

---

**Research article**

---

**Screening microbes isolated from Melalap, Crocker Range for inhibitors against both prokaryotic and eukaryotic signal transduction and isocitrate lyase in *Mycobacterium***

**PUAH Seok Hwa, HEW Chaw Sen, FOO Sek Hin, ONG Si Mon,  
HO Wei Loon, LEE Ping Chin, LIM Siok Har and HO Coy Choke\***

*School of Science and Technology,  
Universiti Malaysia Sabah,  
Locked Bag 2073,  
88999 Kota Kinabalu,  
Sabah, Malaysia*

**ABSTRACT.** In this study, 65 soil samples from underneath identified plants were collected upstream along the Melalap river. One hundred and thirty-six actinomycetes and ten microfungi were isolated using selective isolation methods. These pure isolates were cultured aerobically for secondary metabolite production. They were screened for inhibitors against three yeast-based molecular targeted screenings: protein phosphatase 1 (PP1), glycogen synthase kinase 3 $\beta$  (GSK-3 $\beta$ ), Ras/Raf-1 protein-protein interaction, and two *Mycobacterium*-based screening systems: isocitrate lyase (ICL) of the glyoxylate pathway and PhoP-PhoR two component signal transduction system. Three extracts (H11329, H11337 and H11402) were toxic to yeast in Ras/Raf-1 screening, nine extracts were toxic to yeast in PP1 screening (H11293, H11298, H11300, H11301, H11302, H11304, H11317, H11339 and H11402). One actinomycete strain H11299 showed weak inhibition to PP1. Two extracts (H11329 and

H11364) showed weak inhibitory activity and three extracts (H11339, H11337, H11402) showed toxicity in the GSK-3 $\beta$  yeast screening. Five extracts (H11310, H11317, H11337, H11346 and H11383) showed toxic effect in the ICL screening system, and one extract (H11392) possibly showed weak inhibition to the PhoP-PhoR two component system. It is interesting that H11383 has the same inhibition characteristic as H7763, a presumptive ICL inhibitor with a wide partial inhibition zone on acetate plate (Daim, 2003).

**INTRODUCTION**

Actinomycetes are common Gram-positive bacteria in soil, composts, river mud and lake bottom. Rich soil tends to have a high yield of actinomycetes. They are characterized by their high G+C content and cell wall compositions. Actinomycetes together with fungi are avid producers of secondary metabolites with classic examples being streptomycin and penicillin. As chemical novelty associated with natural product is high, metabolites produced by bacteria and fungi provide great structural diversity (Harvey, 2000).

---

**Key words:** Actinomycetes, microfungi, two component signal transduction, protein phosphatase 1, glycogen synthase kinase-3 $\beta$ , isocitrate lyase

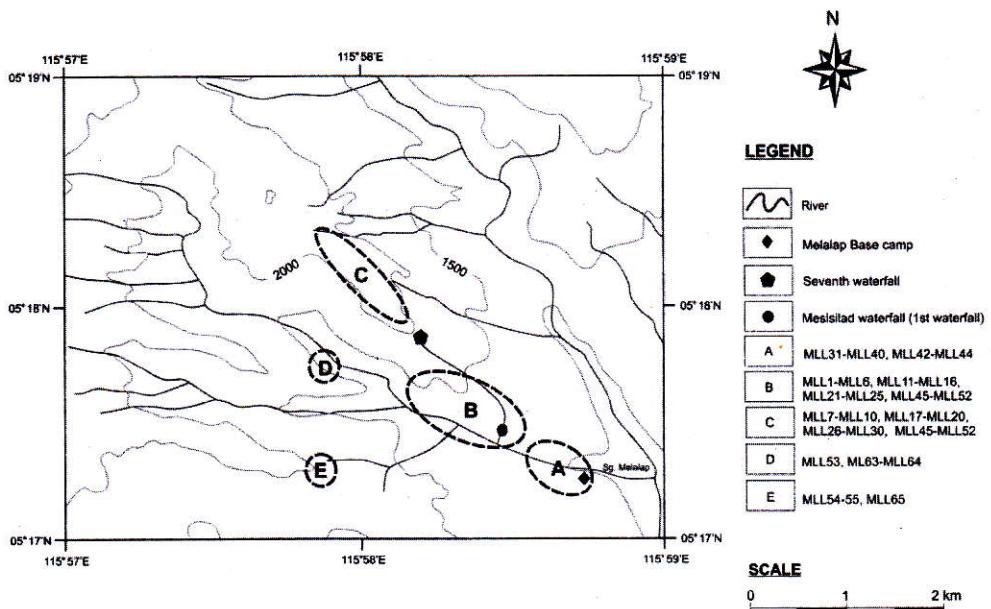
\*: hocoychoke@yahoo.com

Borneo is the second largest tropical island in the world, harbouring precious biodiversity resources, but their potential has yet to be fully explored. Melalap is one of the sub-stations at the southern region of the Crocker Range Park, an area under the Bornean Biodiversity and Ecosystems Conservation (BBEC) Programme. Previous studies have included areas near Mahua, Ulu Senagang, Ulu Kimanis and Gunung Emas (Lo *et al.*, 2001; Chan *et al.*, 2004), which are situated to the north-eastern part and central part of the Park. The search for biologically active compounds has led us to exploit the forest area in the hope of finding higher microbial diversity that provides better chance at obtaining useful compounds.

In this study, actinomycetes and microfungi were isolated from soil samples collected from just below the leaf litter as the degradation of the leaf litter and other dead organic material is aided by microbes of which many are fungi and actinomycetes. These microbes were selectively isolated and the acetone extracts produced by shake flask fermentation of these isolates were screened against molecular targeted screening in search for biological inhibitors. There were three yeast-based screening systems adapted in this study, the Ras/Raf-1 protein-protein interaction screening was designed to screen for inhibitors affecting mammalian Ras/Raf-1 interaction (Ki *et al.*, 1998). The GSK-3 $\beta$  screening detects inhibitors affecting the GSK-3 $\beta$  pathway (Andoh *et al.*, 2000). The protein serine/threonine phosphatases inhibitors screening was targeted at protein phosphatase 1 (Andrews & Stark, 2000). Protein kinases and protein phosphatases have been found to be important drug targets since the last decade, with potential use in the treatment of various diseases (Cohen, 2002), including cancer and neurological diseases.

Apart from these, two *Mycobacterium*-based screening systems were also employed. *M.*

*tuberculosis* has been known to be the causative agent of the deadly tuberculosis disease. One of the important targets of persistent TB infection is the isocitrate lyase of the glyoxylate pathway (McKinney *et al.*, 2000). The PhoP-PhoR two-component signal transduction system is important for *Mycobacterium* survival in lung, which is a latent infection factor (Fontan *et al.*, 2004). *M. smegmatis* mc<sup>2</sup>155 is used as it is a non-pathogenic surrogate host strain for *M. tuberculosis* genes with advantages of easy and efficient genetic manipulations besides being a fast grower (Jacobs, 2000).


## MATERIALS AND METHODS

### Location

Sampling for this study took place during the Melalap Scientific Expedition (24-31 January, 2004). Melalap is situated at the southern end of the Crocker Range in the district of Tenom, Sabah. The Expedition Base camp was not completely undisturbed as there were still some abandoned planted crops, particularly cocoa, with villagers living less than five km away. Part of the study area was once burned by fire in 1989 and wild bananas grew profusely. Soils were sampled along Melalap River, often less than one km away from the river and sometimes towards the hills area (Fig. 1). There were five sampling locations termed as follows: Site A, which was an area around the Base camp; Site B, more than one km away from the Base camp, including the area near Mesisilad waterfall and Tamburukai waterfall; Site C, 2-5 km uphill on the left side of the river, around 1000-2000 m a.s.l.; Sites D and E, situated to the north-west and west, respectively, and less than two km away from the Base camp.

### Collection of soil samples

Samples were collected from below big trees, near root areas. Humus-rich soil below the leaf



**Figure 1.** Topography map of the study site. Contour lines are in feet.

litters were collected aseptically into sterilized bottles with the aid of sterilized tongue depressors.

#### Soil pH determination

Ten grams of air-dried soil sample was mixed with 25 mL of distilled water. pH reading was taken using a calibrated WTW inoLab pH meter.

#### Isolation of actinomycetes

Actinomycetes were isolated by plating out diluted soil suspension onto humic acid B vitamins agar (HV), arginine vitamin agar (AV), starch casein nitrate agar (SCN) or diagnostic sensitivity test agar (DSTA). Cycloheximide was added into the media to a final concentration of 50 mg/L to prevent fungal contamination. In some cases, pre-treatment of soil samples with chloramine-T, phenol and

heat treatment at 180°C for two hours was done. Distinct colonies were streaked onto oatmeal agar (OA) for observation.

#### Selective isolation of *Streptomyces* (Nonomura and Hayakawa, 1988)

Soil (0.05 g) was suspended in 9.95 mL of distilled water. The soil suspension was mixed by using a vortex mixer and ten times diluted thrice. One hundred  $\mu$ L of the final dilution was plated onto HV agar (humic acid 0.5 g/L,  $\text{Na}_2\text{HPO}_4$  0.5 g/L, KCl 1.7 g/L,  $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$  0.05 g/L,  $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$  0.01 g/L,  $\text{CaCO}_3$  0.02 g/L, thiamine-HCl, riboflavin, niacin, pyridoxin-HCl, inositol, Ca-pantothenate, p-aminobenzoic acid each at 0.5 mg/L, biotin 0.25 mg/L, cycloheximide 50 mg/L and agar 18 g/L) and incubated at 28°C for 1-2 weeks. Distinct colonies were plated on oatmeal agar (OA) (Quaker oatmeal 20 g/L and agar 12 g/L).

### Selective isolation of *Streptosporangiaceae* (Hayakawa *et al.*, 1997)

Soil (0.1 g) was suspended in 9.9 mL of distilled water. The tube was vortexed and one mL of the soil suspension was transferred to nine mL of 1.0% (w/v) chloramine-T. The tube was incubated at 30°C for 30 minutes. One millilitre of the suspension was transferred to nine mL of distilled water. Two-hundred microlitres of soil suspension from this tube were plated on HV agar. Whitish, pinkish and morphologically different colonies were picked from HV plates and cultured on OA.

### Selective isolation of *Micromonospora*

One g of soil was suspended into nine mL of distilled water. One mL of the mixed soil suspension was transferred into 1.5% (w/v) phenol. The treated soil suspension was further diluted by ten times twice. Two hundred microlitres of the soil suspension from the final dilution ( $10^{-4}$ ) were plated onto starch-casein-nitrate (SCN) agar (starch 10 g/L, casein 0.3 g/L,  $\text{KNO}_3$  2 g/L,  $\text{NaCl}$  2 g/L,  $\text{K}_2\text{HPO}_4$  2 g/L,  $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$  0.05 g/L,  $\text{CaCO}_3$  0.02 g/L and agar 18 g/L, trace elements added:  $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$  1.02 mg/L,  $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$  176  $\mu\text{g}/\text{L}$ ,  $\text{MnSO}_4 \cdot 7\text{H}_2\text{O}$  1.26 mg/L,  $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$  240  $\mu\text{g}/\text{L}$ ; 50 mg/L cycloheximide was also added). The plates were incubated at 28°C for 2-4 weeks. The colonies picked were transferred onto OA.

### Selective Isolation of *Actinomadura*

The soil sample was subjected to heat treatment for one hour at 100°C. Treated soil (0.1 g) was suspended in 9.9 mL of distilled water. The suspension was diluted twice (100x) and 100  $\mu\text{L}$  of final dilution ( $10^{-3}$ ) was plated onto AV agar (L-Arginine 0.3 g/L, glucose 1 g/L, glycerol 1 mL/L,  $\text{K}_2\text{HPO}_4$  0.3 g/L,  $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$  0.2 g/L,  $\text{NaCl}$  0.3 g/L, agar 15 g/L, trace elements:  $\text{Fe}(\text{SO}_4)_3$  10 mg/L,  $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$

1.0 mg/L,  $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$  1.0 mg/L,  $\text{MnSO}_4 \cdot 7\text{H}_2\text{O}$  1.0 mg/L, Nystatin 50 mg/L, cycloheximide 50 mg/L, streptomycin 0.5  $\mu\text{g}/\text{L}$ ; B-vitamins as for HV were also added). Colonies were picked and transferred to OA.

### Selective Isolation of *Nocardia*

Soil (0.05 g) was suspended in 9.95 mL of distilled water. The tube was vortexed and one mL of the soil suspension was transferred to nine mL of distilled water. The dilution was repeated and 100  $\mu\text{L}$  of the final diluted suspension was plated on Diagnostic sensitivity test agar (Sigma D8184) containing Proteose peptone 10 g/L, veal infusion solids 10 g/L, dextrose 2 g/L, sodium chloride 3 g/L, disodium phosphate 2 g/L, sodium acetate 1 g/L, adenine sulfate 0.01 g/L, guanine hydrochloride 0.01 g/L, uracil 0.01 g/L, xanthine 0.01 g/L, aneurine 0.00002 g/L and agar 15 g/L. Nystatin 50 mg/L and cycloheximide 50 mg/L were added. Plates were incubated for 2-4 weeks and colonies were transferred to OA.

### Isolation of microfungi

Microfungi were isolated by plating soil suspension onto potato dextrose agar (PDA) incorporated with 7.5% (w/v)  $\text{NaCl}$ . Chloramphenicol was added as antibacterial agent. Colonies of fungi were cultured onto fresh PDA without added  $\text{NaCl}$ .

### Preservation of actinomycetes

Spores of single colonies of matured, spore-producing actinomycetes were stored into 20% glycerol and kept at -20°C.

### Preservation of microfungi

Conidia of single colonies of microfungi were kept in anhydrous silica gel particles at 4°C (Ogata, 1962). Cultures were preserved by

pipetting 0.5 mL conidia or mycelial fragments suspended in 4% (w/v) non-fat milk into dry heat sterilized (180°C, 2 hours) 12 x 100mm tubes half filled with anhydrous silica gel particles (6-12 mesh). The tubes were left to dry completely in a dessicator, sealed and stored.

#### Production of secondary metabolites

One loopful of single colonies of actinomycetes were inoculated into ten mL of mannitol-peptone broth (D-mannitol 20 g/L, peptone 20 g/L, dextrose 1 g/L, pH 7.2) in an 125 mL Erlenmeyer flask and incubated at 28°C with shaking at 220 rpm for 120 hours. Acetone was added to a final concentration of 50% at the end of the incubation. For fungal cultures, the fungus was inoculated into ten mL fungi fermentation medium (yeast extract 10 g/L, peptone 10 g/L, sucrose 10 g/L,  $\text{KH}_2\text{PO}_4$  1 g/L,  $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$  0.3 g/L, pH 5.5) in an 125 mL Erlenmeyer flask and incubated at 25°C with shaking at 220 rpm for 120 hours. Acetone was added to a final concentration of 50% at the end of the incubation. Acetone was chosen as the extraction solvent for the benefits of its polar organic properties and non-toxic feature towards the screening systems.

#### Screenings

Three yeast-based screenings, targeting at protein kinases, protein phosphatases and protein-protein interaction and two *Mycobacterium*-based screening targeting at isocitrate lyase and PhoP-PhoR in *M. smegmatis* were carried out as described below.

#### Yeast Two-Hybrid Screening System: Ras/Raf-1 protein-protein Interaction Screening

Paper disc screening: The yeast strain, H10014 (LZ) *MATa trp1 leu2 his3 LYS::lexA-HIS3*

*URA3::lexA-lacZ* [pLexA-RAS<sup>V12</sup> + pVP16-RAF] (Ki *et al.*, 1998) was grown in minimal medium (SD-His) for 72 hours. The seed culture was inoculated into SD-His and SD+His agar and poured onto plates. To increase sensitivity, 0.001% (w/v) SDS and 1 mM 3-aminotriazole were added to the medium. Air-dried paper discs impregnated with 20  $\mu\text{L}$  of acetone extracts were arranged onto the plates. Diameter of the inhibition zones were measured after three days incubation at 28°C. Extracts with significantly greater inhibition zone on SD-His plates were scored as positive as it would indicate non-expression of the *HIS3* gene. For further confirmation, freeze-dried extract after removing acetone by rotary evaporator at 40°C followed by removal of water by freeze drying was used.

$\beta$ -galactosidase assay: For assay against  $\beta$ -galactosidase (*lacZ* reporter), LZ cells were grown in SD medium at 28°C, 220 rpm for 72 hours,  $\text{OD}_{600}$  determined, one mL of cells were dispensed into 1.5 mL microfuge tubes and treated with freeze-dried samples (final concentration 1 mg/mL) for two hours. The cells were then centrifuged at 13,000 rpm for 5 minutes, Supernatants were discarded and cells were resuspended with 0.7 mL of Z buffer, 20  $\mu\text{L}$  0.1% (w/v) SDS and 50  $\mu\text{L}$  chloroform and the mixture was vortexed. A volume of 160  $\mu\text{L}$  of ortho-nitrophenyl- $\beta$ -galactoside (ONPG) prewarmed to 30°C was added to start the reaction and the reaction was stopped with the addition of 0.4 mL of 1M  $\text{Na}_2\text{CO}_3$ .  $\text{OD}_{420}$  of the samples was measured using a spectrophotometer.  $\beta$ -galactosidase activity was expressed in Miller Units (MU). Cells treated with extracts with less than half MU of the control cells are scored as positive. Miller Unit:  $(\text{OD}_{420})(1000)/(\text{OD}_{600})(\text{time})(\text{volume})$ , where time = reaction time, volume = reaction volume.

### Protein Serine/Threonine Phosphatases Inhibitor Screening

Yeast strains used in this screening are as below:

H10017 (PAY700-4) *MAT $\alpha$  ade2-1 his3-11 leu2-3,112 trp1-1 ura3-1 can1-100 ssd1-d2 glc7::LEU2 trp::glc7-10::TRP1 Gal $\beta$*

H10018 (PAY704-1) *MAT $\alpha$  ade2-1 his3-11 leu2-3,112 trp1-1 ura3-1 can1-100 ssd1-d2 glc7::LEU2 trp1::GLC7::TRP1 Gal $\beta$*

The yeast strains, PAY700-4 and PAY704-1 (Andrews & Stark, 2000) were incubated in YPD medium at 28°C for 72 hours with shaking at 220 rpm. One hundred  $\mu$ L of different strains of yeast cultures were added into every plate (25 mL/plate) of screening media respectively. The screening media used were similar to the cultivation media with or without 1M D-sorbitol. Extract-soaked paper discs were arranged and the plates were incubated in 25°C and 37°C for three days. Potential inhibitors would show a halo zone only against the wild type yeast at 37°C.

### GSK-3 $\beta$ screening system

The yeast strain used in this screening is H10075 with genotype *MAT $\alpha$  his3 leu2 ura3 trp1 ade2 mck1::TRP1 mds1::HIS3 mrk1 y01128C::leu2[pKT10-GSK3 $\beta$ ]* (Andoh *et al.*, 2000). H10075 is grown in SC minus uracil, shaking incubation, 220 rpm, at 37°C for two days. Four hundred  $\mu$ L of the yeast culture is inoculated in 100 mL of SC minus uracil agar (screening medium) maintained at 50°C. Paper discs impregnated with microbial extracts are then arranged on the screening plates, and plates are then incubated at both permissive temperature (25°C) and at high temperature (37°C). Potential inhibitors would show noticeably larger halo zone at 37°C.

### *Mycobacterium*-based Isocitrate lyase screening system

This screening system was adapted from Sharma *et al.*, 2000. H8000, *Mycobacterium smegmatis* mc<sup>2</sup>155 was cultured in modified M9 medium with different carbon sources, glucose or sodium acetate at 37°C for 72 hours without shaking. The bottom layer was prepared by pouring modified M9 agar into each sterile Petri dish (10 mL per plate) and left to solidify at laminar flow. Then 750  $\mu$ L of *M. smegmatis* grown in sodium acetate or 150  $\mu$ L of *M. smegmatis* grown in glucose was inoculated into 10 mL of top layer screening agar media with 0.02M sodium acetate or glucose respectively with added 10  $\mu$ L of 1M thiamine chloride. The seeded agar was poured gently onto the bottom layer screening agar and paper discs were arranged. The plates were incubated at 37°C for three days. Extracts showing inhibition only on sodium acetate plate were scored as positive.

### Screening of potential inhibitor against PhoP-PhoR two-component signal transduction system in *Mycobacterium smegmatis* (Groisman, 2001; Soncini *et al.*, 1996)

Screenings using wild type *M. smegmatis* mc<sup>2</sup>155 (H8000) were done by the paper disc susceptibility test method, which target Mg<sup>2+</sup>-dependent protein phosphorylation in PhoP-PhoR two-component system. *M. smegmatis* was cultured in M9 minimal liquid medium supplemented with trace elements, 0.5% (v/v) of glucose and 0.1% (v/v) of 1M thiamine chloride with different concentration of magnesium sulfate, 100  $\mu$ M and 1mM at 37°C for 72 hours without shaking. The autoclaved bottom layer M9 agar was poured into each sterile Petri dish (15 mL per plate). Two hundred and fifty  $\mu$ L of *M. smegmatis* seed culture grown in different concentration of magnesium were pipetted into ten mL of top

Table 1. List of soil samples collected from Melalap with reference to Figure 1.

| No | Soil Sample | Plant name                              | Site | Location                                                                                     | pH   |
|----|-------------|-----------------------------------------|------|----------------------------------------------------------------------------------------------|------|
| 1  | MLL1        | <i>Parashorea tomentella</i>            | B    | One km upstream of Sg. Melalap                                                               | 7.09 |
| 2  | MLL2        | <i>Ficus</i> sp.                        | B    | Along trail made by zoology group of Sabah Parks                                             | 6.69 |
| 3  | MLL3        | <i>Syzygium</i> sp.                     | B    | Along trail made by zoology group of Sabah Parks                                             | 7.43 |
| 4  | MLL4        | <i>Euphorbiaceae</i>                    | B    | Along trail made by zoology group of Sabah Parks                                             | 7.44 |
| 5  | MLL5        | <i>Piticellobium</i> sp.                | B    | 10 metres away from the stream, uphill                                                       | 5.56 |
| 6  | MLL6        | <i>Mangifera</i> sp. & <i>Ficus</i> sp. | B    | Along the trail to Air Terjun Tamburukai                                                     | 5.58 |
| 7  | MLL7        | <i>Shorea andulensis</i>                | C    | About 2 km uphill on the left from the 7 <sup>th</sup> waterfall                             | 3.79 |
| 8  | MLL8        | (Selangan kuning)                       | C    | About 3 km uphill on the left from the 7 <sup>th</sup> waterfall                             | 3.73 |
| 9  | MLL9        | <i>Lithocarpus</i> sp.                  | C    | About 3 km uphill on the left from the 7 <sup>th</sup> waterfall                             | 4.07 |
| 10 | MLL10       | Not available                           | C    | About 4 km uphill on the left from the 7 <sup>th</sup> waterfall. On the top of the hill.    | 3.99 |
| 11 | MLL11       | <i>Parashorea tomentella</i>            | B    | Along an existing trail, about 6 m above river. 30 ft further will be the Mesilad waterfall. | 6.47 |
| 12 | MLL12       | <i>Diospyros</i> sp.                    | B    | Along the trail made by the Zoology group of the Sabah Parks                                 | 5.91 |
| 13 | MLL13       | Not available                           | B    | TS survey trail, by Fred Juanis (of Sabah Parks)                                             | 6.56 |
| 14 | MLL14       | Not available                           | B    | Not available                                                                                | 5.8  |
| 15 | MLL15       | <i>Dysoxylum</i> sp.                    | B    | Not available                                                                                | 6.82 |
| 16 | MLL16       | <i>Lauraceae</i>                        | B    | Along the trail to the waterfall                                                             | 3.79 |

continued Table 1.

|    |       |                                            |   |                                                                                                                                                |      |
|----|-------|--------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 17 | MLL17 | <i>Litsea</i> sp.                          | C | About 2 km from 7 <sup>th</sup> waterfall<br>(along the trail up to Bukit Tiwung)                                                              | 3.94 |
| 18 | MLL18 | Not available                              | C | About 2 km from 7 <sup>th</sup> waterfall                                                                                                      | 3.92 |
| 19 | MLL19 | <i>Artocarpus</i> sp.                      | C | About 3.5 km from 7 <sup>th</sup> waterfall.<br>Northeast of MLL19 is MLL29,<br>12 ft apart, Southeast of MLL29 is<br>MLL 10, also 12 ft apart | 3.68 |
| 20 | MLL20 | <i>Trema</i> sp.                           | C | Along the trail descending Bukit<br>Tiwung, along a range.                                                                                     | 3.94 |
| 21 | MLL21 | <i>Anacardiceae</i>                        | B | Opposite MLL1                                                                                                                                  | 7.32 |
| 22 | MLL22 | <i>Burseraceae</i>                         | B | Along trail made by zoology<br>group of Sabah Parks, 4 feet<br>away from MLL2                                                                  | 6.12 |
| 23 | MLL23 | <i>Pitichellobium</i> sp.                  | B | Along trail made by zoology<br>group of Sabah Parks                                                                                            | 7.22 |
| 24 | MLL24 | <i>Dryobalanops lanceolata</i>             | B | 10 metres away from the stream,<br>uphill                                                                                                      | 6.14 |
| 25 | MLL25 | <i>Shorea</i> sp.                          | B | Not available                                                                                                                                  | 6.35 |
| 26 | MLL26 | <i>Shorea inappendiculata</i>              | C | 2 km from the 7 <sup>th</sup> waterfall                                                                                                        | 4.54 |
| 27 | MLL27 | <i>Artocarpus odoratissinus</i>            | C | 2 km from the 7 <sup>th</sup> waterfall                                                                                                        | 3.80 |
| 28 | MLL28 | <i>Syzygium</i> sp.                        | C | About 3 km from 7 <sup>th</sup> waterfall                                                                                                      | 4.56 |
| 29 | MLL29 | <i>Vitex</i> sp.                           | C | Along the trail back from primary<br>forest, about 5 km away from<br>waterfall. Near MLL10 and MLL19                                           | 4.62 |
| 30 | MLL30 | <i>Ficus fulva</i>                         | C | About 4 km away from waterfall.                                                                                                                | 4.52 |
| 31 | MLL31 | <i>Gigantochloa levis</i>                  | A | Base camp                                                                                                                                      | 7.10 |
| 32 | MLL32 | <i>Elingera</i> sp.                        | A | Upstream of Base camp                                                                                                                          | 7.39 |
| 33 | MLL33 | <i>Eupatorium</i>                          | A | On right river bank, beside<br>rocky bank                                                                                                      | 7.74 |
| 34 | MLL34 | Cocoa                                      | A | Base camp                                                                                                                                      | 8.93 |
| 35 | MLL35 | <i>Coscinium fenestratum</i><br>(Torlutup) | A | Base camp                                                                                                                                      | 6.43 |

continued Table 1.

|    |       |                                     |   |                                                                                                |      |
|----|-------|-------------------------------------|---|------------------------------------------------------------------------------------------------|------|
| 36 | MLL36 | <i>Archidendron</i> sp.(Pelindung)  | A | Base camp                                                                                      | 8.21 |
| 37 | MLL37 | <i>Octomeles sumatrana</i> (Binung) | A | Base camp                                                                                      | 6.74 |
| 38 | MLL38 | <i>Ficus septica</i> (Lintotobu)    | A | Base camp                                                                                      | 8.67 |
| 39 | MLL39 | <i>Musa</i> sp.                     | A | Near river, Base camp                                                                          | 5.47 |
| 40 | MLL40 | <i>Douax</i> sp.                    | A | Near river, Base camp                                                                          | 6.98 |
| 41 | MLL41 | Not available                       | C | About 5 km uphill on the left from the 7 <sup>th</sup> waterfall. Began going down the hill.   | 4.09 |
| 42 | MLL42 | Not available                       | A | Near Base camp                                                                                 | 5.96 |
| 43 | MLL43 | Not available                       | A | Near Base camp                                                                                 | 6.22 |
| 44 | MLL44 | Not available                       | A | Near Base camp                                                                                 | 6.81 |
| 45 | MLL45 | <i>Maranthes corymbosa</i>          | B | Along Mesisilad waterfall trail, 1 hour 40 minutes walk from base camp, 2.5 m from the stream. | 7.10 |
| 46 | MLL46 | <i>Prainea limpato</i>              | B | 5 minutes walk from MLL45, 2 m from the stream.                                                | 7.39 |
| 47 | MLL47 | <i>Poikilospermum</i> sp.           | B | 55 minutes walk from MLL46, 4 m from the stream.                                               | 7.74 |
| 48 | MLL48 | <i>Celtis timorensis</i> .          | B | 1 hour 5 minutes walk from MLL47, 5 m from the stream.                                         | 8.93 |
| 49 | MLL49 | <i>Artocarpus elasticus</i>         | B | 35 minutes walk along Melalap River from Base camp.                                            | 6.43 |
| 50 | MLL50 | <i>Artocarpus elasticus</i>         | B | 35 minutes walk from MLL49, 2 m from the stream.                                               | 8.21 |
| 51 | MLL51 | <i>Octomeles sumatrana</i>          | B | 50 minutes walk from MLL50.                                                                    | 6.74 |
| 52 | MLL52 | (Litak)                             | B | 55 minutes walk from MLL51, 5 m from the stream.                                               | 8.67 |
| 53 | MLL53 | <i>Durio</i> sp.                    | D | 40 minutes from MLL52.                                                                         | 5.47 |
| 54 | MLL54 | Not available                       | E | 55 minutes walk from MLL53.                                                                    | 6.98 |
| 55 | MLL55 | <i>Alstonia spatulata</i>           | E | 30 minutes walk from MLL54. Near banana trees.                                                 | 4.03 |

continued Table 1.

|    |       |                              |   |                                                                                                                                                     |      |
|----|-------|------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 56 | MLL56 | <i>Parashorea tomentella</i> | B | 824 m from the Base camp and 5 m away from the river bank on the left towards upstream of river. 375 m above sea level<br>N 05°17.523' E115°58.417' | 6.55 |
| 57 | MLL57 | <i>Mallotus</i> sp.          | B | 986 m from the Base camp and 6 m away from river bank on the right towards upstream of river. 395 m above sea level<br>N 05°17.605' E115°58.363'    | 7.87 |
| 58 | MLL58 | <i>Mallotus</i> sp.          | B | 838 m from the Base camp and 10 m away from river bank on the right towards upstream of river.<br>N 05°17.534' E115°58.415'                         | 7.33 |
| 59 | MLL59 | <i>Terminalia</i> sp.        | B | 750 m from the Base camp and 4 m away from river bank on the left towards upstream of river.<br>N 05°17.447' E115°58.427'                           | 8.28 |
| 60 | MLL60 | <i>Aglaia</i> sp.            | B | 986 m from Base camp and 3 m away from river bank on the right towards upstream of river.<br>N 05°17.543' E115°58.341'                              | 8.30 |
| 61 | MLL61 | (Seraya)                     | B | 1200 m from Base camp and 5 m away from river bank on the right towards upstream of river. 415 m above sea level.<br>N 05°17.513' E115°58.214'      | 7.98 |
| 62 | MLL62 | <i>Aporusa</i> sp.           | B | 10 m away from river bank on the left towards upstream of river.<br>465 m above sea level.                                                          | 7.02 |
| 63 | MLL63 | <i>Shorea pauciflora</i>     | D | 1800 m away from Base camp and 30 m away from river bank on the left towards upstream of river. 545 m above sea level.<br>N 05°17.721' E115°57.930' | 4.76 |
| 64 | MLL64 | Not available                | D | 560 m above sea level                                                                                                                               | 4.52 |
| 65 | MLL65 | <i>Teijmanniodendron</i> sp. | E | 1800 m away from Base camp.<br>680 m above sea level.<br>N 05°17.308' E115°57.862'                                                                  | 4.34 |

Local name in parenthesis

Table 2. List of actinomycetes isolated from soil samples of Melalap

| H<br>Number | Isolation<br>method | Soil<br>Sample<br>No. | Aerial<br>mycelium<br>colour   | Characteristics on OA |                               |              |
|-------------|---------------------|-----------------------|--------------------------------|-----------------------|-------------------------------|--------------|
|             |                     |                       |                                | Reverse<br>colour     | Extracellular<br>pigmentation | Sporulation  |
| H11277      | HV                  | MLL56                 | White-honey blue               | Primrose              | No                            | Not recorded |
| H11278      | HV                  | MLL56                 | White-pinkish                  | Primrose              | No                            | Not recorded |
| H11279      | HV                  | MLL57                 | Golden sand-white              | Maple                 | Brownish                      | Not recorded |
| H11280      | HV                  | MLL57                 | Lavender grey                  | Primrose              | No                            | Not recorded |
| H11281      | HV                  | MLL58                 | White-honey blue               | Primrose              | Greenish                      | Not recorded |
| H11282      | HV                  | MLL59                 | White                          | Pearl white           | No                            | Not recorded |
| H11283      | HV                  | MLL59                 | White                          | Pearl white           | No                            | Not recorded |
| H11284      | HV                  | MLL61                 | White                          | Maple                 | No                            | Not recorded |
| H11285      | HV                  | MLL62                 | Primrose-white                 | Primrose              | No                            | Not recorded |
| H11286      | HV                  | MLL62                 | Sunflower                      | Sunflower             | No                            | Not recorded |
| H11287      | HV                  | MLL63                 | Dark grey                      | Dark grey             | No                            | Not recorded |
| H11288      | HV                  | MLL63                 | White-oak                      | Pearl white           | No                            | Not recorded |
| H11289      | HV                  | MLL64                 | Light green-oak                | Primrose              | No                            | Not recorded |
| H11290      | HV                  | MLL64                 | Peal white-white               | Ivory                 | No                            | Not recorded |
| H11291      | DSTA                | MLL58                 | Light purple                   | Red                   | No                            | Not recorded |
| H11292      | DSTA                | MLL59                 | Sweet dream                    | Marigold              | No                            | Not recorded |
| H11293      | DSTA                | MLL59                 | White-maple                    | Jute                  | No                            | Not recorded |
| H11294      | DSTA                | MLL60                 | Pearl white                    | Ivory                 | Marigold                      | Not recorded |
| H11295      | DSTA                | MLL61                 | Pinkish white                  | Pinkish white         | No                            | Not recorded |
| H11296      | DSTA                | MLL62                 | Secret                         | Primrose              | No                            | Not recorded |
| H11297      | DSTA                | MLL62                 | Secret                         | Primrose              | No                            | Not recorded |
| H11298      | DSTA                | MLL62                 | Marigold                       | Jasmine               | No                            | Not recorded |
| H11299      | DSTA                | MLL63                 | White                          | White                 | No                            | Not recorded |
| H11300      | DSTA                | MLL63                 | White                          | White                 | No                            | Not recorded |
| H11301      | DSTA                | MLL63                 | White                          | Primrose              | No                            | Not recorded |
| H11302      | DSTA                | MLL65                 | Light green                    | Light green           | No                            | Not recorded |
| H11303      | DSTA                | MLL65                 | Greenish                       | Greenish              | No                            | Not recorded |
| H11304      | DSTA                | MLL65                 | White                          | White                 | No                            | Not recorded |
| H11308      | HV                  | MLL21                 | Whitish brown                  | Beige                 | No                            | Yes          |
| H11309      | HV                  | MLL21                 | Whitish metallic<br>green blue | Orange brown          | Slight<br>orange              | Yes          |
| H11310      | HV                  | MLL21                 | White                          | White                 | No                            | Yes          |
| H11311      | HV                  | MLL22                 | Yellowish white                | Light yellow          | No                            | Not obvious  |
| H11312      | HV                  | MLL22                 | Whitish grey                   | Whitish grey          | No                            | Yes          |
| H11313      | HV                  | MLL22                 | Whitish grey                   | Whitish grey          | No                            | Yes          |
| H11314      | HV                  | MLL23                 | Whitish grey                   | Orange Brown          | No                            | Yes          |
| H11315      | HV                  | MLL23                 | Whitish metallic<br>green blue | Orange brown          | Slight<br>orange              | Yes          |
| H11316      | HV                  | MLL24                 | Whitish grey                   | Beige                 | No                            | Yes          |
| H11317      | HV                  | MLL25                 | Whitish light red              | White                 | No                            | Yes          |

continued Table 2.

|        |     |       |                     |                     |                 |             |
|--------|-----|-------|---------------------|---------------------|-----------------|-------------|
| H11318 | HV  | MLL25 | Orange white        | Orange              | Slight orange   | Yes         |
| H11319 | HV  | MLL25 | Whitish light red   | White               | No              | Yes         |
| H11320 | HV  | MLL26 | Whitish deep brown  | Deep Brown          | No              | Not obvious |
| H11321 | HV  | MLL26 | White               | White               | No              | No          |
|        |     |       |                     | (orange center)     |                 |             |
| H11322 | HV  | MLL27 | Beige               | Beige               | No              | No          |
| H11323 | HV  | MLL27 | Yellow grey         | Orange              | Yellowish       | Yes         |
| H11324 | HV  | MLL30 | Yellow              | Yellow white        | No              | No          |
| H11325 | HV  | MLL30 | Whitish green       | Brown               | Slight brownish | Yes         |
| H11326 | SCN | MLL21 | White light grey    | Light orange        | No              | Yes         |
| H11327 | SCN | MLL21 | Whitish grey        | Grey                | No              | Yes         |
| H11328 | SCN | MLL22 | White               | White               | No              | No          |
| H11329 | SCN | MLL23 | Whitish grey        | Grey                | No              | Yes         |
| H11330 | SCN | MLL23 | Whitish deep brown  | Deep brown          | No              | No          |
| H11331 | SCN | MLL23 | White (grey centre) | White               | No              | No          |
| H11332 | SCN | MLL23 | White               | White               | No              | No          |
| H11333 | SCN | MLL24 | Whitish grey        | Brown               | Slight brown    | Yes         |
| H11334 | SCN | MLL25 | Whitish grey        | Grey                | No              | Yes         |
| H11335 | SCN | MLL26 | White               | Orange              | Slight orange   | Yes         |
| H11336 | SCN | MLL26 | Whitish red brown   | Red brown           | Slight          | No          |
| H11337 | SCN | MLL28 | Whitish grey        | Beige               | No              | Yes         |
| H11338 | SCN | MLL28 | Whitish grey        | Beige               | No              | Yes         |
| H11339 | SCN | MLL29 | White               | Beige               | No              | Yes         |
| H11340 | SCN | MLL23 | Brownish white      | Brown               | Slight brown    | Yes         |
| H11341 | HV  | MLL1  | Whitish-green       | Yellowish-green     | No              | Yes         |
| H11342 | HV  | MLL1  | Whitish-peach       | White               | No              | Yes         |
| H11343 | HV  | MLL1  | Whitish-grey        | Light green         | No              | Yes         |
| H11344 | HV  | MLL1  | White               | Brown               | No              | Yes         |
| H11345 | HV  | MLL1  | Whitish-grey        | Whitish-green       | No              | Yes         |
| H11346 | HV  | MLL2  | Whitish-light brown | Yellow              | No              | Yes         |
| H11347 | HV  | MLL2  | Grey                | Yellow              | No              | Yes         |
| H11348 | HV  | MLL2  | Light grey          | Light grey          | No              | Yes         |
| H11349 | HV  | MLL2  | Brown               | Brown               | No              | Yes         |
| H11350 | HV  | MLL3  | White               | Yellow              | No              | Yes         |
| H11351 | HV  | MLL3  | Green               | Brown               | No              | Yes         |
| H11352 | HV  | MLL4  | Whitish-green       | Whitish-light green | No              | Yes         |
| H11353 | HV  | MLL4  | Whitish-light brown | Light brown         | No              | Yes         |
| H11354 | HV  | MLL4  | Whitish-light grey  | Whitish-light grey  | No              | Yes         |
| H11355 | HV  | MLL5  | Whitish-brown       | Light green         | No              | Yes         |
| H11356 | HV  | MLL5  | Whitish-light grey  | Yellow              | No              | Yes         |
| H11357 | HV  | MLL6  | Dark green          | Green               | No              | Yes         |
| H11358 | HV  | MLL6  | Yellowish-white     | Brown               | No              | Yes         |

continued Table 2.

|        |    |       |                      |                       |                 |     |
|--------|----|-------|----------------------|-----------------------|-----------------|-----|
| H11359 | HV | MLL6  | Whitish-grey         | Light grey            | No              | Yes |
| H11360 | HV | MLL6  | Whitish-light brown  | Whitish-green         | No              | Yes |
| H11361 | HV | MLL7  | Whitish-light brown  | Light yellow          | No              | Yes |
| H11362 | HV | MLL7  | Whitish-grey         | Light grey            | No              | Yes |
| H11363 | HV | MLL8  | Brown                | Black                 | No              | Yes |
| H11364 | HV | MLL9  | Brownish-light green | Light brown           | No              | Yes |
| H11365 | HV | MLL9  | Whitish-grey         | White                 | No              | Yes |
| H11366 | HV | MLL9  | Whitish-grey         | Yellow                | No              | Yes |
| H11367 | HV | MLL10 | Whitish-grey         | Yellow                | No              | Yes |
| H11368 | HV | MLL41 | Whitish-light brown  | White                 | No              | Yes |
| H11369 | AV | MLL2  | White                | White                 | No              | No  |
| H11370 | AV | MLL7  | White                | White                 | No              | No  |
| H11371 | AV | MLL21 | White                | White                 | No              | No  |
| H11372 | AV | MLL23 | White                | White                 | No              | No  |
| H11373 | HV | MLL31 | Beige pink           | Beige                 | No              | Yes |
| H11374 | HV | MLL32 | Green                | Beige                 | Light yellow    | Yes |
| H11375 | HV | MLL33 | White                | Brownish red          | Brownish red    | Yes |
| H11376 | HV | MLL34 | Brownish pink        | Yellowish orange      | No              | Yes |
| H11377 | HV | MLL35 | Brownish pink        | Light yellow          | No              | Yes |
| H11378 | HV | MLL36 | Brownish pink        | Light yellow          | No              | Yes |
| H11379 | HV | MLL37 | Greenish brown       | Light yellow          | No              | Yes |
| H11380 | HV | MLL38 | Green                | Greenish brown        | No              | Yes |
| H11381 | HV | MLL39 | Light grey           | Light yellow          | No              | Yes |
| H11382 | HV | MLL40 | Grey                 | Light grey            | No              | Yes |
| H11383 | HV | MLL42 | Brown                | Brownish grey         | No              | Yes |
| H11384 | HV | MLL43 | Brownish pink        | Yellowish orange      | No              | Yes |
| H11385 | HV | MLL44 | Grey                 | Yellowish brown       | No              | Yes |
| H11386 | HV | MLL45 | Brownish pink        | Light yellow          | No              | Yes |
| H11387 | HV | MLL45 | Brownish pink        | Light yellow          | No              | Yes |
| H11388 | HV | MLL46 | White                | Light yellow          | No              | Yes |
| H11389 | HV | MLL47 | White                | Light yellow          | No              | Yes |
| H11390 | HV | MLL48 | Green                | Yellowish green       | Yellowish green | Yes |
| H11391 | HV | MLL49 | Light grey           | Beige                 | Light brownish  | Yes |
| H11392 | HV | MLL50 | Dark beige           | Light beige           | No              | Yes |
| H11393 | HV | MLL51 | Grey                 | Brownish grey         | No              | Yes |
| H11394 | HV | MLL52 | Grey                 | Brownish yellow       | No              | Yes |
| H11395 | HV | MLL53 | Beige                | Light yellow          | No              | Yes |
| H11396 | HV | MLL54 | Beige                | Light yellowish brown | No              | Yes |
| H11397 | HV | MLL11 | Grey                 | Yellow                | No              | Yes |
| H11398 | HV | MLL12 | White                | Light yellow          | No              | Yes |
| H11399 | HV | MLL13 | Brownish grey        | Yellow                | No              | Yes |
| H11400 | HV | MLL14 | Blue-grey            | Yellow                | Yellow          | Yes |
| H11401 | HV | MLL15 | Dark greenish brown  | Dark green            | No              | Yes |

continued Table 2.

|        |      |       |             |                 |             |     |
|--------|------|-------|-------------|-----------------|-------------|-----|
| H11402 | HV   | MLL16 | Brown       | Yellow          | No          | Yes |
| H11403 | HV   | MLL17 | White       | Light yellow    | No          | Yes |
| H11404 | HV   | MLL18 | White       | Light yellow    | No          | Yes |
| H11405 | HV   | MLL19 | Grey        | Yellowish brown | No          | Yes |
| H11406 | HV   | MLL20 | Light grey  | Yellow          | No          | Yes |
| H11407 | HVCT | MLL11 | Grey        | Dark yellow     | Dark yellow | Yes |
| H11408 | HVCT | MLL12 | Grey        | No distinctive  | No          | Yes |
| H11409 | HVCT | MLL13 | Grey        | Light yellow    | No          | Yes |
| H11410 | HVCT | MLL14 | Grey        | Light red       | No          | Yes |
| H11411 | HVCT | MLL15 | Brown       | Yellowish green | No          | Yes |
| H11412 | HVCT | MLL16 | Grey        | No distinctive  | No          | Yes |
| H11413 | HVCT | MLL17 | Dark green  | Dark green      | No          | Yes |
| H11414 | HVCT | MLL18 | Purple-grey | No distinctive  | No          | Yes |
| H11415 | HVCT | MLL20 | Grey        | Yellow          | No          | Yes |

**Abbreviation:**

|      |                                                                   |
|------|-------------------------------------------------------------------|
| HV   | = according to selective isolation of <i>Streptomyces</i>         |
| HVCT | = according to selective isolation of <i>Streptosporangiaceae</i> |
| SCN  | = according to selective isolation of <i>Micromonospora</i>       |
| AV   | = according to selective isolation of <i>Actinomadura</i>         |
| DSTA | = according to selective isolation of <i>Nocardia</i>             |

Colour description was done according to International Streptomyces Project (ISP) 7 series colour (yellow, violet, red, blue, green, grey and white) except for H11227 to H11304, which was based on Millennium Colours Edition 2 Catalogue (Nippon Paint, 2002).

**Table 3.** Microfungi isolated from Melalap soil sample

| H<br>Number | Soil Sample<br>No. | Characteristic on PDA |                          |                               |
|-------------|--------------------|-----------------------|--------------------------|-------------------------------|
|             |                    | Aerial mycelium       | Reverse colour<br>colour | Extracellular<br>pigmentation |
| H9368       | MLL56              | White-pinkish         | Yellow-green             | Yellow                        |
| H9369       | MLL59              | Yellow-green          | Maple-oak                | None                          |
| H9370       | MLL59              | White-green           | Primrose                 | None                          |
| H9371       | MLL60              | White-purple          | Golden sand              | None                          |
| H9372       | MLL62              | White-dark green      | Barbary gold-oak         | None                          |
| H9373       | MLL63              | White                 | Oak                      | None                          |
| H9374       | MLL64              | Red                   | Russet                   | None                          |
| H9375       | MLL64              | Jute                  | Woodland olive           | None                          |
| H9376       | MLL65              | Yellow                | Ivory                    | None                          |
| H9377       | MLL65              | White-Jasmine-green   | Jute                     | None                          |

Colour description was based on Millennium Colours Edition 2 Catalogue (Nippon Paint, 2002).

**Table 4.** Results for Ras/Raf-1 protein-protein interaction screening

| Acetone extracts (20mL)                         | H10014 (LZ) |         |
|-------------------------------------------------|-------------|---------|
|                                                 | His+        | His-    |
| H11277-H11304                                   | 0           | 0       |
| H11308-H11328                                   | 0           | 0       |
| H11329                                          | 8mm(C)      | 8mm(C)  |
| H11330-H11336                                   | 0           | 0       |
| H11337                                          | 0           | 50mm(P) |
| H11338-H11340                                   | 0           | 0       |
| H11402                                          | 9mm(W)      | 9mm(W)  |
| <b>Freeze dried extract (50mg/mL in water):</b> |             |         |
| H11337 10µL                                     | 10mm(C)     | 11mm(C) |
| H11337 20µL                                     | 14mm(C)     | 15mm(C) |
| H11337 30µL                                     | 17mm(C)     | 18mm(C) |
| H11337 40µL                                     | 20mm(C)     | 20mm(C) |

**Abbreviation:**

0 No inhibition zone around paper disc

C Clear inhibition

P Partial inhibition showing little growth of yeast within inhibition zone

W Weak inhibition showing minimal yeast reduction within inhibition zone

Diameter of paper disc 6 mm

**Table 5.**  $\beta$ -galactosidase activity of LZ cells treated with freeze-dried extract of H11337.

| Sample       | Mean Activity (MU) |
|--------------|--------------------|
| H11337       | 34.46              |
| MP (control) | 32.55              |

**Abbreviation:**

MP mannitol-peptone medium

MU Miller Unit

**Table 6.** Results for PPI Screening

| Extract       | Mutant Yeast (PAY 700-4) |          |                 |          | Wild-Type Yeast (PAY 704-1) |          |                 |          |
|---------------|--------------------------|----------|-----------------|----------|-----------------------------|----------|-----------------|----------|
|               | YPD                      |          | YPD +1MSorbitol |          | YPD                         |          | YPD +1MSorbitol |          |
|               | 25°C                     | 37°C     | 25°C            | 37°C     | 25°C                        | 37°C     | 25°C            | 37°C     |
| H11277-H11292 | 0                        | -        | 0               | 0        | 0                           | 0        | 0               | 0        |
| H11293        | 0                        | -        | 0               | 11mm(P)  | 0                           | 8mm (P)  | 0               | 8mm (P)  |
| H11294-H11297 | 0                        | -        | 0               | 0        | 0                           | 0        | 0               | 0        |
| H11298        | -                        | 10mm (C) | -               | 11mm (C) | 14mm (C)                    | 12mm (C) | 13mm (C)        | 13mm (C) |
| H11299        | 0                        | -        | 0               | 0        | 0                           | 13mm (P) | 0               | 0        |
| H11300        | 19mm (C)                 | -        | 21mm (C)        | 17mm (C) | 15mm (C)                    | 17mm (C) | 14mm (C)        | 15mm (C) |
| H11301        | 9mm (C)                  | -        | 9mm (C)         | 8mm (C)  | 7mm (C)                     | 7mm (C)  | 7mm (C)         | 7mm (C)  |
| H11302        | 12mm (C)                 | -        | 13mm (C)        | 15mm (C) | 12mm (C)                    | 13mm (C) | 12mm (C)        | 10mm (C) |
| H11303        | 0                        | -        | 0               | 0        | 0                           | 0        | 0               | 0        |
| H11304        | 8mm (C)                  | -        | 9mm (C)         | 8mm (C)  | 9mm (C)                     | 8mm (C)  | 8mm (C)         | 9mm (C)  |
| H11308-H11316 | 0                        | -        | 0               | 0        | 0                           | 0        | 0               | 0        |
| H11317        | 7mm (C)                  | -        | 7mm (C)         | 9mm (C)  | 7mm (C)                     | 10mm (C) | 9mm (C)         | 12mm (C) |
| H11318-H11336 | 0                        | -        | 0               | 0        | 0                           | 0        | 0               | 0        |
| H11339        | 13mm (C)                 | -        | 14mm (C)        | 12mm (C) | 13mm (C)                    | 11mm (C) | 13mm (C)        | 9mm (C)  |
| H11397-H11401 | 0                        | -        | 0               | 0        | 0                           | 0        | 0               | 0        |
| H11402        | 11mm (P)                 | -        | 11mm (P)        | 12mm (P) | 11mm (P)                    | 10mm (P) | 11mm (P)        | 10mm (P) |
| H11403-H11415 | 0                        | -        | 0               | 0        | 0                           | 0        | 0               | 0        |

**Abbreviation:**

0 No inhibition zone around paper disc

- no yeast growth

C Clear inhibition

P Partial inhibition showing little growth of yeast within inhibition zone

Diameter of paper disc 6 mm

40 µL of extract is applied on each disc unless otherwise stated

Table 7a. Results for GSK-3 $\beta$  screening.

| Extract       | H10075(GSK-3 $\beta$ )<br>SC-ura |          |
|---------------|----------------------------------|----------|
|               | 25°C                             | 37°C     |
| H11277-H11328 | 0                                | 0        |
| H11329        | 0                                | 8 mm (W) |
| H11330-H11336 | 0                                | 0        |
| H11337        | 8 mm (W)                         | 8 mm (W) |
| H11338        | 0                                | 0        |
| H11339        | 0                                | 8 mm (W) |
| H11340-H11363 | 0                                | 0        |
| H11364        | 0                                | 9 mm (W) |
| H11365-H11401 | 0                                | 0        |
| H11402        | 0                                | 9 mm (W) |
| H11403-H11415 | 0                                | 0        |

**Abbreviation:**

0 No inhibition zone around paper disc

W Weak inhibition showing minimal yeast reduction within inhibition zone

Diameter of paper disc 6 mm

40  $\mu$ L of extract is applied on each disc unless otherwise statedTable 7b. Results for H11329, H11337, H11339, H11364, H11402 with 100  $\mu$ L of crude acetone extract.

| Extract | H10075(GSK-3 $\beta$ )<br>SC-Ura |           |
|---------|----------------------------------|-----------|
|         | 25°C                             | 37°C      |
| H11329  | 0                                | 9 mm (W)  |
| H11337  | 23 mm                            | 18 mm     |
| H11339  | 9 mm (W)                         | 12 mm (W) |
| H11364  | 0                                | 15 mm (P) |
| H11402  | 9 mm (W)                         | 11 mm (W) |

**Abbreviation:**

0 No inhibition zone around paper disc

P Partial inhibition showing little growth of yeast within inhibition zone

W Weak inhibition showing minimal yeast reduction within inhibition zone

Diameter of paper disc 6 mm

Table 8. Results for *Mycobacterium* ICL screening.

| Extracts      | H8000, <i>Mycobacterium smegmatis</i> mc <sup>2</sup> 155 |                    |
|---------------|-----------------------------------------------------------|--------------------|
|               | Glucose                                                   | Acetate            |
| H11308-H11309 | 0                                                         | 0                  |
| H11310        | 8 mm (C)                                                  | 8 mm (C)           |
| H11311-H11316 | 0                                                         | 0                  |
| H11317        | 8 mm (C)                                                  | 8 mm (C)           |
| H11318-H11336 | 0                                                         | 0                  |
| H11337        | 14 mm (C)                                                 | 12 mm (C)          |
| H11338-H11345 | 0                                                         | 0                  |
| H11346        | 30 mm (C)                                                 | 30 mm (P)          |
| H11347-H11362 | 0                                                         | 0                  |
| H11364-H11368 | 0                                                         | 0                  |
| H11370        | 0                                                         | 0                  |
| H11372-H11382 | 0                                                         | 0                  |
| H11383        | 9 mm (C)                                                  | 9 mm (C)/42 mm (P) |
| H11384-H11396 | 0                                                         | 0                  |
| H11398-H11402 | 0                                                         | 0                  |
| H11407-H11412 | 0                                                         | 0                  |
| H11924-H11925 | 0                                                         | 0                  |

**Abbreviation:**

0 No inhibition zone around paper disc

C Clear inhibition

P Partial inhibition showing little growth of *Mycobacterium* within inhibition zone

Diameter of paper disc 6 mm

40 µL of extract is applied on each disc unless otherwise stated

Table 9. Results for *Mycobacterium* PhoP-PhoR two -component system screening.

| Extract         | H8000, <i>Mycobacterium smegmatis</i> mc <sup>2</sup> 155 |                                           |
|-----------------|-----------------------------------------------------------|-------------------------------------------|
|                 | 100 µM MgSO <sub>4</sub> ·7H <sub>2</sub> O               | 1 mM MgSO <sub>4</sub> ·7H <sub>2</sub> O |
| H11308-H11337   | 0                                                         | N.T.                                      |
| H11339-H11345   | 0                                                         | N.T.                                      |
| H11347-H11368   | 0                                                         | N.T.                                      |
| H11373-H11391   | 0                                                         | N.T.                                      |
| H11392          | 10 mm (C)                                                 | 8 mm (C)                                  |
| H11397-H11415   | 0                                                         | N.T.                                      |
| H11392 (20 µL)  | 10 mm                                                     | 8 mm                                      |
| H11392 (40 µL)  | 11 mm                                                     | 9 mm                                      |
| H11392 (60 µL)  | 11 mm                                                     | 10 mm                                     |
| H11392 (80 µL)  | 13 mm                                                     | 12 mm                                     |
| H11392 (100 µL) | 14 mm                                                     | 13 mm                                     |

**Abbreviation:**

0 No inhibition zone around paper disc

C Clear inhibition

N.T. Not tested

Diameter of paper disc 6 mm

20 µL of extract is applied on each disc unless otherwise stated

Table 10. Concentration dependency of strain H11392 in 25 µM, 50 µM, 100 µM and 1 mM of Mg<sup>2+</sup> media

| Concentration of Mg <sup>2+</sup> | Concentration of extract |       |       |       |        |
|-----------------------------------|--------------------------|-------|-------|-------|--------|
|                                   | 20 µL                    | 40 µL | 60 µL | 80 µL | 100 µL |
| 25 µM                             | 7 (p)                    | 8     | 9     | 9     | 10     |
| 50 µM                             | 7 (p)                    | 9     | 9     | 9     | 10     |
| 100 µM                            | 7 (p)                    | 9     | 10    | 10    | 11     |
| 1 mM                              | 0                        | 0     | 8     | 8     | 9      |

**Abbreviation:**

0 no inhibition zone around paper disc

P partial inhibition

Diameter of paper disc 6mm

layer agar media separately. The seeded agar was poured onto the bottom layer agar and paper discs pipetted with extracts were arranged onto upper layer agar. The plates were incubated at 37°C and observation was recorded after two days. Extracts showing inhibition only on low concentration magnesium are scored as positive.

## RESULTS

Sixty-five soil samples were collected during the expedition, 13 samples were collected from Site A, 32 samples from Site B, 14 samples from Site C, and three each from Site D and Site E (Figure 1). The soil pH in Site A ranged from 5.47-8.93, Site B: 3.79-8.93, Site C: 3.68-4.62, Site D: 4.52-5.47, Site E: 4.03-6.98 (Table 1). The study sites showed typical characteristics of secondary forest with small trees and secondary forest species like *Octomeles* sp., *Litsea* sp., *Mallotus* sp., with only few *Ficus* sp. and *Shorea* sp.. A number of 136 isolates of actinomycetes were obtained from the collected soil. Ninety-four of the isolates were picked from HV plates without pre-treatment. Fifteen isolates were from SCN plates with soil subjected to phenol pre-treatment, 14 isolates were from DSTA, four isolates were picked from AV in which soil samples underwent heat pre-treatment and nine were from HV with soil pre-treated with chloramine-T (Table 2) and ten microfungi were isolated from some samples (Table 3).

In the screening, three extracts (H11329, H11337 and H11402) were toxic to yeast in Ras/Raf-1 screening, where H11337 was shown not to be an authentic inhibitor of Ras-Raf interaction as the first test of no growth around the disc with extracts on plate with added histidine could not be repeated when tested in a series of concentrations (Table 4). H11337 also did not prevent the expression of the second reporter gene, *LacZ* in inhibition of  $\beta$ -galactosidase synthesis (Table 5). Nine

extracts (Table 6) were toxic to yeast in PP1 screening (H11293, H11298, H11300, H11301, H11302, H11304, H11317, H11339, and H11402). One actinomycete strain, H11299, showed weak inhibition to PP1. In the preliminary GSK-3 $\beta$  screening four extracts (H11329, H11339, H11364, H11402) weakly showed inhibitory activity and one extract (H11337) showed toxicity to yeast (Table 7a). However, confirmation test at higher concentration showed H11329 and H11364 to inhibit yeast only at 37°C whereas H11339, H11337 and H11402 inhibited yeast growth at both 25°C and 37°C (Table 7b).

Five extracts (H11310, H11317, H11337, H11346, and H11383) showed toxic effect in *M. smegmatis* ICL screening system (Table 8). H11383 also showed a wide partial inhibition zone on acetate plate. In PhoP-PhoR two-component system screening, one extract (H11392) showed toxicity to *M. smegmatis* (Table 9). The growth inhibition of H11392 was less in high magnesium medium as compared to low magnesium medium (Tables 10, 11). Four extracts showed activity in more than one screening system, H11317 (toxic in PP1 and toxic in ICL), H11329 (toxic in Ras/Raf-1 and possible inhibitor in GSK-3 $\beta$ ), H11337 (toxic in Ras/Raf-1, GSK-3 $\beta$  and ICL), H11339 (toxic in GSK-3 $\beta$ , toxic in PP1), H11402 (toxic in Ras/Raf-1, PP1 and GSK-3 $\beta$ ).

## DISCUSSION

Soil pH readings taken indicated that soil from Site C was more acidic with values ranging 3.68-4.62. H11337, H11339, and H11364, which showed biological activities as assessed from different screenings, were isolated from soils collected from Site C. As actinomycetes are commonly isolated at pH ranging above 6.5 (Holt *et al.*, 1994), the enumeration of bioactivity producing actinomycetes from acidic soil is of interest. There is, however, the possibility that the isolation media have

restricted growth of some actinomycetes at acidic condition as there are *Streptomyces* species reported to be able to grow over a broad range of pH in high organic load media (Kontro *et al.*, 2005). Most actinomycetes were isolated from soil samples collected from Site B, six of them showed activity in screening. Six out of 14 isolates selected from DSTA medium showed toxic effect towards PPI screening, fairly high as compared to colonies isolated from HV and other media. Though these *Nocardia*-like isolates produced biologically active metabolites, the specific actions of these crude extracts were not known. Soils were mostly collected under big trees. The forest ecosystem provides different organic substrates for microbes and would affect the microbial community composition (Myers *et al.*, 2001). The report of higher abundance of hydrocarbon degraders in hydrocarbon contaminated soils (Yu, 2000) and the associations of different microbial communities with different grassland community types (McCulley & Burke, 2004) are examples of the effects of different habitats on microbial abundance and diversity.

H11337 showed inhibition against *M. smegmatis* and toxicity on the yeast-based Ras/Raf-1 protein-protein interaction screen. The non-specific action was then confirmed by non-reduction of the  $\beta$ -galactosidase activity of cells treated with H11337. The inhibition was caused by different components as tested by using HPLC fractions (data not shown). In yeast GSK-3 $\beta$  screening, H11329 and H11364 only resulted in positive inhibition at high concentration (100 $\mu$ L). Further investigation is required to confirm the specificity of the hit.

GSK-3 $\beta$  inhibitors might be useful in a few therapeutic applications like nervous system disorders, type 2 diabetes, cancer, stem-cell biology and regenerative medicine (Meijer *et al.*, 2004; Strooper & Woodgett, 2003). RAS-

MAPK inhibitors may also find applications in cancer therapy (Houben *et al.*, 2004; Sebolt-Leopold & Herrera, 2004) Geldanamycin and radicicol are two examples of indirect Ras/Raf inhibitors of microbial origin; both decrease Raf level by blocking the Raf-hsp90 complex (Stancato *et al.*, 1997; Soga *et al.*, 1998). A more specific Raf inhibitor, BAY 43-9006, is currently undergoing clinical trial for the development of an anti-cancer drug (Lyons *et al.*, 2001). FK506 and cyclosporin are two immunosuppressant drugs targeted at PP2B, a protein phosphatase (Cohen, 2001). Neurological disorder, metabolic disorder and cancer have been associated with protein phosphatases (McCluskey *et al.*, 2002); more potential drugs targeting at protein phosphatase have yet to be found.

Tuberculosis is still threatening life despite the availability of various drugs. Current conventional TB drugs are highly effective against actively replicating cells, but they are less potent against cells in stationary phase, when they are capable of persisting inside the human lung (McKinney, 2000). Therefore, inhibitors targeting latent persistent TB is of potential use. *Mycobacterium* ICL and PhoP-PhoR are such factors in *M. tuberculosis* infection (McKinney *et al.*, 2000; Fontan *et al.*, 2004).

The search for bioactive metabolites has changed its course tremendously over the past two decades. The applications of recombinant DNA technology in the construction of screening systems as in the Ras/Raf-1 screen and GSK-3 $\beta$  made possible with newer pharmacological knowledge, the expansion to other microbial sources and non-antibiotic type metabolites, has enabled simplified and cost efficient methods for novel compounds discovery (Omura, 1992). More than half of the known antibiotics are of microbial origin, like kanamycin, streptomycin, and erythromycin, whereas

daunorubicin, doxorubicin, and mitomycin are important antitumor agents (Demain, 1999). An investigation by Wang *et al.* (1999) revealed the isolation of 36 genera of actinomycetes from Singapore rainforest soils with *Streptomyces*, *Micromonospora*, *Actinoplanes*, *Actinomadura*, *Nomonuria*, *Nocardia*, and *Streptosporangium* as the most abundant; this gives a representation of the actinomycete diversity in the tropical rain forest. Current known microbe species are just a tiny fraction of the whole microbial diversity. They are valuable resources in biotechnology development; the conservation of microbial gene pools is essential but is often overlooked (Bull *et al.*, 2000). Sabah, being one of the world's biodiversity hotspots, offers great opportunities for the discovery of novel bioactive compounds with possible therapeutic value.

Specifically from Melalap, in the Crocker Range, preliminary results indicate the isolation of a number of strains with weak inhibition against specific targets. These include two strains of actinomycetes (H11329 and H11364) inhibiting the GSK-3b screening system, and one strain (H11299) that inhibits PPI. For mycobacterial targets, one strain of actinomycete (H11383) behaves like H7763, a presumptive inhibitor of ICL screening system (Daim, 2003). Furthermore, another actinomycete, H11392, inhibits the PhoP-PhoR system. These strains deserve further study. This study emphasizes the utilization of unseen microbial diversity of actinomycetes and fungi in the search for valuable secondary metabolites for the potential treatment of serious illnesses, cancer, neurological diseases and tuberculosis. The extensive Crocker Range Park (139,919 hectares) in Sabah, with varied topography and vegetation types, is a unique biological resource requiring investigations and conservation.

## ACKNOWLEDGEMENTS

We would like to express our appreciation to the Institute for Tropical Biology and Conservation for the invitation to participate in the expedition, and to Mr. Johnny Gisil for his help with identification of the plants. Thanks are due to Jasmin bin Keking and Dolois Sumbin (our guides) for their field assistance. This project is funded by an IRPA grant from Malaysian Ministry of Science, Technology and Environment (01-0210-0038-EA0036) and Universiti Malaysia Sabah Fundamental Research Grant B-0901-PR/U011.

## REFERENCES

Andoh, T., Y. Hirata & A. Kikuchi. (2000). Yeast glycogen synthase kinase 3 is involved in protein degradation in cooperation with Bul1, Bul2, and Rsp5. *Molecular and Cellular Biology*, 20:6712-6720.

Andrews, P.D. & M.J.R. Stark. (2000). Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in *Saccharomyces cerevisiae*. *Journal of Cell Biology*, 113:507-520.

Bull, A. T., A.C. Ward & M. Goodfellow. (2000). Search and discovery strategies for biotechnology: the paradigm shift. *Microbiology and Molecular Biology Reviews*, 64:573-606.

Chan, S.Y., S.P. Gan, S.H. Lee, L.K. Tee, J. Nais & C.C. Ho. (2004). Searching for inhibitors of eukaryotic MAPK Kinase (MKK1), protein phosphatases (MSG5, GLC7) and Mycobacterial isocitrate lyase (ICL) from actinomycetes and filamentous fungi isolated from Crocker Range. Pp 147-170. In Mohamed, M., Hamzah, Z., Tachi, T & J. Nais (eds.) *Crocker Range Scientific Expedition 2002*. Universiti Malaysia Sabah, Kota Kinabalu.

**Cohen, P. (2001).** The role of protein phosphorylation in human health and disease. *European Journal of Biochemistry*, 268: 5001-5010.

**Cohen, P. (2002).** Protein kinases the major drug targets of the twenty-first century? *Nature Reviews Drug Discovery*, 1:309-315.

**Demain, A.L. (1999).** Pharmaceutically active secondary metabolites from microorganisms. *Applied Microbiology and Biotechnology*, 52: 455-463.

**Daim, S. (2003).** Screening for microbial inhibitors particularly against the glyoxylate pathway in *Mycobacterium*. Master Thesis. School of Science and Technology, Universiti Malaysia Sabah.

**Fontan, P.A., S. Walters & I. Smith. (2004).** Cellular signalling pathways and transcriptional regulation in mycobacterium tuberculosis: stress control and virulence. *Current Science*, 86:122-134.

**Groisman, E.A. (2001).** The pleiotropic two-component regulatory system PhoP-PhoQ. *Journal of Bacteriology*, 183:1835-1842.

**Harvey, A. (2000).** Strategies for discovering drugs from previously unexplored natural products. *Drug Discovery Today*, 5:294-300.

**Hayakawa, M., H. Iino, S. Takeuchi & T. Yamazaki. (1997).** Application of a method incorporating treatment with chloramine-T for the selective isolation of *Streptosporangiaceae* from soil. *Journal of Fermentation and Bioengineering*, 84:599-602.

**Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley & S.T. Williams. (1994).** *Bergey's Manual of Determinative Bacteriology*. (9<sup>th</sup> ed.). Williams & Wilkins. Baltimore.

**Houben, R., J.C. Becker, A. Kappel, P. Terheyden, E-B. Bröcker, R. Goetzl & U. Rapp. (2004).** Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. *Journal of Carcinogenesis*, 3:1-6.

**Jacobs., Jr. W.R. (2000).** *Mycobacterium tuberculosis*: a once genetically intractable organism. Pp 1-16 In Hartfull., G.F. & W.R. Jacobs, Jr. (eds.) *Molecular Genetics of Mycobacteria*. ASM Press, Washington, D.C.

**Ki, S. W., K. Kasahara, J. H. Kwon, J. Eishima, K. Takesako, J. A. Cooper, M. Yoshida & S. Horinouchi. (1998).** Identification of radicicol as an inhibitor of *in vivo* Ras/Raf interaction with the yeast two-hybrid screening system. *Journal of Antibiotics*, 51:936-944.

**Kontro, M., U. Lignell, M.-R. Hirvonen & A. Nevalainen. (2005).** pH effects on 10 *Streptomyces* spp. growth and sporulation depend on nutrients. *Letters in Applied Microbiology*, 41:32-38.

**Lo C.W., N.S. Lai, H-Y. Cheah, N.K.I Wong & C.C. Ho. (2001).** Actinomycetes isolated from soil samples from the Crocker Range Sabah. Pp. 259-267 In Ismail, G & L. Ali.(eds.). *A Scientific Journey Through Borneo Crocker Range National Park Sabah. Natural Ecosystem and Species Components*. Asean Academic Press.

**Lyons, J.F., S. Wilhelm, B. Hibner & G. Bollag. (2001).** Discovery of a novel Raf kinase inhibitor. *Endocrine-Related Cancer*, 8:219-225.

**McCluskey, A., A.T.R Sim & J.A. Sakoff. (2002).** Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. *Journal of Medicinal Chemistry*, 45:1151-1175.

**McCulley, R. L & I.C. Burke. (2004).** Microbial community composition across the Great Plains: landscape versus regional variability. *Soil Science Society of America Journal*, 68:106-115.

**McKinney, J.D., K. Honer zu Bentrup, E.J. Munoz-Elias, A. Miczak, B. Chen, W. T. Chan, D. Swenson, J. C. Sacchettini, W. R. Jacobs, Jr & D.G. Russell. (2000).** Persistence of *Mycobacterium tuberculosis* in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. *Nature*, 406:735-8.

**Meijer, L., M. Flajolet & P. Greengard. (2004).** Pharmacological inhibitors of glycogen synthase kinase 3. *Trends in Pharmacological Sciences*, 25: 471-480.

**Myers, R. T., D. R. Zak, D. C. White & A. Peacock. (2001).** Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. *Soil Science Society of America Journal*, 65:359-367.

**Nippon Paint. (2002).** Millennium Colours Catalogue. (Edition 2)

**Nonomura, H. & M. Hayakawa. (1988).** New methods for the selective isolation of soil actinomycetes. Pp. 288-293 In Okami, Y., Beppu, T. and Ogawara, H. (eds.) *Biology of Actinomycetes '88*, Japan Scientific Societies Press, Tokyo.

**Ogata, W. N. (1962).** Preservation of *Neurospora* stock cultures with anhydrous silica gel. *Neurospora Newsletter*, 1: 13.

**Omura, S. (1992).** Trends in the search for bioactive microbial metabolites. *Journal of Industrial Microbiology*, 10:135-156.

**Sebolt-Leopold, J.S. & R. Herrera. (2004).** Targeting the mitogen activated protein kinase cascade to treat cancer. *Nature Reviews Cancer*, 4: 937-947

**Sharma, V., Sharma, S., Honer zu Bentrup, K., McKinney, J.D., Russell, D.G., Jacobs, W.R. Jr. & Sacchettini, J.C. (2000).** Structure of isocitrate lyase, a persistence factor of *Mycobacterium tuberculosis*. *Nature Structural Biology*, 7: 663-668.

**Soga, S., T. Kozawa, H. Narumi, S. Akinaga, K. Irie, K. Matsumoto, S.V. Sharma, H. Nakano, T. Mizukami & M. Hara (1998).** Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway. *Journal of Biological Chemistry*, 273:822-828

**Soncini, F.C., E.G. Vescovi, F. Solomon, & E.A. Groisman. (1996).** Molecular basic of the magnesium deprivation response in *Salmonella typhimurium*: Identification of PhoP-regulated genes. *Journal of Bacteriology*, 178: 5092-5099.

**Stancato, L.F., A.M. Silverstein, J.K. Owens-Grillo, Y-H. Chow, R. Jove & W.B. Pratt. (1997).** The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. *Journal of Biological Chemistry*, 272:4013-4020.

**Strooper, B. D. & J. Woodgett. (2003).** Mental plaque removal. *Nature*, 423:392-393.

**Wang, Y., Z.S. Zhang, J.S. Ruan, Y.M. Wang & S.M. Ali. (1999).** Investigation of actinomycete diversity in the tropical rainforests of Singapore. *Journal of Industrial Microbiology & Biotechnology*, 23:178-187.

**Yu, Z., G. R. Stewart & W. W. Mohn. (2000).** Apparent contradiction: psychrotolerant Bacteria from hydrocarbon-contaminated Arctic tundra soils that degrade diterpenoids synthesized by trees. *Applied and Environmental Microbiology*, 66:5148-5154.