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INTRODUCTION

In recent years, there has been increasing interest in creating, applying, and studying numerical methods
for boundary value problems due to the difficulties in deriving analytical solutions (Aarao et al., 2010).
One such equation, the two-point boundary value problem, has widespread applications in science,
engineering, and physics research areas (Gupta, 2012; Wang & Guo, 2008). Many researchers have
devoted their efforts to designing accurate numerical solutions for TPBVPs and recognize the difficulties
associated with obtaining them. Previous studies have explored various numerical techniques to address
the TPBVPs. Mohsen and El-Gamel (2008) used the Galerkin and collocation methods to numerically
simulate this problem, while Liu et al. (2011) proposed a polynomial spline implementation as a
numerical solution. Furthermore, researchers have investigated a B-spline method (Caglar & Caglar,
2009) to tackle the diffusion problem. Additionally, the literature provides a range of other numerical
solutions for TPBVPs (Al-Towaiq, 2023; Pandey, 2023; Rashidinia & Sharifi, 2015; Wang, 2023;
Zhanlav et al., 2024 ), which can be applied to the study of TPBVPs.

Based on the method mentioned in the previous paragraph, we propose a new approach called

the RKFD method to solve the boundary value problem. This method is based on the Redlich-Kister
(RK) function, which is widely used in physics and chemistry to obtain solutions but has been less
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commonly utilised in other fields (Babu ef al., 2019; Gayathri et al., 2019; Komninos & Rogdakis,
2020). Over time, its application has been extended to solve numerical analysis problems. The
background of this method in numerical analysis started with the study (Hasan et al., 2010), in which
the piecewise RK polynomial model has been used, focusing on the construction of first- and third-order
models and on analysing the relationship between Gauss-Seidel iteration and mesh sizes. The findings
indicated that the third Redlich-Kister model offers good accuracy compared to the first model.

Following this research, subsequent research has gone deeper into the application of RK
functions to numerical analysis fields. For example, in Suardi and Sulaiman (2021b), the authors
suggested the use of RK polynomials to solve a one-dimensional boundary value problem. Furthermore,
Suardi & Sulaiman (2021a, 2022) proposed RKFD, which combines the RK polynomial and finite
difference methods to solve a problem of two-point boundary value problems. The use of the RKFD
approximation equation generates the system of the RKFD equation, which will be solved by iterative
methods, which is the SOR method, as a linear solver. In literature, Young (1970) explored the various
SOR methods for solving linear equation systems of Au = b and discovered that the SOR methods with
optimal relaxation parameters produce small radio waves. In addition, Sampoorna and Bueno (2010)
tested the partial atomic redistribution problems by using the Gauss-Seidel method and the SOR, and
they then found that the SOR method could solve the problem in a short time. This is supported by
Radzuan et al. (2018), who mentioned that the SOR method can accelerate the convergence of linear
equation solutions using optimal relaxation parameters. Inspired by all those studies, the paper aims to
develop numerical solutions for problems involving TPBVPs in Equation 1.

d2u auv -
ﬁ+Z(x)E+ Gx)U(x) =r(x) €))
With the Dirichlet conditions

U0) = 9o, U(P) = 1.

RKFD APPROXIMATION EQUATION

Before the numerical process begins for Equation 1, the two newly established RKFD
approximation equations must be constructed, as described in the preceding section. To construct
these approximation equations, a discretisation process based on the Redlich—Kister (RK) function
is required. Defining the general formula of the RK function is in Equation 2.

Un(x) = Xk=o ar " Tie(x) )
where ag, k = 0,1,2, ..., n are the unknown parameters.
Before calculating the unknown parameters in equation 2, the distribution of the mesh sizes

utilised is depicted in Figure 1. The size of the mesh shown in Figure 1 provides an understanding
of the formulation of the first three Redlich-Kister (RK) functions, as depicted in Figure 2.

0=x9¢ X7 X2 X3 X4 X5 Xg X7 . Xn-7 Xnb Xn-3 Xn-4 Xn-3 Xn-2 Xn-1 D=1,

Figure 1. Distribution of mesh sizes considered.
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Figure 2. The path for To, T4, and T>.

Applying the concept of Figure 2 to Equation 2 can mean that the second-order RK
approximation function is expressed in Equation 3.

U(x) = agTo(x) + a;T1(x) + a,T,(x) (3)
Where the first three RK functions are defined as
To(x)=1, T;(x)=x, T,(x)=x(1-x).
Then, the grid network shown in Figure 1 is set up as a reference domain for equation 3 by

applying the node points, x, = x¢ + ch,c = 0,1,2, ...,n and defining the uniform step size as h =

(pT_O, n = 2P,p > 1. This process is used to solve the following linear system and obtain unknown

parameters in equation 3.

Ue—1 To(xc-1) Ti(xc-1) To(xc—1)|[20
Uc = TO (xc) Tl (xc) TZ (xc) [all (4)
Ucss To(xc1) Ti(xer1) To(xeqq) 192

where U(x.) = U.. After that, Equation 4 is solved using the matrix approach to derive the
formulas for the three unknown parameters in Equation 3. Equation 3 was used to replace all three
parameters and rewrite them as Equation 5.

U(x) = No(x)Uc—1 + N1 (YU, + N (x)Uc4q (%)
where the RKFD shape functions, Ny (x),k = 0,1,2 can be defined as Equation 6.

No(x) = (x? — 2xhc — xh + h?c? + h%c)/(2h?)
N;(x) = (2xhc — x? — h?c? + h?)/(h?) (6)
N,(x) = (x? — 2xhc + xh + h?c? — h%c)/(2h?)

By evaluating the first and second derivatives concept on Equation (6), the RKFD
approximation function is expressed as Equation 7.

‘;_Z ¢ No(xe)Uc—1 + Ni(xc)Uc + Ny (xc)Uc1

2
2 = N(')'(xc)Uc—l + Nf(xc)Uc + Né'(xc)Uc+1

dXZ c

(7

where U(x.) = U,,¢c = 0,1,2,...,n accorded as the approximation solution of the function
U(x). The expression generated by equation 7 highlights the two newly established RKFD
discretisation methods, which correspond to the primary objective of this work. These approaches
have been designed for constructing the RKFD approximation equation to solve the suggested
problem (1). By substituting equation 7 into the given problem and applying the second-order
central difference techniques for discretising in time, a second-order RKFD approximation,
Equation 8, could be constructed as follows for the TPBVP

acUc_1 + BCUC +Ve+1Ucs1 = Re, (8)

where
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ac = Ng(xo) + ZNy(xp), e = Ny (xo) + ZN;(xc) + G, v = N3 (x.) + ZNj(x,)

Next, the RKFD linear systems can then be built in matrix form using the RKFD
approximation equation 8 as follows:

W-U=R )

DERIVATION OF SOR ITERATIVE METHOD

From the previous section, the generated large-scale and sparse linear systems (9) emerge as a result of
the completed RKFD discretisation scheme process. Based on many research studies (Hackbusch, 1994;
Saad, 2003; Young, 2014), it is recommended to use iterative methods to solve this linear system since
it involves a large scale within the coefficient matrix. To solve equation 9 in this study, the SOR iterative
approach has been regarded as a linear solution. Studies on the application and effectiveness of the SOR
method, which is an enhancement of the GS method, have been conducted by Kalambi (2008) and
Youssef (2012). When applying the SOR approach, which is impacted by the weighted parameter's value
determination, the range should be 1 < w < 2. However, when the weighted parameter is taken as equal
to one, w = 1the SOR method will change into the GS method (Equation 10) (Kalambi, 2008).

(F+]+L)-U=R, (10)

where J, F and L are diagonal matrix, triangular lower and upper matrices. Through manipulation of
equation 10, the representation of the SOR method in the form of a point iteration form is presented in
Equationl 1.

U@ = (1 -w)U@ +w( + )R - LU@) (1n)

where U@*D referring to the value of U(x) at the (g + 1)t" iteration.

NUMERICAL PROBLEM AND DISCUSSION

In the previous discussion, the RKFD approximation equation was derived, and the numerical
experiment was conducted to solve problem (1) using the SOR method. To determine the applicability
of the suggested method, two examples were tested with different mesh sizes, n =
256,512,1024,2048,4096. Additionally, numerical comparisons were done in terms of the number of
iterations (Iter), execution time (Time), and maximum norm. Following that, a tolerance error, € =
10710 is always used for all examples that are taken into consideration.

Example 1
The TPBVPs (1) as (Caglar et al., 2006)
AU _ AU _ -1
dx2  dx € (12)

and the analytical solution of problem (12) is U(x) = x(1 — e(x'l)).

Example 2
The TPBVPs (1) with as (Ramadan et al., 2007)
d?u _
@ U =1 (13)
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and the analytical solution of problem (13) is U(x) = cos(x) + 1;%(51()1) sin(x) — 1.

As predicted in Table 1, the numerical result indicates that the SOR method with the RKFD
approximation equation outperforms the GS method, the benchmark method in this study, in terms of
iteration and time. The SOR method can generate fewer iterations and converge more quickly across all
examples tested. For instance, in Table 1, 769 iterations are required by the SOR method and 0.73
seconds to converge Example 1 at a 256 mesh size, while the GS method required 82043 iterations and
22.54 seconds. The advantage of the SOR method becomes more pronounced as the mesh size increases,
as seen in the results for n = 4096, where the SOR method required 10244 iterations and 10.51 seconds,
compared to the GS method, which required 11811519 iterations and 2359.09 seconds. The numerical
results for solving problems exhibit a similar pattern, with the SOR method demonstrating improved
performance over the GS method, as reported in Example 2. These findings are consistent with the
literature (Suardi & Sulaiman, 2022), which indicates that the SOR method can enhance the applicability
of the GS method for solving TPBVPs. In terms of accuracy, both the SOR and GS methods showed
excellent agreement with their respective exact solutions.

Table 1. Numerical results for examples 1 and 2.

n Method Example 1 Example 2

Iter Time MaxNorm Iter Time MaxNorm

256 GS 82043 22.54 4.0343e-07 89973 19.88 5.4091e-07
SOR 769 0.73 2.4519¢-07 769 0.39 2.0467¢-07

512 GS 292276 35.51 2.5291¢-06 318924 60.80 2.9059¢-06
SOR 1526 1.57 6.7390e-08 1537 0.88 4.3126¢-08

1024 GS 1025489 117.83 1.0346¢-05 1111808 256.86 1.1810e-05
SOR 2946 3.46 1.9947¢-08 3057 1.81 1.5554e-08

2048 GS 3527433 409.02 4.1443¢-05 3791677 1260.25 4.7285¢-05
SOR 5792 6.64 1.7364¢-08 5733 3.44 2.5779¢-08

4096 GS 11811519 2359.09 1.6579¢-04 12544476 2681.69 1.8915e-04
SOR 10244 10.51 9.3638¢-08 10660 5.71 1.0453¢-07

CONCLUSION

The GS and SOR methods are looked at in this paper as two iterative ways to get the numerical solution
of two new RKFD approximation equations for solving TPBVPs. Firstly, the problem was discretised
to form the RKFD approximation equation. The resulting linear system was then solved using the
considered iterative methods. To validate the applicability of the iterative methods, two examples were
tested, and the numerical results revealed that the SOR method produces the lowest number of iterations
and is faster than the GS method. This conclusion was drawn from the analysis of the comparison of
both methods presented in Table 1, which demonstrates the superior performance of the SOR method
compared to the GS method.
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