

## SCIENCE PROCESS SKILLS IN SCIENCE LEARNING: A CURRENT SYSTEMATIC REVIEW

**Dayang Rosnah Mataip<sup>1</sup>, Nur Farha Shaafi<sup>2\*</sup>, Asmaa Al-Saqqaf<sup>3</sup>, Lay Yoon Fah<sup>4</sup>**

Faculty of Education and Sports Studies, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia<sup>1,2,4</sup>

Center for the Promotion of Knowledge and Language Learning, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia<sup>3</sup>

dgrosnahmataip@gmail.com<sup>1</sup>, farhashaafi@ums.edu.my<sup>2</sup>, asma3030@ums.edu.my<sup>3</sup>,  
layyf@ums.edu.my<sup>4</sup>

### Corresponding Author\*

**Received:** 12 January 2026

**Accepted:** 11 February 2026

**Published:** 14 February 2026

**To link to this article:** <https://doi.org/10.51200/jpp.v14i1.7376>

### ABSTRACT

A mastery of scientific process skills is a crucial foundation for developing scientific thinking and supporting 21st-century learning. This study employs a Systematic Literature Review (SLR) to examine the level of science process skills in science learning among primary school students in Malaysia. The SLR process involved four main steps: setting the objectives, searching for articles from databases such as Web of Science (WOS), Pro Quest, and ERIC, selecting relevant studies, and conducting a critical analysis of the findings. A total of 20 articles published between 2020 and 2025 were analyzed. The findings reveal that students' mastery of basic science process skills is at a moderate level, whereas their integrated science process skills remain low. Although students demonstrated a positive interest in inquiry-based learning activities, several challenges persist, including teachers' pedagogical constraints, limited teaching resources, and a lack of student-centred approaches. These findings highlight the need for focused intervention strategies that foster the holistic development of science process skills through creative, interactive, and contextual teaching methods. This study provides valuable insights for educators, researchers, and policymakers in designing science education interventions, thereby supporting the transformation of primary school learning towards a more innovative and competitive direction.

**Keywords:** science process skills, primary school students, science learning, systematic literature review

## INTRODUCTION

Science process skills (SPS) are one of the fundamental components of science education, as they form the foundation of scientific thinking and enable students to understand, apply, and construct scientific knowledge meaningfully. The skills of observing, classifying, inferring, predicting, measuring, and communicating are significant for developing inquiry-based learning, curiosity, creativity, and problem-solving skills among learners (Harlen, 2000). In the context of the Malaysian Primary School Standard Curriculum (Kurikulum Standard Sekolah Rendah (KSSR), the mastery of SPS is emphasized for producing students who could think scientifically, and apply reasoning in daily life (Ministry of Education Malaysia, 2017).

A high academic achievement is not only contributed by the mastery of scientific skills, but also by the cultivation of logical and evidence-based thinking to scientifically literate the society (Habibah & Shaharom, 2006). Nevertheless, studies indicate that Malaysian students still face difficulties in mastering SPS, such as low curiosity, limited inquiry skills, and difficulty in linking scientific concepts to real-life experiences (Kamisah et al., 2007; Zol Azlan, 2000). Additionally, science is often perceived as a difficult and exclusive subject, which contributes to declining student interest and engagement (Subahan, 1997; Razila, 1998; Ruhizan, 1999). These challenges led to concerns regarding the effectiveness of current pedagogical approaches in fostering scientific thinking among primary school students.

Other than the cognitive aspects, SPS are also linked to affective and moral dimensions of science learning. The values such as honesty, responsibility, and perseverance are embedded within the practice of scientific inquiry, and play a crucial role in shaping ethical and evidence-based reasoning (Lederman et al., 2002; Yaakob et al., 2015). Nevertheless, studies debate that such values are inconsistently assessed, and their integration within classroom practices remains limited (Mohd Satar et al., 2020).

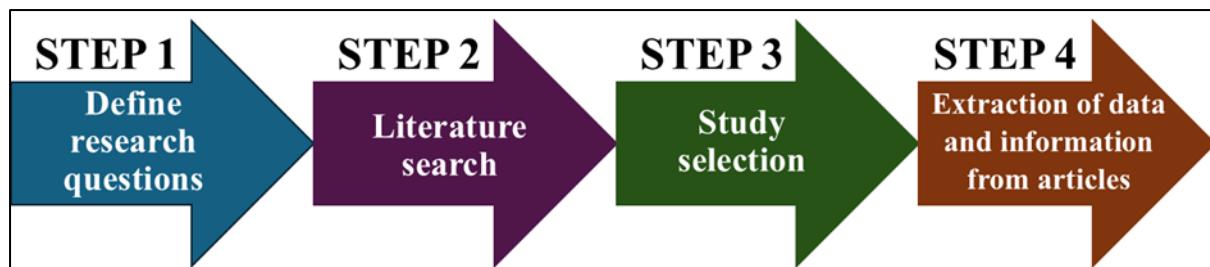
Despite numerous studies exploring science process skills in Malaysian classrooms, it has been descriptive or localized in nature, focusing on specific teaching strategies and student attitudes rather than providing a comprehensive synthesis of existing evidence. This would lead to a limited understanding of overall trends, gaps, and effective practices related to SPS development among primary school students. Due to these issues, a systematic literature review is significant to consolidate current research on science process skills in Malaysian primary schools. This review aims to analyze existing studies, identify key patterns and challenges, and provide insights into effective strategies for strengthening science learning through SPS.

## LITERATURE REVIEW

The Primary School Standard Curriculum (KSSR) for Science in Malaysia is structured around three main domains including knowledge, skills, and values. The domains are integrated through an inquiry-based learning approach aimed at cultivating students who think scientifically. Other than memorizing facts, the curriculum of science education should emphasize developing SPS, including observing, classifying, inferring, predicting, measuring, and communicating (Ministry of Education Malaysia, 2017). Based on the inquiry approach, students are encouraged to explore and investigate scientific phenomena, construct their own understanding, and apply reasoning in solving real-world problems. This approach reflects that science learning should engage students in the processes of generating knowledge.

Science process skills are essential for the foundation of scientific thinking and the comprehension of scientific concepts effectively. Harlen (2000) discussed that the acquisition of these skills would allow learners to experience science as a process rather than isolated content. For Malaysian context, Habibah and Shaharom (2006) emphasized that mastery of scientific skills is vital for improving academic achievement and nurturing a culture of logical and evidence-based reasoning. Students who develop strong SPS are highly prepared to apply knowledge in daily life situations, and to think critically and creatively with the competencies required for the 21st-century.

The inquiry-based pedagogy outlined in the KSSR framework incorporates elements of student-centred learning, constructivism, contextual learning, problem-based learning, and mastery learning. These approaches promote active participation where students are encouraged to question, observe, experiment, and draw conclusions. Lederman et al. (2002) and Osborne, Simon, and Colline (2003) highlighted that authentic inquiry experiences promote the development of curiosity, persistence, and the ability to critically evaluate evidence among learners. Furthermore, teachers who consciously integrate scientific values, including honesty, responsibility, cooperation and openness to evidence into lessons, can foster a more ethical and reflective scientific mindset among learners (Mohd Satar et al., 2020). However, studies suggest that these values are often conveyed implicitly rather than systematically embedded in classroom instruction, which leads to inconsistencies in their application.


Despite emphasizing the science process skills in the curriculum, most Malaysian students continue to face challenges in mastering them. Kamisah et al., 2007 and Zol Azlan, 2000 have shown that students often struggle to relate scientific concepts to their everyday experiences, lack curiosity, and have difficulty forming hypotheses or making predictions during investigations. Besides, negative attitudes towards science remain prevalent, with students perceiving it as a difficult and exclusive subject reserved for high-achieving learners (Subahan, 1997; Razila, 1998 and Ruhizan, 1999). These perceptions could discourage engagement and the development of higher-order thinking skills for scientific reasoning. Science process skills are also closely related to students' attitudes, moral values, and interest in learning. Engaging in hands-on experiments and inquiry activities can nurture curiosity, persistence, and intrinsic motivation to explore scientific ideas. Yaakob et al. (2015) found a positive correlation between values of honesty, responsibility and students' scientific thinking styles. However, these values were inconsistently sustained beyond classroom contexts. Similarly, Ismail and Khairuzaman (2010) reported that a lack of genuine interest in science remains a major factor affecting students' ability to master the subject. The findings indicate that effective science learning requires teaching of process skills, and cultivation of positive attitudes and emotional engagement.

Previous research on science process skills in Malaysia has largely been described with limited empirical evidence linking teaching practices and value integration with that of student outcomes. For example, Kamisah and Wan Zah (2012) outlined important scientific values and attitudes, but there is no empirical evidence regarding the relationship with students' mastery of SPS. Besides, there is a lack of systematic studies to evaluate how effectively Malaysian primary education develops these skills. This gap in the literature highlights the need for a systematic literature review that synthesizes available evidence on the teaching and learning of science process skills among primary school students in Malaysia.

In conclusion, science process skills play a central role in achieving the goals of the Malaysian primary science curriculum. They bridge the gap between conceptual understanding and the development of scientific thinking, fostering inquiry, creativity, and problem-solving abilities. However, challenges in pedagogy, values integration, and students' perceptions of science remain limited to effective learning. Therefore, reviewing and synthesizing existing research is essential to identify effective practices, highlight current limitations, and provide recommendations for strengthening science education in Malaysian primary schools.

## METHODOLOGY

This study employed a systematic literature review (SLR) approach to identify, evaluate, and synthesize existing research related to SPS in science learning among primary school students in Malaysia. A systematic review provides a structured and transparent process for gathering evidence using explicit criteria and methods designed to minimize bias, thus producing reliable and replicable findings. The review followed four major stages, namely planning, conducting the search, screening and selection, and synthesizing the findings. The methodological framework for this review was adapted from the approaches outlined by Breckwoldt et al. (2021) and Bannuru et al. (2014), ensuring that each stage adhered to the standards of systematic inquiry and quality assessment (see Figure 1).



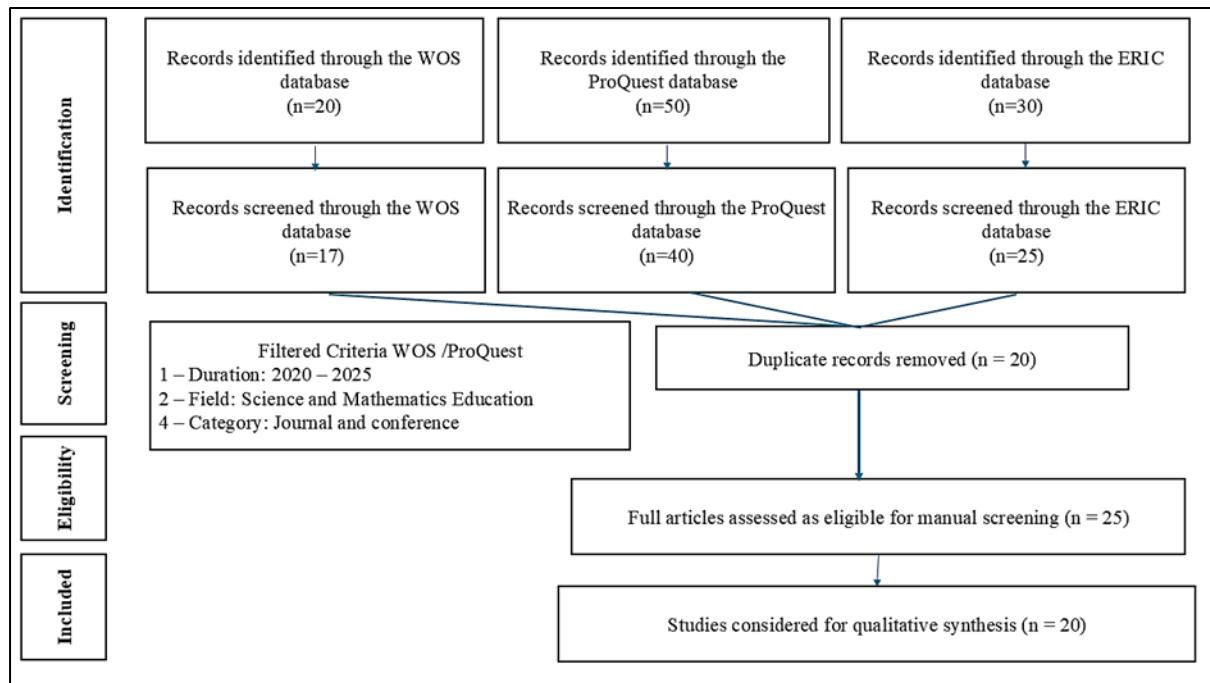
**Figure 1.**Four steps in the analysis of a systematic literature review.

### Step 1: Define Research Questions

The planning stage began with the formulation of clear and focused research questions. The PICO framework (Population, Intervention, Comparison, and Outcome) was adapted to guide the review process. In this study, the population referred to primary school students in Malaysia; the intervention represented teaching and learning approaches that emphasize SPS; the comparison focused on traditional or alternative approaches not explicitly centred on SPS; and the outcome involved students' mastery, attitudes, motivation, and performance in science learning. Based on this framework, the review was guided by three research questions:

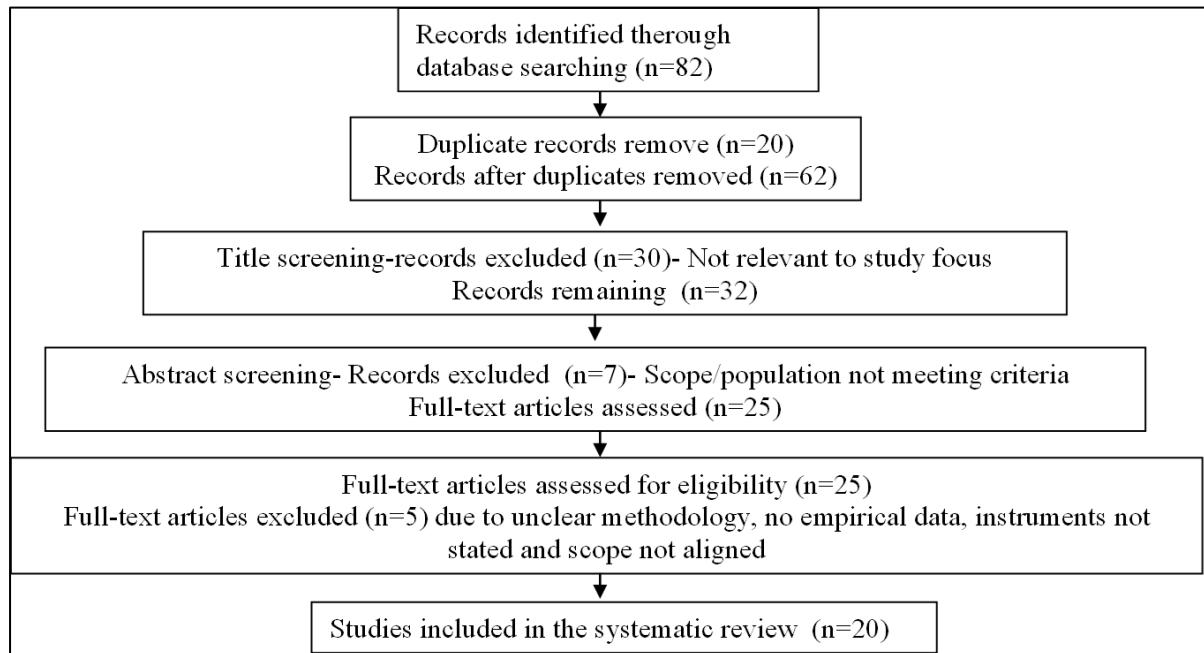
- (i) What is the current state of research on SPS among primary school students in Malaysia?
- (ii) What methods and strategies have been used to develop and assess SPS in primary science education?
- (iii) What are the key findings, challenges, and research gaps identified in existing studies?

## **Step 2: Literature Search**


A comprehensive search strategy was then implemented across major databases, including Web of Science (WOS), ProQuest, and ERIC. These databases were chosen due to their broad coverage of educational and scientific research. The search was limited to studies published between 2020 to 2025 to capture the most recent five years of research relevant to the Malaysian education system. Boolean operators and keyword combinations such as “Science Process Skills” OR “Scientific Skills,” AND “Primary School” OR “Elementary Education,” AND “Malaysia” OR “Malaysian Students,” AND “Science Learning” OR “Science Education” were used to refine the search results. Only peer-reviewed journal articles, academic theses, and conference proceedings published in English or Malay were included, while review papers and studies unrelated to Malaysian primary schools were excluded. All references retrieved were imported into the EndNote reference management software to organize the articles and remove duplicates systematically.

## **Step 3: Study Selection**

The screening and selection process involved three phases: title screening, abstract review and full-text evaluation. Studies were assessed for their relevance to the research objectives based on inclusion and exclusion criteria. The inclusion criteria consisted of studies that focused on SPS and constructs such as scientific inquiry and process-oriented learning, were conducted in Malaysian primary schools, were empirical in nature (quantitative, qualitative, or mixed-method), and were published within the specified time frame. Excluded studies were those unrelated to Malaysian primary education, purely theoretical papers without empirical data, and non-peer-reviewed publications. The initial search yielded a total of 432 records. After removing duplicates and applying the inclusion criteria, 17 studies (WOS database), 40 studies (ProQuest database), and 25 studies (ERIC database) were selected for detailed analysis and synthesis.


## **Step 4: Extraction of Data and Information from Articles**

The data extraction process was conducted to identify and systematically record key information from the selected articles. After study selection process, several studies (n=20) were selected and considered for qualitative synthesis. In the final stage, data were extracted and synthesized systematically. Key information from each study, including the author, year of publication, research objectives, sample, methodology, instruments, and main findings, was tabulated and organized into a synthesis matrix. The data were then analyzed thematically to identify emerging trends, key themes, and research gaps. Thematic analysis focused on four primary aspects: (i) types and classifications of SPS assessed in the studies, (ii) teaching and learning strategies used to develop SPS, (iii) assessment methods and tools applied to measure SPS, and (iv) challenges and recommendations for improving SPS among primary students. The review process followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to ensure transparency, reproducibility, and credibility. This systematic approach enabled a comprehensive understanding of how SPS have been explored, implemented, and evaluated in Malaysian primary science education. The detailed review and analysis process was adapted from established frameworks by Moher et al. (2009) and Shaffril et al. (2018), as illustrated in Figure 2.



**Figure 2.** The process of reviewing and analyzing articles.

In brief, the PRISMA flow diagram illustrates the process through which 82 initial studies were narrowed down to 20 relevant studies. This process involved the removal of duplicates, followed by the screening of titles, then abstracts, and subsequently full-text articles, ultimately resulting in 20 studies that are relevant and aligned with the research topic. Figure 3 presents this flow process.



**Figure 3.** The PRISMA flow diagram illustrates the process of 82 initial studies narrowed down to 20 relevant studies.

## Quality Assesment

To ensure the accuracy and reliability of the studies included in this review, each study was assessed for quality using the following criteria: (i) the appropriateness of the study design in addressing the research questions, (ii) transparency and rigor of data collection procedures, (iii) validity and reliability of the instruments used, and (iv) clarity in reporting study findings. Quality assessment was conducted independently by two reviewers to minimize bias, with any discrepancies resolved through discussion or consultation with a third reviewer.

Out of the 82 initially identified studies, five studies were excluded due to failing to meet the minimum quality criteria, primarily related to unclear methodology and incomplete data reporting. The quality assessment also informed the data synthesis process, with higher-quality studies given greater emphasis in the thematic analysis and comparative evaluation. This approach ensured that the data synthesis was based on robust and relevant evidence aligned with the research objectives.

## RESULTS AND DISCUSSION

The twenty studies share certain similarities which are categorized into two key aspects: the methodologies employed, and the similarities in the content. Table 1 summarises the twenty studies that were identified and subsequently analysed.

**Table 1.** Analysis of studies from 2020 to 2025

| No. | Researcher / Year                                                | Sample / Location                                                                | Research Objective                                                                                                     | Research Design                                                                                              | Main Findings                                                                                                                                                                                                                                         |
|-----|------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Nazahiyah Mustafa, Ahmad Zamri Khairani, Nor Asniza Ishak (2021) | 128 Year 5 pupils, one primary school in Penang, Malaysia                        | To calibrate science process skills (SPS) test items and determine the level of item difficulty using the Rasch model. | Quantitative; partial credit test; Rasch model analysis.                                                     | Found that <i>observing</i> and <i>communicating</i> were the easiest skills, while <i>inferring</i> and <i>classifying</i> were the most difficult for primary pupils.                                                                               |
| 2   | Eng Tek Ong et al. (2022)                                        | 348 pupils (Years 4–6) from urban Malay and Orang Asli primary schools, Malaysia | To identify the overall mastery level of basic SPS and compare between ethnic groups (Malay vs Orang Asli).            | Quantitative; BSPS test with 36 multiple-choice items; descriptive and inferential analyses (t-test, ANOVA). | Malay pupils achieved an “acceptable” level in <i>classifying</i> (~71.12%) and <i>predicting</i> (~67.43%), while Orang Asli pupils did not reach acceptable levels for any skills; significant differences found by grade level among Malay pupils. |
| 3   | Ahmad, N. F. & Zanaton Iksan (2021)                              | Primary school pupils                                                            | To explore how digital science games help                                                                              | Quantitative (pre-test and post-test design); digital                                                        | Pupils showed improvement in SPS after the digital game                                                                                                                                                                                               |

| No. | Researcher / Year                                                                   | Sample / Location                                                                  | Research Objective                                                                                                              | Research Design                                                                    | Main Findings                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                     | (exact number not specified; location not stated).                                 | promote pupils' SPS in science learning.                                                                                        | game used as an instructional intervention.                                        | intervention—especially in <i>observing, classifying, communicating, and inferring</i> .                                                                                                                                                                                                                                                           |
| 4   | Mohd. Munir Baharom, N. A. Atan, M. Rosli, S. Yusof, Mohd Zolkifli Abd Hamid (2020) | 30 Year 6 students, Johor Bahru                                                    | To examine effectiveness of IBSE apps in improving SPS                                                                          | Quasi experimental, time series                                                    | IBSE apps significantly improved SPS mastery and achievement                                                                                                                                                                                                                                                                                       |
| 5   | Hamidah Mat, S. S. Mustakim, Fazilah Razali (2025)                                  | 280 Year 5 students, Malaysia                                                      | To examine proficiency of higher order thinking skills (HOTS) in science                                                        | Survey, stratified sampling                                                        | Moderate HOTS proficiency; gaps in independent application and creative problem solving                                                                                                                                                                                                                                                            |
| 6   | Nuraini Abu Bakar; Siti Salina Mustakim; Aminuddin Hassan; Fazilah Razali. (2021)   | 12 Year 5 students,                                                                | To identify the dominant Science Process Skills (SPS) practiced by pupils during science lessons based on classroom assessment. | Qualitative research using triangulation method.                                   | Most pupils have not yet mastered integrated SPS, reflecting gaps in comprehension and classroom application. Emphasizes the need for better instructional strategies and assessment alignment to strengthen integrated SPS development.                                                                                                           |
| 7   | Hamizah Yaakob et al., (2023)                                                       | 98 sixth-grade (Year 6) students from rural schools in the Jengka Zone (Malaysia). | To identify and examine the challenges faced by rural primary school students in learning Science subjects.                     | Quantitative research design.                                                      | 1. Negative attitudes toward Science -the most significant challenge affecting achievement.<br>2. difficult to fully understand Science topics, indicating cognitive and conceptual gaps.<br>3. Struggled to apply experimental findings to everyday life<br>4. negatively affected classroom performance, concentration, and interest in Science. |
| 8   | Kamarudin, M. Z., & Mat Noor, M. S. A. (2024)                                       | Rural primary school pupils in Malaysia.                                           | To enhance science learning through a digital inquiry-based approach.                                                           | Action research. Digital inquiry activities, interest questionnaire, and SPS test. | Pupils were more motivated and showed improvement in basic SPS.                                                                                                                                                                                                                                                                                    |

| No. | Researcher / Year                                            | Sample / Location                             | Research Objective                                                                                                                                                         | Research Design                                                                                                                                                                                                                       | Main Findings                                                                                                                                                                                                                                                                                                                             |
|-----|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9   | Arifin, Z., et al. (2024).                                   | Primary and secondary school students.        | To assess the effect of Inquiry-Based Learning (IBL) on critical thinking and SPS.                                                                                         | Experimental study. SPS test and critical thinking test.                                                                                                                                                                              | IBL improved both SPS and critical thinking skills. IBL is suitable for developing scientific thinking among 21st-century learners.                                                                                                                                                                                                       |
| 10  | Ong Eng Tek & Shamalah Manikam (2022)                        | 379 students (upper primary, Indian students) | This study aims to compare the mastery level of basic science process skills among upper primary Indian students by gender, school location, and by grade levels.          | Quantitative-Using an established 36-item Basic Science Process Skills (BSPS) test that assesses the skills of observing, communicating, classifying, measuring, predicting, and inferring with appropriate reliability and validity, | -urban Indian students achieved significantly higher than rural Indian students in overall BSPS and across all specific BSPS; - Year 6 Indian students achieved significantly higher than Year 4 and Year 5 Indian students except for classifying in which there was no significant difference between Year 6 and Year 5 Indian students |
| 11  | Mohd Yahya et al (2024)                                      | Primary                                       | This systematic literature review investigates strategies and findings to enhance science process skills, design thinking, and inquiry-based learning in primary education | Articles analysis, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Framework                                                                                                                              | The results highlight the effectiveness of innovative pedagogy, technology-rich environments, scaffolding, and differentiated instruction.                                                                                                                                                                                                |
| 12  | Thiyagu Karupaiah & Esther Gnanamalar Sarojini Daniel (2021) | 9 primary school students                     | To enhance low-achieving Year Five pupils' SPS specifically in:<br><b>1.</b> Controlling variables<br><b>2.</b> Formulating hypotheses -using online tools.                | Mixed Method-Quantitative and Qualitative -Action Research                                                                                                                                                                            | The majority of low-achieving pupils showed improvement in science process skills<br><ul style="list-style-type: none"> <li>• Peer collaboration with high-achieving students through synchronous online sessions (video call) effectively enhanced pupils' ability to control variables and formulate hypotheses.</li> </ul>             |
| 13  | Abdullah Abdul Halim & Noor                                  | 20 Year 5 primary                             | 1) To design online learning                                                                                                                                               | Quantitative, pre-experimental                                                                                                                                                                                                        | Descriptive: Mean scores improved in both                                                                                                                                                                                                                                                                                                 |

| No. | Researcher / Year                                                                  | Sample / Location                                                                 | Research Objective                                                                                                                                                                                                                                          | Research Design                                            | Main Findings                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Dayana Abdul Halim (2024)                                                          | school pupils in Malaysia (online science learning via Telegram)                  | activities integrated with a heutagogy approach via Telegram.<br>2) To investigate the effect of the online heutagogy-based learning (via Telegram) on pupils' science process skills.<br>3) To investigate the effect on pupils' creative thinking skills. | (one group pre-integrated with a test / post-test) design. | science process skills (pre-test mean ~17.00% → post-test mean ~38.50%, an improvement of ~21.50%) and creative thinking skills (pre-test mean ~27.00% → post-test mean ~43.25%, an improvement of ~16.25%).<br>Inferential: Significant differences between pre- and post-test scores for both skills using the Wilcoxon signed-ranks test (science process skills: $Z = -3.938$ , $p < .001$ ; creative thinking skills: $Z = -3.631$ , $p < .001$ ) |
| 14  | Ellyza Karim, Syakima Ilyana Ibrahim, Hanani Harun Rasit, Bambang Sumintono (2024) | 300 primary school leavers (aged 13 years, recently completed primary education). | - The aim was to ensure that the study instrument accurately measures latent constructs of SPS among Malaysian primary school students.                                                                                                                     | Quantitative study                                         | Construct validity: Instrument successfully measures latent SPS constructs.<br>Skill mastery insights: Only 11% of students could design scientific steps independently (experimenting skill). The space-time relationship skill was rated most strongly mastered.                                                                                                                                                                                     |
| 15  | Norlaila Ariffin et al (2023)                                                      | 30 primary school student                                                         | to design science learning activities that can help the students' understanding be clearer and further support the mastery of KPS                                                                                                                           | quasi-experimental                                         | The study's findings found a significant effect on the student's achievement before and after the science learning treatment with the integration of APS-TeWeV, and further helped in the mastery of the students' science process skills to a better level. The students' perceptions show a positive interest and acceptance towards learning science with the                                                                                       |

| No. | Researcher / Year                             | Sample / Location                                               | Research Objective                                                                                                                                                                                  | Research Design                                                                                                                                                         | Main Findings                                                                                                                                                                                                                                                      |
|-----|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16  | Hamidah Mat et al., (2025)                    | 6 primary school science teachers                               | To identify and analyze the need for developing specialized teaching modules in primary science (specifically electrical topics) that aim to enhance students' higher-order thinking skills (HOTS). | Approach: Qualitative research methodology.                                                                                                                             | joint use of visual media through web technology                                                                                                                                                                                                                   |
| 17  | Thiyagu Karupaiyah & Salmiza Saleh (2025)     | 5 Year 4 science teachers, Malaysian primary schools.           | To identify teachers' needs for developing a design thinking-based STEM module that supports critical and creative thinking in Year 4 science instruction.                                          | Qualitative; semi-structured interviews with teachers; thematic analysis.                                                                                               | Key needs identified include teacher training support, appropriate teaching resources, ICT adaptation, and integration of design thinking to enhance higher-order and scientific process skills among pupils.                                                      |
| 18  | Engku Mohd Sharul Akimi & Mohd Effendi (2024) | Not applicable (theoretical paper; no empirical data collected) | To explain the concepts of science process skills and manipulative skills in science learning, and to examine learning strategies that can enhance mastery of these scientific skills.              | Conceptual design using literature review and theoretical discussion. Focuses on synthesizing previous studies and proposing strategies rather than testing hypotheses. | Three main strategies were identified to improve science process and manipulative skills:<br>1. Inquiry-Based Learning (IBL)<br>2. Scientific Argumentation-Based Learning (SABL)<br>3. Use of Information and Communication Technology (ICT) in science learning. |
| 19  | Mohd Syaubari et.al., (2023)                  | Participants: 402 primary school Science teachers               | To assess the implementation of teaching Science among elementary school teachers through the integration of High-Level Thinking Skills                                                             | Quantitative Design Type: Descriptive research design Data Collection Method: Questionnaire survey                                                                      | -the implementation of KBAT in Science teaching is at a high level.                                                                                                                                                                                                |

| No. | Researcher / Year                     | Sample / Location    | Research Objective                                                                                                                                                            | Research Design                      | Main Findings                                                                                                                                                                        |
|-----|---------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                       |                      | based on the Kurikulum Standard Sekolah Rendah (KSSR).                                                                                                                        |                                      |                                                                                                                                                                                      |
| 20  | Santhira A/P Poongavan et. al (2024). | 30 year 5 strudents. | -to develop an Augmented Reality (AR) application with (5E) inquiry-based learning approach,<br>-to improve students' spatial visualization skills and performance in science | Quantitative Pre experimental design | the findings proved that the AR application with an inquiry-based learning approach could improve students' spatial visualization skills and enhance their science learning outcomes |

### **Analysis of the Methodology Implemented**

Based on the analysis of 20 selected studies (see Table 1), research on the SPS among Malaysian primary school students demonstrates considerable methodological diversity, reflecting the complexity of science learning processes. Quantitative research designs dominate the field, particularly in studies that aim to measure the mastery level of basic or integrated SPS through standardized testing and psychometric approaches. Table 2 below presents a summary of the findings regarding the methodological approaches used in the analysed studies.

**Table 2.** Summary of the research design employed.

| Research Design | Percentage (%) | Examples of instruments                                                 |
|-----------------|----------------|-------------------------------------------------------------------------|
| Quantitative    | 55             | BSPS test based on the Rasch model; quasi-experimental design           |
| Mixed methods   | 25             | Pre- and post-test combines with interviews; classroom video recordings |
| Qualitative     | 20             | Teaching observations; document and analysis of instructional practices |

Mustafa et al. (2021) and Ong et al. (2022) employed Rasch Measurement Models and multiple-choice Basic Science Process Skills (BSPS) tests to calibrate item difficulty and determine students' proficiency levels. Similarly, Karim et al. (2024) developed and validated a new SPS instrument using Rasch analysis, reporting high reliability and construct validity. These quantitative approaches provide objective data that allows researchers to identify specific SPS competencies (observing, communicating, and classifying) to more abstract skills like inferring or hypothesizing.

In addition to measurement-oriented research, a few studies employed quasi-experimental or pre-experimental designs to assess the effectiveness of pedagogical interventions aimed at enhancing SPS. Ahmad and Iksan (2021) integrated digital science games into classroom learning and found notable improvements in pupils' ability to observe, classify, and communicate scientific ideas. Poongavanam et al. (2024) develop an Augmented Reality (AR) application with (5E) inquiry-based learning approach to improve students' spatial visualization skills and performance in science. Similarly, Baharom et al. (2020) adopted a quasi-experimental time-series design to evaluate the impact of Inquiry-Based Science Education (IBSE) applications, which significantly improved students' SPS mastery. Ariffin et al. (2023) found a significant effect on the student's achievement before and after the science learning treatment with the integration of APS-TeWeV, and further helped in the mastery of the students' science process skills to a better level. While Abdul Halim and Abdul Halim (2024) also demonstrated significant pre- and post-test gains in SPS and creative thinking when employing a heutagogy-based learning approach via Telegram. These intervention-based studies emphasize the positive role of technology and inquiry-oriented pedagogies in strengthening scientific reasoning and process skills among primary learners.

Several studies also adopted qualitative and mixed-method approaches, highlighting the contextual and behavioral dimensions of SPS learning. Abu Bakar et al. (2021) employed triangulation through classroom observations and interviews, using NVivo software for thematic analysis, to explore how pupils develop integrated SPS in real classroom settings. Similarly, Karupaiah and Saleh (2025) conducted semi-structured interviews with teachers to identify needs for integrating design thinking into STEM-based modules that enhance SPS and higher-order thinking skills. These qualitative approaches provide rich insights into teacher practices, pupils' learning challenges, and classroom realities that are not captured through quantitative measurement alone.

While Ahmad and Iksan (2021) reported significant improvements in SPS through digital games, Abu Bakar et al. (2021) found that students still struggle with integrated SPS despite active learning approaches. This suggests integrated SPS require higher-order thinking levels that are more challenging for primary school students and requires more structured and scaffolded instructional support.

Meanwhile, Karupaiah and Daniel (2021) and Kamarudin and Mat Noor (2024) demonstrate the iterative process of refining teaching practices to improve students' SPS through collaboration and inquiry-based digital learning. Additionally, Mat et al. (2025), conducted needs analyses to inform module development for teaching electrical topics in science, emphasizing teacher capacity-building and curriculum alignment. Collectively, these studies indicate that systematic and iterative methodologies, for example, Research and Development (R&D), ADDIE, and action research are particularly suitable for producing classroom-relevant and evidence-based instructional innovations.

The methodology of SPS research in Malaysian primary schools reveals a trend toward combining quantitative rigor with qualitative depth. Quantitative studies ensure measurement precision and generalizability, while qualitative and mixed-method designs provide contextual understanding and pedagogical insights. This methodological complementarity enhances the robustness of findings and supports the ongoing refinement of instructional approaches in science education (Mustafa et al., 2021; Ong et al., 2022; Ahmad & Iksan, 2021; Abu Bakar et al., 2021; Karupaiah & Daniel, 2021; Karim et al., 2024; Ariffin et al., 2023).

## Analysis of Similarities in the Content

Across the reviewed studies, several thematic and content-related similarities emerge, particularly regarding the types of SPS emphasized and the contextual factors influencing their development. Table 3 shows summary of findings the content of SPS.

**Table 3.** Summary of findings regarding the content of SPS.

| Type of Skill                     | Easy/Moderate Level                              | Difficult Level                                |
|-----------------------------------|--------------------------------------------------|------------------------------------------------|
| Basic Science Process Skills      | Observing, classifying, measuring, communicating | Predicting, making inferences                  |
| Integrated Science Process Skills | Interpreting data                                | Formulating hypotheses, conducting experiments |

Most studies consistently highlight observing, classifying, measuring, and communicating as the most fundamental SPS for primary school pupils, while inferring, hypothesizing, and experimenting are identified as highly difficult to master (Mustafa et al., 2021; Ong et al., 2022; Karim et al., 2024). This pattern suggests that while students can readily engage in concrete, observable tasks, they often struggle with abstract reasoning and complex variable control. Furthermore, Ong et al. (2022) indicate that cultural, linguistic, and socioeconomic differences contribute to varying levels of SPS mastery, they found significant performance disparities between Malay and Orang Asli students.

**Table 4.** Summary of Pedagogical Approaches and Their Impact on Science Process Skills and Related Outcomes in Primary School Students

| Pedagogical Approach                   | Key Outcomes                                       | Effect Size / Significance                                   | Notes                                                                          |
|----------------------------------------|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|
| Inquiry-Based Science Education (IBSE) | Improved science process skills                    | Significant pre/post improvement ( $p < 0.001$ )             | Shows strong impact on overall SPS mastery                                     |
| Digital Science Games                  | Increased engagement and basic SPS                 | Moderate effect ( $d = 0.78$ )                               | Particularly effective for motivation and foundational skills                  |
| Peer Collaboration in School           | Enhanced hypothesis formulation & variable control | Not quantified                                               | Skills improved but still relatively weak; highlights need for guided practice |
| Heutagogy via Telegram                 | Gains in SPS and creative thinking                 | +21.5% SPS, +16.3% creative thinking (Wilcoxon $Z = -3.94$ ) | Demonstrates effectiveness of self-directed, technology-mediated learning      |

Moreover, based on summary of pedagogical approaches and their impact on SPS and related outcomes in primary school students (see table 4) Ahmad and Iksan (2021), Baharom et al. (2020), and Abdul Halim and Abdul Halim (2024) demonstrate that digital interventions, which range from educational games to mobile applications would enhance students' engagement, curiosity, and motivation in science learning. Similarly, Karupaiah and Daniel (2021) and Kamarudin and Mat Noor (2024) showed that inquiry-based and collaborative approaches could help students build a depth conceptual understanding through experimentation, peer interaction, and reflective dialogue. These studies converge on the view that active learning environments promote high SPS performance and the development of

critical and creative thinking. Furthermore, qualitative studies reveal that teachers encountered pedagogical challenges in sustaining effective SPS learning. According to Abu Bakar et al. (2021), students often rely on peer collaboration to grasp complex SPS concepts, while teachers express the need for targeted training and instructional resources (Karupaiah & Saleh, 2025; Mat et al., 2025). These shared challenges underline the importance of continuous professional development and curriculum alignment to strengthen SPS instruction at the primary level. Besides, Arifin et al. (2024) and Engku Ismail and Matore (2024) emphasize inquiry-based learning (IBL) and argumentation-based strategies as effective in nurturing scientific reasoning and manipulative skills. Similarly, Yaakob et al. (2023) discussed that the inclusion of environmental and everyday-life contexts would promote science learning to be highly meaningful and connected to students' life experiences.

These studies showed that there was a strong alignment with inquiry-based, constructivist, and 21st-century learning paradigms, where science is taught as content knowledge, and a process of investigation and reasoning. The thematic convergence across studies from 2020 to 2025 highlights that Malaysian primary science education is moving toward more active, student-centred, and evidence-based teaching practices. The findings consistently strengthen the conclusion that SPS development is a cornerstone of quality science learning and should remain a priority in both research and practice (Ong et al., 2022; Ahmad & Iksan, 2021; Abu Bakar et al., 2021; Karupaiah & Daniel, 2021; Abdul Halim & Abdul Halim, 2024).

## CONCLUSION

In conclusion, the development of SPS among Malaysian primary school students is strongly influenced using diverse methodologies, innovative pedagogical strategies, and contextual classroom factors. Quantitative approaches, particularly those employing Rasch Measurement Models and standardized SPS instruments, provide valuable evidence of students' mastery levels and skill progression, while qualitative and mixed-method designs offer rich insights into teaching practices and learning challenges. The integration of digital tools, inquiry-based learning, and collaborative pedagogies consistently enhances pupils' engagement, motivation, and critical thinking, demonstrating that active, student-centred approaches are most effective in cultivating SPS. However, persistent gaps remain, especially in higher-order skills including hypothesizing and experimenting, which require sustained teacher support and curriculum alignment. The findings underscore the need for continuous professional development, curriculum innovation, and evidence-based instructional design to strengthen science education in primary schools. Future research should expand cross-cultural comparisons and longitudinal analyses to better understand how SPS evolve across different learning contexts and educational levels.

**Conflict of Interest:** The authors have no conflicts of interest to declare.

**Author Contributions:** Dayang Rosnah Mataip wrote the manuscript. The author has read and agreed to the published version of the manuscript.

**Institutional Review Board Statement:** Not applicable.

**Informed Consent Statement:** Informed consent was obtained from all subjects involved in the study. Written informed consent has been obtained from the subject(s) to publish this paper.

**Data Availability Statement:** The data presented in this review are available on request from the corresponding author.

**Acknowledgement:** This work was supported by the Fundamental Research Grant Scheme-Early Career (FRGS-EC) with research code: FRGS/1/2024/SSI09/UMS/02/6. The author would like to express gratitude to Universiti Malaysia Sabah (UMS) and the Ministry of Higher Education (MOHE) Malaysia for supporting this research financially.

## REFERENCES

Abdullah, A. H., & Abdul Halim, N. D. (2024). Effects of online heutagogy approach in learning science via Telegram towards pupils' science process skills and creative thinking skills. *LUMAT: International Journal on Math, Science and Technology Education*, 12(4), 1–20. <https://doi.org/10.31129/LUMAT.12.4.2327>

Ahmad, N. F., & Iksan, Z. (2021). Integration of science process skills through digital game-based learning. *Jurnal Sains Insani*, 6(1), 75–81. <https://doi.org/10.33102/sainsinsani.vol6no1.246>

Arifin, Z., Sukarmin, Saputro, S., & Kamari, A. (2025). The effect of inquiry-based learning on students' critical thinking skills in science education: A systematic review and meta-analysis. *Eurasia Journal of Mathematics, Science and Technology Education*, 21(3), Article No. em15988. <https://doi.org/10.29333/ejmste/15988>

Ariffin, N., Atan, N. A., Mohd Yusof, S., Mohamad Said, M. N. H., & Tahir, L. (2023). Pembelajaran sains menerusi web berdasarkan kontinum pemikiran visualisasi dalam meningkatkan kemahiran proses sains murid. *Innovative Teaching and Learning Journal*, 7(2), 72–83. <https://doi.org/10.11113/itlj.v7.136>

Baharom, M. M., Atan, N. A., Rosli, M. S., Yusof, S., & Abd Hamid, M. Z. (2020). Integration of science learning apps based on Inquiry Based Science Education (IBSE) in enhancing students' science process skills (SPS). *International Journal of Interactive Mobile Technologies*, 14(9), 95-109. <https://doi.org/10.3991/ijim.v14i09.11706>

Bakar, N. A., Mustakim, S. S., Hassan, A., & Razali, F. (2021). The dominant science process skills practiced by pupils during teaching and learning of science. *International Journal of Academic Research in Progressive Education and Development*, 10(3), 1185-1195. <https://doi.org/10.6007/IJARPED/v10-i3/11023>

Bannuru, R. R., Hwang, R., Kent, D. M., Vaysbrot, E. E., Wong, J. B., & McAlindon, T. E. (2014). Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: A systematic review and network meta-analysis. *Annals of Internal Medicine*, 162(1), 46–54. <https://doi.org/10.7326/M14-1231>

Engku Ismail, E. M. S. A., & Matore, M. E. @ E. M. (2024). Strategies for mastering science process skills and manipulative skills in practical work. *International Journal of Academic Research in Progressive Education and Development*, 13(2), 503–514. <https://doi.org/10.6007/IJARPED/v13-i2/21256>

Greif, R., Lockey, A., Breckwoldt, J., Carmona, F., Conaghan, P., Kuzovlev, A., Monsieurs, K. G. (2021). European Resuscitation Council Guidelines 2021: Education for

resuscitation. *Resuscitation*, 161, 388–407.  
<https://doi.org/10.1016/j.resuscitation.2021.02.016>

Habibah Hassan, & Sharom Nordin (2006). Tahap kefahaman kemahiran mengukur dan kemahiran mengenal pasti boleh ubah di kalangan pelajar tingkatan empat merentas aliran. *Buletin Persatuan Pendidikan Sains dan Matematik Johor*. Universiti Teknologi Malaysia.

Hamidah, M., et al. (2025). Need analysis: Development of a teaching module for enhancing HOTS of primary school students. *International Journal of Evaluation and Research in Education (IJERE)*, 14(3). <https://doi.org/10.11591/ijere.v14i3.30335>

Harlen, W. (2000). *Teaching, learning and assessing science 5–12* (3rd ed.). Paul Chapman Publishing

Ismail, B. K., & Khairuzaman Ismail. (2010). *Mengenal pasti faktor-faktor yang menyebabkan pelajar kurang cemerlang dalam mata pelajaran Sains: Satu kajian tinjauan di sebuah sekolah menengah luar bandar*. Fakulti Pendidikan, Universiti Teknologi Malaysia.

Jusoh, M. Y. F., Ishak, N. A., Sukardi, R. R., Artika, W., & Ismail, A. (2024). Fostering STEM education in primary schools: A review of strategies for enhancing science skills, design thinking, and inquiry-based learning. *Environment-Behaviour Proceedings Journal*, 9(SI20), 67-73. <https://doi.org/10.21834/e-bpj.v9iSI20.6093>

Kamarudin, M. Z., & Mat Noor, M. S. A. (2024). Teacher's practice in digital inquiry-based science learning in a primary school. *Journal of Science of Learning and Innovations*, 1(1), 33–60. <https://doi.org/10.1163/29497736-bja00004>

Kamisah Osman, Zanaton Haji Iksan dan Lilia Halim (2007). Sikap terhadap Sains dan Sikap Saintifik di kalangan Pelajar Sains. *Jurnal Pendidikan*, 32, 39-60.

Karim, E., Ibrahim, S. I., Harun Rasit, H., & Sumintono, B. (2024). *Development and validation of students' competency instrument on science process skills*. Atlantis Press. [https://doi.org/10.2991/978-94-6463-494-5\\_20](https://doi.org/10.2991/978-94-6463-494-5_20)

Karupaiah, T., & Daniel, E. G. S. (2021). Inter-school synchronous peer collaboration in enhancing the science process skills of controlling variables and formulating hypothesis among low achieving Year Five pupils. *Journal of ICT in Transformational Education*, 8(1), 73–91.  
<https://doi.org/10.37134/jictie.vol8.1.6.2021>

Karupaiah, T., & Saleh, S. (2025). Malaysian science teachers' needs for a design thinking-based STEM module in Year Four Physical Science. *Jurnal Pendidikan Sains dan Matematik Malaysia*, 15(1), 111-128. <https://doi.org/10.37134/jpsmm.vol15.1.9.2025>

Kementerian Pendidikan Malaysia. (2017). *Kurikulum Standard Sekolah Rendah (KSSR) Semakan 2017: Dokumen Standard Kurikulum dan Pentaksiran (DSKP)*. Putrajaya, Malaysia: Kementerian Pendidikan Malaysia.

Lederman, N. G., Abd-El-Khalick, F., Bell, R., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. *Journal of Research in Science Teaching*, 39(6), 497-521. <https://doi.org/10.1002/tea.10034>

Mat Noor, M. S. A. (2022). An insight into primary science education in Malaysia. *ASE International*, 16, 34-4.

Mat, H., Mustakim, S. S., & Razali, F. (2025). Proficiency of higher-order thinking skills in Malaysian primary science curriculum: Insights from Year 5. *International Journal of Education and Social Science Research*, 8(1), 26-40.  
<https://doi.org/10.37500/IJESSR.2025.8103>

Mohd Satar, N. H., Zakaria, R. H., & Ishak, N. A. (2020). Parental involvement in education among urban families in Malaysia. *Jati: Journal of Southeast Asian Studies*, 25(2), 60–85. <https://doi.org/10.22452/jati.vol25no2.4>

Mohd Syaubari, et al. (2023). Implementation of teaching elementary school science teachers through integration of KBAT. *Malaysian Journal of Social Science*, 8(1), 1-10.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Medicine*, 6(7), e1000097. <https://doi.org/10.1371/journal.pmed.1000097>

Nazahiyah, M., Khairani, A. Z., & Ishak, N. A. (2021). Calibration of the science process skills among Malaysian elementary students: A Rasch model analysis. *International Journal of Evaluation and Research in Education (IJERE)*, 10(4), 1305–1313. <https://doi.org/10.11591/ijere.v10i4.21430>

Ong, E. T., & Manikam, S. (2014). Penguasaan kemahiran proses sains asas dalam kalangan murid India di beberapa buah sekolah rendah di Perak [Mastery of basic science process skills among Indian pupils in several primary schools in Perak]. *Sains Humanika*, 2(1), 159-169. <https://doi.org/10.11113/sh.v2n1.389>

Ong, E. T., Mohamed Noor, A. M. H., Kaur Swaran Singh, C., Yingprayoon, J., Abdul Wahab, N., Sa'ad, F. M., & Ibrahim, M. H. (2022). The mastery level of basic science process skills between the Malay and the Orang Asli upper primary students in Malaysia. *Review of International Geographical Education Online*, 11(8). <https://doi.org/10.48047/rigeo.11.8.1566>

Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. *International Journal of Science Education*, 25(9), 1049-1079. <https://doi.org/10.1080/0950069032000032199>

Osman, K. (2012). Primary science: Knowing about the world through science process skills. *Asian Social Science*, 8(16), 1-7. <https://doi.org/10.5539/ass.v8n16p1>

Poongavanam, S. A/P., Jumaat, N. F., Che Lah, N. H., Eh Phon, D. N. A/L., & Hashim, S. (2025). The impact of the augmented reality application with inquiry-based learning on students' spatial visualization skill and performance. *International Journal of Instruction*, 18(3), 715-730. <https://doi.org/10.29333/iji.2025.18337a>

Ruhizan, M. Y. (1999). Integrasi pendidikan akademik dan vokasional – satu pendekatan pengajaran dan pembelajaran abad ke-21. In *Prosiding Seminar Kebangsaan Isu-Isu Pendidikan Negara* (Vol. 2, pp. 112–122).

Shaffril, H. A. M., Samsuddin, S. F., & Omar, S. Z. (2018). A systematic review on Asian farmers' adaptation practices towards climate change. *Science of the Total Environment*, 644, 683–695. <https://doi.org/10.1016/j.scitotenv.2018.06.349>

Subahan, T. (1997). Strategi pengajaran untuk meningkatkan prestasi sains dan matematik. *Prosiding Seminar Kebangsaan Pendidikan Sains dan Matematik*.

Razila, A. K. (1998). *Pemilihan aliran sains di kalangan pelajar Tingkatan Empat* (Latihan Ilmiah). Fakulti Pendidikan, Universiti Kebangsaan Malaysia.

Wan Zah Wan Ali. (2012). Comparing teachers' aspiration towards change in teaching and learning and their actual classroom practices. *Pertanika Journal of Social Sciences & Humanities*. <https://psasir.upm.edu.my/id/eprint/5484>

Yaakob, H., Abdul Wahab, M. N., Abdul Aziz, A. R., & Mohd Ropizam, M. Z. (2023). Science learning difficulties among rural primary school students. *International Journal of Humanities Technology and Civilization*, 8(1), 22–35. <https://doi.org/10.15282/ijhtc.v8i1.9400>

Yakob, N., Mohd Yunus, H., & Chan, Y. M. (2015). Knowledge and practices in teaching socio-scientific issues among Malaysian primary school science teachers. *US-China Education Review A*, 5(9), 634-640. <https://doi.org/10.17265/2161-623X/2015.09.006>

Zol Azlan Hamidin (2000). *Strategi pengajaran pendekatan sains, teknologi dan masyarakat*. Prentice Hall.

Zulkipli, Z. A., Yusof, M. M. M., Ibrahim, N., & Dalim, S. F. (2020). Identifying scientific reasoning skills of science education students. *Asian Journal of University Education*, 16(3), 275–280. <https://doi.org/10.24191/ajue.v16i3.10311>

**Disclaimer / Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and/or the editor(s). The editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.