining the uniform step size as ℎ =
𝜑−0

𝑛
, 𝑛 = 2𝑝, 𝑝 ≥ 1. This process is used to solve the following linear system and obtain unknown 

parameters in equation 3. 

 

[

𝑈𝑐−1

𝑈𝑐

𝑈𝑐+1

] = [

𝑇0(𝑥𝑐−1) 𝑇1(𝑥𝑐−1) 𝑇2(𝑥𝑐−1)

𝑇0(𝑥𝑐) 𝑇1(𝑥𝑐) 𝑇2(𝑥𝑐)

𝑇0(𝑥𝑐+1) 𝑇1(𝑥𝑐+1) 𝑇2(𝑥𝑐+1)
] [

𝑎0

𝑎1

𝑎2

],  (4) 

 

where U(xc) = Uc. After that,  Equation 4 is solved using the matrix approach to derive the 

formulas for the three unknown parameters in Equation 3. Equation 3 was used to replace all three 

parameters and rewrite them as Equation 5. 

 

𝑈(𝑥) = 𝑁0(𝑥)𝑈𝑐−1 + 𝑁1(𝑥)𝑈𝑐 + 𝑁2(𝑥)𝑈𝑐+1  (5) 

 

where the RKFD shape functions, 𝑁𝑘(𝑥), 𝑘 = 0,1,2 can be defined as Equation 6. 

 

𝑁0(𝑥) = (𝑥2 − 2𝑥ℎ𝑐 − 𝑥ℎ + ℎ2𝑐2 + ℎ2𝑐) (2ℎ2)⁄

𝑁1(𝑥) = (2𝑥ℎ𝑐 − 𝑥2 − ℎ2𝑐2 + ℎ2) (ℎ2)⁄

𝑁2(𝑥) = (𝑥2 − 2𝑥ℎ𝑐 + 𝑥ℎ + ℎ2𝑐2 − ℎ2𝑐) (2ℎ2)⁄

}  (6) 

 

By evaluating the first and second derivatives concept on Equation (6), the RKFD 

approximation function is expressed as Equation 7. 

 
𝑑𝑈

𝑑𝑥
|
𝑐

= 𝑁0
, (𝑥𝑐)𝑈𝑐−1 + 𝑁1

, (𝑥𝑐)𝑈𝑐 + 𝑁2
, (𝑥𝑐)𝑈𝑐+1

𝑑2𝑈

𝑑𝑥2|
𝑐

= 𝑁0
,,(𝑥𝑐)𝑈𝑐−1 + 𝑁1

,,(𝑥𝑐)𝑈𝑐 + 𝑁2
,,(𝑥𝑐)𝑈𝑐+1

}  (7) 

 

where 𝑈(𝑥𝑐) = 𝑈𝑐 , 𝑐 = 0,1,2, … , 𝑛 accorded as the approximation solution of the function 

U(x). The expression generated by equation 7 highlights the two newly established RKFD 

discretisation methods, which correspond to the primary objective of this work. These approaches 

have been designed for constructing the RKFD approximation equation to solve the suggested 

problem (1). By substituting equation 7 into the given problem and applying the second-order 

central difference techniques for discretising in time, a second-order RKFD approximation, 

Equation 8, could be constructed as follows for the TPBVP 

 

𝛼𝑐𝑈𝑐−1 + 𝛽𝑐𝑈𝑐 + 𝛾𝑐+1𝑈𝑐+1 = 𝑅𝑐,  (8) 

 

where 
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𝛼𝑐 = 𝑁0
,,(𝑥𝑐) + 𝑍𝑁0

, (𝑥𝑐), 𝛽𝑐 = 𝑁1
,,(𝑥𝑐) + 𝑍𝑁1

, (𝑥𝑐) + 𝐺𝑐 , 𝛾𝑐 = 𝑁2
,,(𝑥𝑐) + 𝑍𝑁2

, (𝑥𝑐)  

 

Next, the RKFD linear systems can then be built in matrix form using the RKFD 

approximation equation 8 as follows: 

 

𝑊 ∙ 𝑈 = 𝑅   (9) 

 

 

DERIVATION OF SOR ITERATIVE METHOD 

 

From the previous section, the generated large-scale and sparse linear systems (9) emerge as a result of 

the completed RKFD discretisation scheme process. Based on many research studies (Hackbusch, 1994; 

Saad, 2003; Young, 2014), it is recommended to use iterative methods to solve this linear system since 

it involves a large scale within the coefficient matrix. To solve equation 9 in this study, the SOR iterative 

approach has been regarded as a linear solution. Studies on the application and effectiveness of the SOR 

method, which is an enhancement of the GS method, have been conducted by Kalambi (2008) and 

Youssef (2012). When applying the SOR approach, which is impacted by the weighted parameter's value 

determination, the range should be 1 ≤ 𝜔 ≤ 2. However, when the weighted parameter is taken as equal 

to one, 𝜔 = 1the SOR method will change into the GS method (Equation 10) (Kalambi, 2008). 

 
(𝐹 + 𝐽 + 𝐿) ∙ 𝑈 = 𝑅, (10) 

 

where J, F 𝑎𝑛𝑑 L are diagonal matrix, triangular lower and upper matrices. Through manipulation of 

equation 10, the representation of the SOR method in the form of a point iteration form is presented in 

Equation11. 

 

𝑈(𝑞+1) = (1 − 𝜔)𝑈(𝑞) + 𝜔(𝐽 + 𝐹)−1(𝑅 − 𝐿𝑈(𝑞))  (11) 

 

where 𝑈(𝑞+1) referring to the value of 𝑈(𝑥) at the (𝑞 + 1)𝑡ℎ iteration. 

 

 

NUMERICAL PROBLEM AND DISCUSSION 

 

In the previous discussion, the RKFD approximation equation was derived, and the numerical 

experiment was conducted to solve problem (1) using the SOR method. To determine the applicability 

of the suggested method, two examples were tested with different mesh sizes, 𝑛 =
256,512,1024,2048,4096. Additionally, numerical comparisons were done in terms of the number of 

iterations (Iter), execution time (Time), and maximum norm. Following that, a tolerance error, ε =
10−10 is always used for all examples that are taken into consideration. 

 

Example 1 

The TPBVPs (1) as (Caglar et al., 2006) 

 
𝑑2𝑈

𝑑𝑥2 −
𝑑𝑈

𝑑𝑥
= −𝑒(𝑥−1)−1

  (12) 

 

and the analytical solution of problem (12) is 𝑈(𝑥) = 𝑥(1 − 𝑒(𝑥−1)). 

 

Example 2 

The TPBVPs (1) with as (Ramadan et al., 2007) 

 
𝑑2𝑈

𝑑𝑥2 − 𝑈(𝑥) = −1 (13) 
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and the analytical solution of problem (13) is 𝑈(𝑥) = cos(𝑥) +
1−cos(1)

sin(1)
sin(𝑥) − 1. 

 

As predicted in Table 1, the numerical result indicates that the SOR method with the RKFD 

approximation equation outperforms the GS method, the benchmark method in this study, in terms of 

iteration and time. The SOR method can generate fewer iterations and converge more quickly across all 

examples tested. For instance, in Table 1, 769  iterations are required by the SOR method and 0.73 

seconds to converge Example 1 at a 256 mesh size, while the GS method required 82043 iterations and 

22.54 seconds. The advantage of the SOR method becomes more pronounced as the mesh size increases, 

as seen in the results for n = 4096, where the SOR method required 10244 iterations and 10.51 seconds, 

compared to the GS method, which required 11811519 iterations and 2359.09 seconds. The numerical 

results for solving problems exhibit a similar pattern, with the SOR method demonstrating improved 

performance over the GS method, as reported in Example 2. These findings are consistent with the 

literature (Suardi & Sulaiman, 2022), which indicates that the SOR method can enhance the applicability 

of the GS method for solving TPBVPs. In terms of accuracy, both the SOR and GS methods showed 

excellent agreement with their respective exact solutions. 

 

Table 1. Numerical results for examples 1 and 2. 

 

n Method 
Example 1 Example 2 

Iter Time MaxNorm Iter Time MaxNorm 

256 GS 82043 22.54 4.0343e-07 89973 19.88 5.4091e-07 

SOR 769 0.73 2.4519e-07 769 0.39 2.0467e-07 

512 GS 292276 35.51 2.5291e-06 318924 60.80 2.9059e-06 

SOR 1526 1.57 6.7390e-08 1537 0.88 4.3126e-08 

1024 GS 1025489 117.83 1.0346e-05 1111808 256.86 1.1810e-05 

SOR 2946 3.46 1.9947e-08 3057 1.81 1.5554e-08 

2048 GS 3527433 409.02 4.1443e-05 3791677 1260.25 4.7285e-05 

SOR 5792 6.64 1.7364e-08 5733 3.44 2.5779e-08 

4096 GS 11811519 2359.09 1.6579e-04 12544476 2681.69 1.8915e-04 

SOR 10244 10.51 9.3638e-08  10660 5.71 1.0453e-07       

 

 

CONCLUSION 

 

The GS and SOR methods are looked at in this paper as two iterative ways to get the numerical solution 

of two new RKFD approximation equations for solving TPBVPs. Firstly, the problem was discretised 

to form the RKFD approximation equation. The resulting linear system was then solved using the 

considered iterative methods. To validate the applicability of the iterative methods, two examples were 

tested, and the numerical results revealed that the SOR method produces the lowest number of iterations 

and is faster than the GS method. This conclusion was drawn from the analysis of the comparison of 

both methods presented in Table 1, which demonstrates the superior performance of the SOR method 

compared to the GS method. 
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