Labuan Bulletin of International Business & Finance

Volume 14 Dec 2016 ISSN 1675-7262

CARBON DIOXIDE EMISSIONS, ENERGY CONSUMPTION, AND ECONOMIC GROWTH IN A TRANSITION ECONOMY: EMPIRICAL EVIDENCE FROM CAMBODIA

Tuck Cheong Tang^{a1}, Pei Pei Tan^a

^aDepartment of Economics, Faculty of Economics & Administration, University of Malaya

Abstract

This study examines the inter-relationship among carbon dioxide (CO₂) emissions, energy consumption, and economic growth for a Mekong River Commission (MRC) country - Cambodia. The empirical results suggest that real gross domestic product (GDP), energy consumption, and CO₂ emissions are cointegrated. It needs 11 years to achieve a long-run equilibrium. There is a unidirectional causality from real GDP to energy consumption, and a bidirectional causality between real GDP, and CO₂ emissions. The CO₂ emissions are related to energy consumption through real GDP. This study is relevant and importance for Cambodia in formulating energy policies, for example, the revision of national energy efficiency policy.

JEL Classification: C22, Q43, Q48.

Keywords: Cambodia; Causality; Cointegration; CO₂ emissions; Energy consumption; Economic growth.

1. Introduction

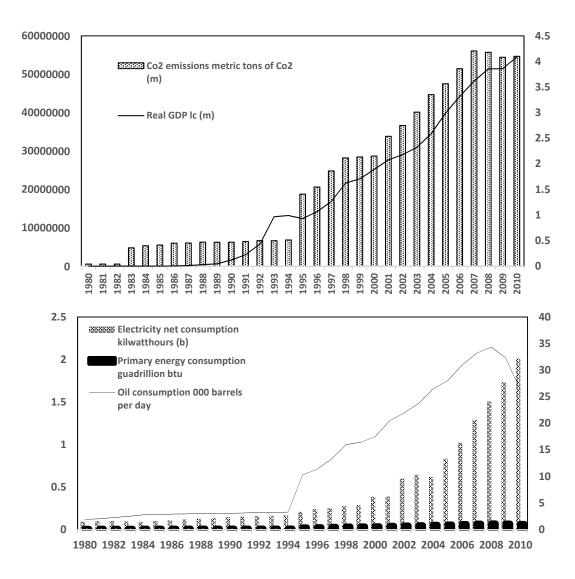
The research issue inspires this study is the current phenomenon reported by the Phnom Penh Post that "Cambodia is suffering disproportionately from the impacts of greenhouse gas emissions from more developed nations, according to a new study published in the journal Nature on Friday... Cambodia is one of 36 countries "severely" affected by global climate change, as of 2010. If current trends continue, Cambodia's vulnerability will downgrade slightly to "acute" by 2030" (The Phnom Penh Post, 8 February 2016).² The Cambodia's power consumption is forecasted to rise to 3.4 TWh by the end of 2020 to achieve at

² http://m.phnompenhpost.com/national/polluters-hurt-kingdom-

¹ Corresponding author: E-mail: tangtuckcheong@um.edu.my.

study?utm_content=bufferd3ofo&utm_medium=social&utm_source=facebook.com&utm_cam
paign=buffer (Accessed: March 1, 2016)

9.4% growth (Royal Government of Cambodia, 2013, p. 2). Meanwhile, the Royal Government of Cambodia (2013) has highlighted that the Cambodian annual electricity demand has increased about 16.3% from 2002 to 2011 and, the CO₂ emissions from energy consumption has amounted to nearly 4 million tonnes. More precisely, the primary energy consumption and CO₂ emission at least doubled over the past ten years – it is eventually a major challenge for the national energy policy. In fact, the overall policy goal of the Cambodian energy efficiency is to reduce the future national demand for energy by 20% at 2035, as well as national CO₂ emissions in 2035 by 3 million tonnes of CO₂ (Royal Government of Cambodia, 2013, p. 7).


Figure 1 (the top plot) shows that the Cambodian CO₂ emissions and real GDP increase substantially since 1995. They are closely correlated - higher real GDP causes more CO₂. The Cambodian real GDP 'takes off' in 1985 as a result of economic reforms since the past two decades from a command economy in the late 1980s to a free market economy in the recent (Tang and Chea, 2013). According to the United Nations (2003), Cambodia is one of the most open economies in the Southeast Asia region³ and has been labelled as one of the new tiger economies of Asia, according to the forecast in the Asian Development Bank's Asian Development Outlook 2016.4 The bottom plot shows the oil consumption increases since 1994 but drops drastically in 2008. It is consistent with the second structural shift of CO_2 emissions in 1995 (the first was in 1983) suggesting a positive correlation. Visual inspection of the plot shows that oil and electricity consumptions, CO₂ emissions, and real GDP are positively associated. The electricity used gradually increases since 2001, while the primary energy consumption is relative stable. The International Energy Statistics 2012 reports that in 2009 the CO₂ emissions from energy consumption amounted to 3.93 million tonnes that both figures the demand for primary energy, and CO₂ emissions at least doubled over the past ten years (Royal Government of Cambodia, 2013, p. 2). Hence, a case study of a Mekong River bordering country, Cambodia is gaining considerable interest among the researchers on the relationships among energy consumption, CO₂ emissions and economic growth.

The present issue in Cambodia is related to other countries from the previous studies, especially for the regional energy study of Association of Southeast Asian Nations (ASEAN). Cambodia joined the ASEAN on 30 April 1999. Cambodia plays a virtual role in terms of intra-regional co-operation that the ASEAN countries have an active agenda on many energy policy fronts, and they are together continuously to strive towards implementation of long-standing projects in order to establish interconnected grids for electricity and natural gas (namely

³ It is based on the economic freedom index compiled by the Heritage Foundation in the United States. Cambodia is ranked 35th among 170 countries for the year of 2003. The rankings for its neighbouring countries are 72nd for Malaysia, 99th for Indonesia, 135th for Vietnam, and 153rd for Lao People's Democratic Republic. Cambodia is ranked among the world's least developed countries (LDCs) at the very top in market-friendliness. Cambodia has offered a set liberal policies to investors. (United Nations, 2003).

⁴ http://www.adb.org/news/features/here-comes-cambodia-asia-s-new-tiger-economy (Accessed: September 5, 2016)

the ASEAN Power Grid and the Trans-ASEAN Gas Pipeline) - but each country has its own key policies and targets.⁵ Therefore, panel approach on the energy study with Cambodia such as Lee and Brahmasrene (2014) is infeasible. In fact, no study is available for a case study of Cambodia. This study contributes to the empirical literature on the empirical evidence of energy-CO₂-growth nexus for Cambodia.

Figure 1: Plots of real GDP, CO₂ emissions, and energy consumption from 1980-2010.

⁵ See "Key energy policies, targets and objectives in ASEAN", in Table 1.5 (pages 32-33), Southeast Asia Energy Outlook – World Energy Outlook Special Report. https://www.iea.org/publications/freepublications/publication/SoutheastAsiaEnergyOutlook_ WEO2013SpecialReport.pdf (Accessed: September 5, 2016).

Only Lee and Brahmasrene (2014)'s study considers Cambodia for a panel data (1991-2009) of 9 ASEAN countries, and they find that information communications technology (ICT), CO₂ emissions and economic growth are cointegrated. ICT has a significant positive impact on both economic growth and CO₂ emissions. Economic growth and CO₂ emissions have feedback causation. A recent study, Wang et al. (2016a) examine the effects of urbanisation on energy consumption, and carbon emission in the 8 ASEAN member countries, namely Singapore, Malaysia, Indonesia, Thailand, the Philippines, Brunei, Vietnam, and Myanmar. The panel cointegration tests suggest long-run relationship for 1980-2009. A 1% increases in urban population results in a 0.20% higher carbon emission. Urbanisation with energy use causes carbon emission in the long-run. In the short-run, urbanisation causes both energy use and carbon emission. Baek (2016) investigates the impact of inward foreign direct investment (FDI) on the CO₂, GDP, and energy consumption for 5 ASEAN countries (Indonesia, Malaysia, the Philippines, Singapore, and Thailand) for the period of 1981-2010. The inflow of FDI increases CO₂ emission. Income and energy consumption have a negative impact on reducing CO₂. Heidari et al. (2015) support environmental Kuznets curve (EKC) for a panel of 5 ASEAN (Indonesia, Malaysia, the Philippines, Singapore, and Thailand) over the period of 1980-2008. The panel smooth transition regression (PSTR) shows energy consumption increases CO₂ if the GDP per capita is below 4686USD. Chandran and Tang (2013b) find cointegration between CO₂ emissions and other variables for Indonesia, Malaysia and Thailand for the period 1971-2008, and economic growth plays a greater role in CO₂. Inverted U-shape EKC is not supported in the case of Indonesia, Malaysia and Thailand.

Next section is the literature review with an update of 56 empirical studies between 2015 and 2016. Section 3 describes the data and their degree of integration. Time series testing methods are included in this section – autoregressive distributed lag (ARDL) approach. Section 4 reports the empirical results. Section 5 concludes the study.

2. Literature review - an update

Generally, two hypotheses are being tested empirically in the past studies, namely energy-growth nexus, and CO₂-energy-growth nexus. The most common Cobb– Douglas production function is being applied on the influence of energy consumption on output, while the EKC relates the pollution to output, and the Grey theory proposes a relationship between energy consumption and pollution. The other studies utilise the consumption theory which relates income and 'energy' variable(s) to consumption of goods and services. A seminal work by Kraft and Kraft (1978) documents that Gross National Product (GNP) does cause energy for the postwar period. Most of the past studies are summarised and reported by Ozturk (2010), Mohammadi and Parvaresh (2014), Chandran and Tang (2013a) and (2013b). They conclude that different findings when different sample countries, methods of analysis, and additional variables being considered.

This study summarises a total of 57 articles available between 2015 (29 articles) and 2016 (28 articles) (see Appendix A).⁶

The updated literature review gives several similarities are observed. Firstly, the studies are mainly to (re-)examine the cointegration and causality between economic growth, energy consumption, and pollutants (CO₂ emissions). 22 out of 28 articles published in 2016 test for cointegration and causality, except for Bae et al. (2016), Baek (2016), Fujii and Managi (2016), Kais and Sami (2016), Sumabat et al. (2016) and Wang et al. (2016b) on its effects of the variables. Secondly, they employ a multivariate framework than of bivariate framework by adding new variables such as energy prices, financial development, FDI, health quality, urbanisation, trade openness (international trade), tourism receipts, and so on. All of the studies in 2016 and 21 out of 29 studies in 2015 have considered additional variables, except for Apergis (2016). Thirdly, the single country study is still of the interest in energy study that almost half (28 articles) of the latest studies. The case study is, for example, Pakistan, Greek, Italy, Malaysia, and so on. Finally, the ARDL approach is a widely applied method for testing the cointegration.

3. Data, degree of integration and methods

This section describes the data, their degree of integration, I(d), and testing methods. The four variables are real GDP (Y, in local currency, million), primary energy consumption (PEC, in btu), oil consumption (OC, in '000 barrels per year), electricity net consumption (ENC, in kilowatt-hours), and CO₂ emissions (metric tonnes). Real GDP data are from Tang and Chea (2013), while the energy data are taken from the U.S. Energy Information Administration (http://www.eia.gov/). The sample period is between 1980 and 2010 (annual data).⁷ All of the variables are transformed into natural logarithm (*ln*).

Table 1 reports the augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979), Phillips-Perron (PP) (Phillips and Perron, 1988), and Kwiatkowski–Phillips– Schmidt–Shin (KPSS) (Kwiatkowski et al., 1992) tests. Both of the ADF and PP tests consistently fail to reject the null hypothesis of a unit root for all candidate variables, but they reject the null hypothesis in the first-differenced transformation.⁸ However, a more powerful test, KPSS method rejects the null hypothesis of stationary for all of the variables in levels, but none in firstdifferences suggesting I(1), except for lnENC which is I(2) i.e. the null of the firstdifferenced stationary is rejected. Also, in panel (b), the KPSS tests show lnPEC, lnOC and $lnCO_2$ are stationary in levels, or I(0) since the test statistics fail to reject null of trend stationary.

⁶ Other studies include Tang (2008; 2009), Tang and Tan (2012; 2013), Tang and Muhammad (2013), Tang and Tan (2014), and so on.

⁷ The energy data for Cambodia are available until 2010. The Cubic interpolation has initially considered which generated 121 observations for the periods 1980Q4 - 2010Q4. However, a reservation is the underlying series are not smoothly trended resulting bias in interpolated series. ⁸ If all variables are *I*(1) as suggested, vector error correction model (VECM) can be used for short-run as well as long-run model, including causality tests.

Table 1: Unit root and stationary tests.							
	ADF		PP		KPSS		
	Level	1st Difference	Level	1st Difference	Level	1st Difference	
Panel (a)	No Treno	b					
lnY	-2.230	-2.700^{*}	-1.730	-2.691*	0.645**	0.297	
lnPEC	-0.550	-5.032***	-0.556	-5.032***	0.690**	0.112	
lnOC	-0.773	-4.856***	-0.785	-4.856***	0.684**	0.128	
<i>ln</i> ENC	2.996	-5.819***	4.822	-5.237***	0.698**	0.636**	
$lnCO_2$	-2.185	-5.481***	-2.412	-5.481***	0.710**	0.207	
Panel (b)	With Trer	nd					
lnY	0.058	-3.352^{*}	-0.525	-3.248*	0.176**	0.104	
lnPEC	-1.761	-4.930***	-1.900	-4.930***	0.100	0.112	
lnOC	-1.561	-4.771***	-1.735	-4.771***	0.096	0.122	
lnENC	-1.087	-7.278***	-0.742	-19.249***	0.197**	0.500***	
lnCO ₂	-2.732	-5.805***	-2.505	-5.838***	0.114	0.082	

Table 1. Unit reat and stationers t

Notes: For ADF test, Schwarz information criterion (SIC) is used to select the lag length. For PP test, the Barlett kernel is used for the spectral estimation method by using the Newey-West bandwidth. (***), (**) and (*) indicate 1%, 5% and 10% significance level, respectively. In panel (b), the italic statistics have non-significant trend component. The critical value of the finite sample KPSS critical values are obtained from Table 1 and Table 2 from Hornok and Larsson (2000).

This observation dissatisfies the application of the conventional cointegration such as Johansen multivariate cointegration method (Johansen and Juselius, 1990) which requires all underlying variables be I(1). The existence of I(1)variables allows the ARDL approach (Pesaran et al., 2001). The ARDL bounds test is applicable irrespective of whether the independent variables are stationary, I(0) or non-stationary, I(1). It avoids the pre-testing problems associated with conventional cointegration methods that require the degree of integration of the underlying variables either I(1) or I(0), see Pesaran and Pesaran (1997, pp. 302-3). The *ln*ENC variable is dropped from cointegration analysis since no cointegration among real GDP, ENC, and CO₂ emissions can be concluded.⁹

This study follows the empirical framework as employed by Tang et al. (2013), Tang and Salah (2014), Abdul (2014), Wolde-Rufael (2014), and Ruhul et al.

⁹ This procedure (ARDL) is applicable at most *I*(1) variables. Haldrup (1998) surveys the recent literature dealing with *I*(2) variables. Standard remedy of differencing the *I*(2) variable twice, may result in information loss. The Engle-Granger tests cannot reject the null hypothesis of the series are not cointegrated with a maximum lag of 3 (see the statistics below).

Dependent variabl	e tau-statistic	Prob.	z-statistic	Prob.
ENC	-0.661	0.985	-1.680	0.986
RGDP	-2.276	0.614	-13.240	0.300
CO2	-2.942	0.305	-11.187	0.443

(2014). The relations are $lnY - lnOC - lnCO_2$, $lnY - lnPEC - lnCO_2$, and $lnY - lnENC - lnCO_2$. Following the ARDL modelling framework, a relation of $lnY - lnOC - lnCO_2$, for example, can be written as equation (1).

$$\Delta lnY_t = \alpha_0 + \sum_{i=1}^q \beta_{1i} \Delta lnY_{t-i} + \sum_{j=0}^q \gamma_j \Delta lnOC_{t-j} + \sum_{k=0}^q \delta_k \Delta lnCO_{2t-k} + \theta_0 lnY_{t-1} + \theta_1 lnOC_{t-1} + \theta_2 lnCO_{2t-1} + \theta_t$$
(1)

The computed *F*-statistic is a restriction of the estimated coefficients of the level variables, lnY_{t-1} , $lnOC_{t-1}$ and $lnCO_{2t-1}$ to zero, or to test the null hypothesis of $H_0: \theta_0 = \theta_1 = \theta_2 = 0$ (i.e. no long-run relationship between the underlying variables). This test statistic has a non-standard distribution irrespective of whether lnY, lnOC, and $lnCO_2$ are I(0) or I(1). If the *F*-statistic falls outside the upper-bound critical values, the null hypothesis can be rejected. It suggests a long-run relation. No long-run relation can be concluded given that the *F*-statistic is below the lower-bound critical values. Inconclusive inference is delivered, if the *F*-statistic falls between the lower-and upper-bound critical values and it depends on whether the underlying variables are I(0) or I(1) (Pesaran and Pesaran, 1997, p. 304). The remaining ARDL specifications with energy consumption lnOC can be re-arranged as equations (2) and (3). Similar testing procedure (as equation 1) is applied.

$$\Delta lnOC_{t} = \alpha_{0} + \sum_{i=0}^{q} \beta_{1i} \Delta lnY_{t-i} + \sum_{j=1}^{q} \gamma_{j} \Delta lnOC_{t-j} + \sum_{k=0}^{q} \delta_{k} \Delta lnCO_{2t-k} + \theta_{0} lnY_{t-1} + \theta_{1} lnOC_{t-1} + \theta_{2} lnCO_{2t-1} + e_{t}$$
(2)

$$\Delta lnCO_{2t} = \alpha_0 + \sum_{i=0}^q \beta_{1i} \Delta lnY_{t-i} + \sum_{j=0}^q \gamma_j \Delta lnPEC_{t-j} + \sum_{k=1}^q \delta_k \Delta lnCO_{2t-k} + \theta_0 lnY_{t-1} + \theta_1 lnPEC_{t-1} + \theta_2 lnCO_{2t-1} + \theta_t$$
(3)

Once a cointegration is suggested, an error correction model (ECM) can be estimated by ordinary least squares (OLS) estimator (Engle & Granger, 1987). It is a restricted version of ARDL equations (1)-(3) in which an error correction term, *ecm*_{t-1} replaces the lagged one level variables, where *ecm*_{t-1} = $lnY_{t-1} - \theta_1 lnOC_{t-1} - \theta_2 lnCO_{2t-1}$ as in equation (1). The quations (1)-(3) are rewritten in ECM form, i.e. equations (1'), (2') and (3').

$$\Delta lnY_t = \alpha_0 + \sum_{i=1}^q \beta_{1i} \Delta lnY_{t-i} + \sum_{j=0}^q \gamma_j \Delta lnOC_{t-j} + \sum_{k=0}^q \delta_k \Delta lnC - \gamma_0 ecm_{t-1} + e_t$$
(1')

$$\Delta lnOC_t = \alpha_0 + \sum_{i=0}^q \beta_{1i} \Delta lnY_{t-i} + \sum_{j=1}^q \gamma_j \Delta lnOC_{t-j} + \sum_{k=0}^q \delta_k \Delta lnCO_{2t-k} - \gamma_0 ecm_{t-1} + e_t$$
(2')

$$\Delta lnCO_{2t} = \alpha_0 + \sum_{i=0}^q \beta_{1i} \Delta lnY_{t-i} + \sum_{j=0}^q \gamma_j \Delta lnPEC_{t-j} + \sum_{k=1}^q \delta_k \Delta lnCO_{2t-k} - \gamma_0 ecm_{t-1} + e_t$$
(3)

On the other hand, Granger non-causality test (Granger, 1988) is employed in order to identify the directions of causality between the variables. According to Engle and Granger (1987, p. 251), "An individual economic variable, viewed as a time series, can wander extensively and yet some pairs of series may be expected to move so that they do not drift too far apart. Typically economic theory will propose forces which tend to keep such series together". Toda and Yamamoto (1995) method is used in this study because it allows non-causality test without pre-testing cointegration either the underlying variables are cointegrated or non-cointegrated of an arbitrary order. Also, it permits a mixture integration of the variables whether a series is I(0), I(1) or I(2) such as the case of this study that lnENC is I(2). The details of this widely applied method are available from Toda and Yamamoto (1995). It involves two steps; (i) determine the true lag length of k and the maximum order of integration (d_{max}) of the underlying variables in the system, and an *augmented* VAR $(k + d_{max})$ is then estimated by OLS estimator; and (ii) compute the standard Wald tests to the first kth VAR coefficient matrix only or to test for restrictions on the parameters of the VAR(k) model in order to reject the null hypothesis of 'x does not Granger-cause y'. The test statistic follows an asymptotic chi-squared distribution with k degrees of freedom in the limit when a VAR $(k + d_{max})$ is estimated.

4. Empirical results

This section reports the empirical results. Table 2 presents the computed *F*-statistics of the ARDL specifications (a) - (f) for cointegration and their critical values that consider a small sample of 30 observations. As noted in the previous section, *ln*ENC is I(2), and no cointegration. The *F*-statistics of all specifications, except for CO₂ equations (c) and (f) exceed the upper bound of the critical value, 3.695 at 10% significance level. Hence, the null hypothesis of 'there exists no long-run relationship between real GDP, energy consumption, and CO₂ emissions' can be rejected, irrespective of the order of their integration I(0) or I(1). It suggests that energy consumption, real GDP, and CO₂ emissions are cointegrated with the following relations, i.e. *lnY -lnOC -lnCO*₂, *lnY -lnPEC -lnCO*₂, *lnOC -lnY -lnCO*₂, and *lnPEC -lnY -lnCO*₂.¹⁰

The estimated relations (a) – (f) are reported in Table 3 by the ARDL approach. They pass a set of diagnostic checking for serial correlation, function form, normality, and heteroscedasticity. The two key relations (a) and (d) show both energy consumption and CO_2 emissions are statistically insignificant to explain real GDP in the long-run. An increase in oil consumption (0.970) and primary energy consumption (0.971) results in higher CO_2 emission (equations (c) and (f)). A one-percent increase in the CO_2 emissions leads to a one-percent

¹⁰ As shown in Table 2, *ln*OC and *ln*PEC are endogenous. Hence, both variables are dropped. The *F*-statistic of ARDL bounds test (with 3 lags) is 15.591, which rejects the null of no cointegration.

(1.1 and 1.0) increase in energy consumption of oil (*ln*OC) and primary electricity (*ln*PEC), respectively (equations (b) and (e)). This study caters the endogeneity in the independent variables (Table 2), the estimates of fully modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) are computed and reported in Appendix B. In general, their estimates are robust to the ARDL estimator, especially the FMOLS.

Table 4 presents the estimated ECM of ARDL equations (a), (c) and (d) as suggested by augmented production function (i.e. $lnY - lnOC_2$, and lnY $lnPEC - lnCO_2$), and CO_2 emission equation (i.e. $lnCO_2 - lnOC - lnY$). The remaining ARDL specifications (b), (e) and (f) are not covered since the dynamic lag structure is ARDL (0,0,0) indicating no short-run shocks. Both equations (a') and (d') suggest that the one and two years lagged CO₂ emissions growth lead to reduce the Cambodian economic growth, in the short-run. Their estimated shortrun elasticities are ranged between -0.199 and -0.391. The CO₂ equation shows, a 1% of OC increases will lead 0.85% additional CO₂ emissions to Cambodia. Again, the estimated error correction terms (ECT_{t-1}) which measure the speed of adjustment to equilibrium, are significant and in an expected sign. It further confirms the existence of a long-run relationship among real GDP, energy consumption, and CO₂ emissions. The estimated value of -0.093 (or -0.091) suggests a speed of convergence to equilibrium of about 9% per year or approximately 11 years to equilibrium. The ECT of CO₂ equation (c') is statistically insignificant further supporting the finding of no cointegration as obtained from the bound test (Table 2). Figure 2 presents the CUSUM and CUSUMQ plots for ECM equations. The CUSUM tests suggest stability (within 5% critical bounds), while the CUSUMO of equations (c') and (d') reveal unstable the estimated coefficients.

The Toda and Yamamoto's (1995) testing method is used because the underlying variables are non-stationary, or mixture in their degree of integration, I(d).¹¹ Table 5 presents the empirical results, which takes into account the statement of '*the cause occurs before the effect*...' by Granger (1988). In panel I, the test statistic, 9.758 (or 12.61) does reject the null hypothesis of lnY does not Granger cause lnOC (or lnCO₂) at 5%. Also, the null hypothesis of lnCO₂ does not Granger cause lnY is rejected (see the last column). The remaining test statistics are statistically insignificant. It shows that the causality is unidirectional which runs from real GDP to oil consumption. There is no reversed causality. This finding is in line with the standard consumption function that relates energy consumption to income (real GDP). A bidirectional causality is confirmed between real GDP and CO₂ emissions. It supports the EKC hypothesis that relates the pollution (CO₂) to output. Similar findings are obtained on primary energy consumption, lnPEC as the test statistics reported in panel II. The real GDP does

¹¹ This method has been widely employed by researchers. Given the finite annual observations in this study, the critical values of the causality tests are obtained by using the bootstrap modified Wald statistics critical values by Hacker and Hatemi-J (2006). Therefore, the reported results do not suffer the finite sample issue. The VECM can be applied for robustness check if the assumption that all variables are non-stationary, or I(1).

Granger cause the primary energy consumption. A bidirectional causality is obtained between real GDP and CO_2 emissions. In panel III, no causality between the electricity net consumption (*ln*ENC) and real GDP. Again, bidirectional causality is obtained between real GDP and CO_2 which is consistent with panels I and II. Real GDP is an 'intermediator' from CO_2 emissions to energy consumption. In general, the entire empirical results are diagrammatically in Figure 3.

		<i>F</i> -statistics		
(a)	F(lnY lnOC, lnCO ₂)	18.417***		
(b)	$F(lnOC lnY, lnCO_2)$	4.496**		
(c)	$F(lnCO_2 lnOC, lnY)$	3.252		
(d)	F(lnY lnPEC, lnCO ₂)	17.982***		
(e)	F(lnPEC lnY, lnCO ₂)	4.826**		
(f)	(f) $F(lnCO_2 lnPEC, lnY)$ 3.397			
Nara	ayan's (2005) critical values bound	of the <i>F</i> -statistics:		
Inte	rcept and no trend (T=30, k=2)	Lower bound, <i>I</i> (0)	Upper bound, <i>I</i> (1)	
	90%	2.915	3.695	
	95%	3.538	4.428	
	99%	5.155	6.265	

Table 2: ARDL bound F-test for cointegration.

Notes: Asymptotic critical bound are obtained from Narayan (2005). Here, the 'k' is the number of regressors. The (***) and (**) denote significance levels at 1% and 5%, respectively. Given a sample of 31 observations (1980-2010), a lag length of 3 is implemented or ARDL (3,3,3). Enders (2014) proposed a lag length that is maximally $T^{1/3}$ where *T* is the number of observations.

	Table 3: ARDL long-run elasticities.							
ARDL	(a)	(b)	(c)	(d)	(e)	(f)		
	lnY $lnOC$,	lnOC lnY,	$lnCO_2$	<i>ln</i> Y <i>ln</i> PEC,	lnPEC lnY,	$lnCO_2 $		
	$ln CO_2$	$lnCO_2$	lnOC, lnY	$lnCO_2$	$lnCO_2$	lnPEC, lnY		
Intercept	1.910	-7.292***	6.488***	-252.3	-11.46***	11.145***		
	(0.974)	(0.000)	(0.000)	(0.263)	(0.000)	(0.000)		
$lnCO_2$	3.878	1.105***	-	24.71	1.028***	-		
	(0.651)	(0.000)		(0.226)	(0.000)			
lnY	-	-0.009	-0.009	-	-0.001	0.001		
		(0.248)	(0.907)		(0.830)	(0.714)		
lnOC	-4.476	-	0.970***	-	-	-		
	(0.572)		(0.001)					
lnPEC	-	-	-	-25.11	-	0.971***		
				(0.216)		(0.000)		
Diagnostic Chi-squared test statistics - Lagrange Multiplier (LM) Version								
Serial correlation	1.151	4.229**	0.127	3.348*	0.261	0.256		
Functional form	6.737***	3.601*	0.000	5.065**	2.019	2.666*		

Table 3: ARDL long-run elasticities

Table 3 (<i>con</i>	tinued).					
ARDL	(a)	(b)	(c)	(d)	(e)	(f)
	lnY lnOC,	lnOC lnY,	$lnCO_2$	lnY lnPEC,	lnPEC lnY,	$lnCO_2$
	$lnCO_2$	$lnCO_2$	lnOC, lnY	$lnCO_2$	$lnCO_2$	lnPEC, lnY
Diagnostic Chi-squared test statistics - Lagrange Multiplier (LM) Version						
Normality	1.111	163.13***	96.97***	1.980	0.300	0.295
Heteroscedasticity	0.073	2.004	1.716	0.039	3.067*	$\boldsymbol{2.715}^{*}$

Notes: lnY|lnOC, $lnCO_2$ is interpreted as lnY being influenced by lnOC and $lnCO_2$ and the same applies to the rest of the equations. The estimated coefficients are reported with the *p*-values in parenthesis. (***) (**) and (*) denote significance levels at 1%, 5% and 10%, respectively. The sample periods are 1984-2010 for equations (a), (b) and (d), and 1985-2010 for equations (c), (e) and (f) after initial ARDL (3,3,3) computed by Microfit.

	(a')	(c')	(d')
Independent	ARDL(<i>lnY</i> <i>lnOC</i> , <i>lnCO</i> ₂)	ARDL(<i>ln</i> CO ₂ <i>ln</i> OC, <i>ln</i> Y)	ARDL(lnY lnPEC, lnCO ₂)
variables	ARDL (1,0,3)	ARDL (1,1,0)	ARDL (1,0,3)
Intercept	0.177	0.902	-23.089
	(0.973)	(0.749)	(0.234)
$\Delta ln CO_2$	0.039	-	1.875
	(0.963)		(0.272)
$\Delta ln CO_{2t-1}$	-0.217**	-	-0.199**
	(0.030)		(0.037)
$\Delta ln CO_{2t-2}$	-0.391***	-	-0.383***
	(0.000)		(0.000)
$\Delta lnOC$	-0.417	0.850***	-
	(0.569)	(0.000)	
Δln PEC	-	-	-2.297
			(0.177)
ΔlnY	-	-0.001	-
		(0.876)	
ECT_{t-1}	-0.093***	-0.139	-0.091***
	(0.004)	(0.743)	(0.004)

Notes: The estimated coefficients are reported with the *p*-values in parenthesis. (***) and (**) denote significance levels at 1% and 5%, respectively. The lag structures of the ARDL (.) equation are selected by Schwarz Bayesian criteria (SBC) for the short-run dynamic. The first-differenced variable (denoted as Δ) is the difference between current value and lagged one value, e.g., $\Delta lnCO_2 = lnCO_{2t} - lnCO_{2t-1}$. The *ECT* for equations (a), (c) and (d) are *ecm_1 = lnY + 4.476*lnOC - 3.878*lnCO_2 - 1.91*, *ecm_3 = lnCO_2 - 0.970*lnOC + 0.009*lnY - 6.488*, and *ecm_4 = lnY + 25.106*lnPEC - 24.709*lnCO_2 + 252.336*, respectively.

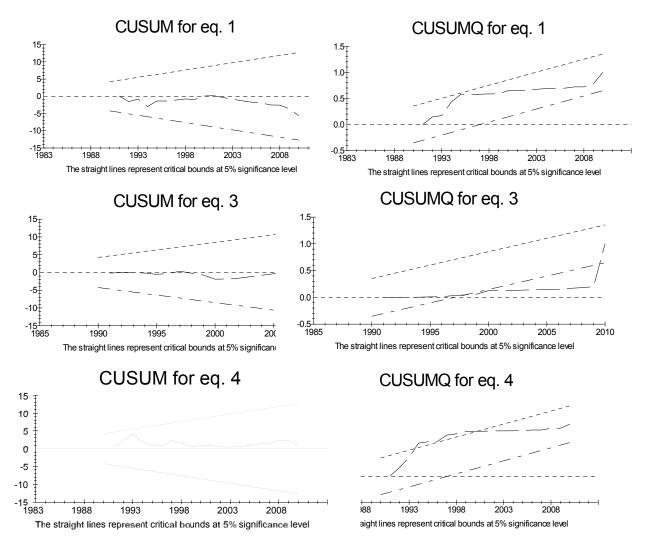
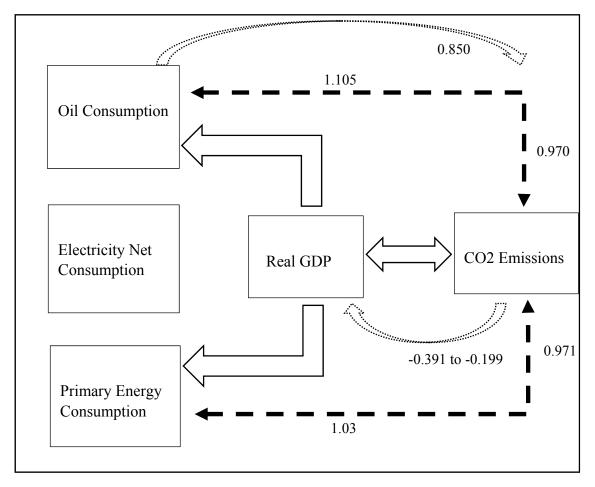


Figure 2: CUSUM and CUSUMQ tests.


Table 5: Toda and Yamamoto (1995) non-causality test with the
bootstrap approach.

Independent variables					
Panel I	lnY	lnOC	$lnCO_2$		
lnY	-	1.970	9.795**		
lnOC	9.758**	-	2.000		
$lnCO_2$	12.610**	2.127	-		
Panel II	lnY	lnPEC	$lnCO_2$		
lnY	-	1.700	9.470**		
lnPEC	10.666**	-	2.839		
lnCO ₂	10.685**	1.183	-		

Table 5 (continued).

		Independent va	riables
Panel III	lnY	lnENC	$lnCO_2$
lnY	-	0.322	6.287*
lnENC	2.472	-	1.882
<i>ln</i> CO ₂	6.958*	0.183	-

Notes: The reported value are the Wald statistics. (**) and (*) indicate 5%, and 10% significance levels based on the bootstrap modified Wald statistic (Hacker & Hatemi-J, 2006). The critical values obtained for 1%, 5% and 10% significance levels are 17.888, 10.4992 and 7.892, respectively. If the variables are significant, the column variable Granger causes the row variable. The selected lag, *k* are based on the SBC values suggested. Panels I and II follows the VAR($k + d_{max}$) structure of VAR(2 +1). For panel III, the VAR(lnY=1+1, $lnCO_2=1+1$, lnENC=1+2) since the lnENC is I(2).

Notes: The solid line represents the Granger non-causality results from the Toda-Yamamoto method. The bold dash line represents the effects in the long-run; the small dash line represents the short-run effect.

Figure 3: Summary of inter-linkages among energy consumption, real GDP, and CO₂ emissions.

5. Concluding remarks

This study contributes to the existing literature by delivering fresh evidence of the energy-growth- CO_2 nexus for a transition economy of MRC countries, Cambodia. This study finds that:

- a) There is, at least a long-run relationship (cointegration) among GDP, energy consumption (oil consumption and primary energy consumption), and CO₂ emissions. Oil and primary energy consumptions respectively increase CO₂ emissions. Both energy consumption and CO₂ emissions have no impact on the Cambodian GDP in the long-run.
- b) The CO_2 variable has negative short-run implication on GDP, while oil consumption results in additional CO_2 emissions. The speed of adjustment is approximately 11 years in order to achieve a long-run equilibrium among the variables.
- c) GDP does Granger cause energy consumption. A bidirectional causality between GDP and CO₂ emissions. The identified transmission channel for CO₂ emissions to energy consumption (oil and primary) is through GDP.

These findings are relevant for policy implication. As projected that Cambodia's energy consumption is growing at an average of 5.2% per year between 2009 and 2035 that the Cambodian energy consumption can be reduced to 4.3% with an overall reduction of future energy demand of 20% by 2035.¹² Hence, energy policies to cut the consumption of primary and oil energy can be implemented in order to lower the CO₂ emissions, in the long-run 3 million tonnes of CO₂ in 2035. The time cost of energy and CO₂ mismanagement is 11 years (i.e., the speed of adjustment) to the Cambodian government to allow the national energy efficiency policy in results.

From the non-causality finding, energy policies of reducing either oil or primary energy consumption can be implemented without deteriorating the country's output. The Cambodian demand for energy is caused by GDP that the recent high growth (approximately 7%) scenario requires more energy inputs to support the core growth sectors. In this context, a wider understanding of these sectors is needed on their CO₂ emissions and their strategy towards green energy. The national energy efficiency policy is currently under development. Therefore, reduction in oil and primary energy consumption can be achieved by substitution of renewable energy or clean energy. Government and private sectors are suggested to employ advanced technology - carbon-free power, and renewable energy for achieving environmental friendly and promoting economic development in the future. The tax credit can be implemented for those industries using renewable energy. According to Sarraf et al. (2013, p. 228), Cambodia is categorised as one of the richest economies with natural energy resources such as solar, wind, biomass, and hydropower among the developing countries. The Cambodian renewable energy resources can generate up to 67,388 GWh energy

¹² See http://www.phnompenhpost.com/business/move-lift-energy-efficiency-cambodia (Accessed July 2, 2014).

per year. They also found that the best option for rural electrification is renewable energy resources.

A few of concerns are necessary for further study in the field. Ozturk (2010) suggested that new approaches and perspectives are important for further study rather than by simply applying traditional econometric methods, adding new variables, using different countries, and different time intervals.

References

- Abbasi, F., & Riaz, K. (2016). CO₂ emissions and financial development in an emerging economy: An augmented VAR approach. *Energy Policy*, 90(March), 102–114.
- Abdul, J. (2014). Energy–growth conundrum in energy exporting and importing countries: Evidence from heterogeneous panel methods robust to cross-sectional dependence. *Energy Economics*, *44*(July), 314–324.
- Ahmed, K., Shahbaz, M., & Kyophilawong, P. (2016). Revisiting the emissionsenergy-trade nexus: Evidence from the newly industrializing countries. *Environmental Science and Pollution Research, (In Press)*, 1-16. doi:10.1007/s11356-015-6018-x.
- Ajmi, A. N., Hammoudeh, S., Nguyen, D. K., & Sato, J. R. (2015). On the relationships between CO₂ emissions, energy consumption and income: The importance of time variation. *Energy Economics*, 49(May), 629–638.
- Alam, A. (2013). Nuclear energy, CO₂ emissions and economic growth: The case of developing and developed countries. *Journal of Economic Studies*, 40(6), 822-834.
- Al-Mulali, U. (2015). The impact of biofuel energy consumption on GDP growth, CO₂ emission, agricultural crop prices, and agricultural production. *International Journal of Green Energy*, *12*(11), 1100-1106.
- Al-Mulali, U., & Tang, C. F. (2013). Investigating the validity of pollution haven hypothesis in the gulf cooperation council (GCC) countries. *Energy Policy*, *60*(September), 813-819.
- Al-Mulali, U., Choong, W.-W., & Low, S.-T. (2015a). Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. *48*(January), 315–323.
- Al-Mulali, U., Ozturk, I., & Hooi, L. H. (2015c). The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe. *Natural Hazards*, *79*(1), 621-644.
- Al-Mulali, U., Saboori, B., & Ozturk, I. (2015b). Investigating the environmental Kuznets curve hypothesis in Vietnam. *Energy Policy*, *73*(January), 123– 131.

- Al-Mulali, U., Solarin, S. A., & Ozturk, I. (2016). Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: An autoregressive distributed lag (ARDL) approach. *Natural Hazards, 80*(3), 1729-1747.
- Alshehry, A. S., & Belloumi, M. (2015). Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. *Renewable and Sustainable Energy Reviews, 41*(January), 237–247.
- Ang, J. B. (2007). CO₂ emissions, energy consumption, and output in France. *Energy Policy*, 35(10), 4772–4778.
- Apergis, N. (2016). Environmental Kuznets curves: New evidence on both panel and country-level CO₂ emissions. *Energy Economics*, *54*(February), 263-271.
- Araç, A., & Mübariz, H. (2014). Asymmetries in the dynamic interrelationship between energy consumption and economic growth: Evidence from Turkey. *Energy Economics*, 44(July), 259–269.
- Asafu-Adjaye, J. (2000). The relationship between energy consumption, energy prices and economic growth: Time series evidence from Asian developing countries. *Energy Economics*, *22*(6), 615-625.
- Asongu, S., Montasser, G. E., & Toumi, H. (2015). Testing the relationships between energy consumption, CO₂ emissions, and economic growth in 24 African countries: A panel ARDL approach. *Environmental Science and Pollution Research, (In Press)*, 1-11. doi:10.1007/s11356-015-5883-7.
- Bae, j. H., Li, D. D., & Rishi, M. (2016). Determinants of CO₂ emission for post-Soviet Union independent countries. *Climate Policy, In Press*, 1-26. doi:10.1080/14693062.2015.1124751.
- Baek, J. (2016). A new look at the FDI-income-energy-environment nexus: Dynamic panel data analysis of ASEAN. *Energy Policy*, *91*(April), 22-27.
- Balaguer, J., & Cantavella, M. (2016). Estimating the environmental Kuznets curve for Spain by considering fuel oil prices (1874-2011). *Ecological Indicators*, 60(January), 853-859.
- Bastola, U., & Sapkota, P. (2015). Relationships among energy consumption, pollution emission, and economic growth in Nepal. *Energy*, *80*(February), 254–262.
- Begum, R. A., Sohag, K., Syed Abdullah, S. M., & Jaafar, M. (2015). CO₂ emissions, energy consumption, economic and population growth in Malaysia. *Renewable and Sustainable Energy Reviews*, 41(January), 594–601.
- Bento, J. P., & Moutinho, V. (2016). CO₂ emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy. *Renewable and Sustainable Energy Reviews*, 55(March), 142-155.
- Burke, P. J., Shahiduzzaman, M., & Stern, D. I. (2015). Carbon dioxide emissions in the short run: The rate and sources of economic growth matter. *Global Environmental Change*, *33*(July), 109–121.

LBIBF (14) 2016, 14–51.

- Chandran, V., & Tang, C. F. (2013a). The dynamic links between CO₂ emissions, economic growth and coal consumption in China and India. *Applied Energy*, 104(April), 310-318.
- Chandran, V., & Tang, C. F. (2013b). The impacts of transport energy consumption, foreign direct investment and income on CO₂ emissions in ASEAN-5 economies. *Renewable and Sustainable Energy Reviews*, 24(August), 445-453.
- Dickey, D. F., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. *Journal of American Statistical Association*, 74(366), 427-431.
- Dogan, E., & Seker, F. (2016). The influence of real output, renewable and nonrenewable energy, trade and financial development on carbon emissions in the top renewable energy countries. *Renewable and Sustainable Energy Reviews*, 60(July), 1074-1085.
- Dogan, E., & Turkekul, B. (2016). CO₂ emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. *Environmental Science and Pollution Research*, 23(2), 1203-1213.
- Enders, W. (2014). Applied Econometric Time Series (4nd Ed.). New York: Wiley.
- Engle, R. F., & Granger, C. W. (1987). Cointegration and error correction: Representation, estimation, and testing. *Econometrica*, 55(2), 251-276.
- Farhani, S., & Ozturk, I. (2015). Causal relationship between CO₂ emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. *Environmental Science and Pollution Research*, 22(20), 15663-15676.
- Fujii, H., & Managi, S. (2016). Economic development and multiple air pollutant emissions from the industrial sector. *Environmental Science and Pollution Research*, 23(3), 2802-2812.
- Georgiev, E., & Mihaylov, E. (2015). Economic growth and the environment: Reassessing the environmental Kuznets curve for air pollution emissions in OECD countries. *Letters in Spatial and Resource Sciences*, 8(1), 29-47.
- Granger, C. W. (1988). Some recent developments in a concept of causality. *Journal of Econometrics*, *39*(1-2), 199-211.
- Hacker, R. S., & Hatemi-J, A. (2006). Tests for causality between integrated variables using asymptotic and bootstrap distributions: Theory and application. *Applied Economics*, *38*(13), 1489-1500.
- Haldrup, N. (1998). An econometric analysis of I(2) variables. *Journal of Economic Surveys*, 12(5), 595–650.
- Hao, Y., & Liu, Y.-M. (2015). Has the development of FDI and foreign trade contributed to China's CO₂ emissions? An empirical study with provincial panel data. *Natural Hazards*, *7*6(2), 1079-1091.
- Haseeb, M., & Azam, M. (2015). Energy consumption, economic growth and CO₂ emission nexus in Pakistan. *Asian Journal of Applied Sciences*, 8(1), 27-36.

- Heidari, H., Katircioglu, S. T., & Saeidpour, L. (2015). Economic growth, CO₂ emissions, and energy consumption in the five ASEAN countries. *International Journal of Electrical Power and Energy Systems*, 64(January), 785–791.
- Hornok, A., & Larsson, R. (2000). The finite sample distribution of the KPSS test. *Econometrics Journal*, *3*(1), 108-121.
- Jammazi, R., & Aloui, C. (2015a). On the interplay between energy consumption, economic growth and CO₂ emission nexus in the GCC countries: A comparative analysis through wavelet approaches. *Renewable and Sustainable Energy Reviews*, *51*(November), 1737–1751.
- Jammazi, R., & Aloui, C. (2015b). Environment degradation, economic growth and energy consumption nexus: A wavelet-windowed cross correlation approach. *Physica A*, *436*(October), 110–125.
- Javid, M., & Sharif, F. (2016). Environmental Kuznets curve and financial development in Pakistan. *Renewable and Sustainable Energy Reviews*, 54(February), 406-414.
- Jebli, M. B., & Youssef, S. B. (2015). The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. *Renewable and Sustainable Energy Reviews*, *47*(July), 173–185.
- Jebli, M. B., Youssef, S. B., & Ozturk, I. (2016). Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. *Ecological Indicators*, *60*(January), 824-831.
- Jiranyakul, K. (2016). Causal linkages between electricity consumption and GDP in Thailand: Evidence from the bounds test. *Economics Bulletin, 36*(2), A90.
- Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration with applications to the demand for money. *Oxford Bulletin of Economics and Statistics*, *52*(2), 169-210.
- Kais, S., & Sami, H. (2016). An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries. *Renewable and Sustainable Energy Reviews, 59*(June), 1101-1110.
- Kasman, A., & Duman, Y. S. (2015). CO₂ emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. *Economic Modelling*, 44(January), 97–103.
- Katrakilidis, C., Kyritsis, I., & Patsika, V. (2016). The dynamic linkages between economic growth, environmental quality and health in Greece. *Applied Economics Letters*, 23(3), 217-221.
- Khan, M. M., Zaman, K., Irfan, D., Awan, U., Ali, G., Kyophilavong, P., Shahbaz, M., & Naseem, I. (2016). Triangular relationship among energy consumption, air pollution and water resources in Pakistan. *Journal of Cleaner Production*, 112(Part 2 (January)), 1375-1385.

LBIBF (14) 2016, 14–51.

- Kraft, J., & Kraft, A. (1978). On the relationship between energy and GNP. *Journal of Energy Development*, *3*(2), 401-403.
- Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. *Journal of Econometrics*, *54*(1-3), 159-178.
- Lee, J. W., & Brahmasrene, T. (2014). ICT, CO₂ emissions and economic growth: Evidence from a panel of ASEAN. *Global Economic Review*, *43*(2), 93-109.
- Lee, S., & Chong, W. O. (2016). Causal relationships of energy consumption, price, and CO₂ emissions in the U.S. building sector. *Resources, Conservation and Recycling, 107*(February), 220-226.
- Li, T., Wang, Y., & Zhao, D. (2016). Environmental Kuznets curve in China: New evidence from dynamic panel analysis. *Energy Policy*, *91*(April), 138-147.
- Liew, V. K.-S., Thurai, M. N., & Wong, W.-K. (2012). Are sectoral outputs in Pakistan led by energy consumption? *Economics Bulletin*, *32*(3), 2326-31.
- Long, X., Naminse, E. Y., Du, J., & Zhuang, J. (2015). Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1950 to 2012. *Renewable and Sustainable Energy Reviews*, 52(December), 680–688.
- Mohammadi, H., & Parvaresh, S. (2014). Energy consumption and output: Evidence from a panel of 14 oil-exporting countries. *Energy Economics*, *41*(January), 41-46.
- Narayan, P. K. (2005). The saving and investment nexus for China: Evidence from cointegration tests. *Applied Economics*, *37*(17), 1979-1990.
- Omri, A., Daly, S., Rault, C., & Chaibi, A. (2015). Financial development, environmental quality, trade and economic growth: What causes what in MENA countries. *Energy Economics*, *48*(March), 242–252.
- Onafowora, O. A., & Oluwole, O. (2014). Bounds testing approach to analysis of the environment Kuznets curve hypothesis. *Energy Economics*, *44*(July), 47-62.
- Ozturk, I. (2010). A literature survey on energy–growth nexus. *Energy Policy*, *38*(1), 340-349.
- Pesaran, H. M., & Pesaran, B. (1997). *Working with Microfit 4.0 Interactive Econometric Analysis*. New York: Oxford University Press Inc.
- Pesaran, M., Shin, Y., & Smith, R. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of Applied Econometrics*, 16(3), 289-326.
- Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. *Biometrika*, 75(2), 335-346.
- Robalino-Lopez, A. R., Nieto, A. M., & Ramos, J. E. (2015). Studying the relationship between economic growth, CO₂ emissions, and the environmental Kuznets curve in Venezuela (1980-2025). *Cover image Renewable and Sustainable Energy Reviews*, *41*(January), 602–614.

- Royal Government of Cambodia. (2013). *National policy, strategy and action plan on energy efficiency in Cambodia*. Phnom Penh: Ministry of Industry, Mines, and Energy. Retrieved 5 7, 2014, from http://www.eueipdf.org/sites/default/files/files/filed_pblctn_file/EUEI%20PDF_Cambo dia_Energy%20Efficiency_May2013_EN.pdf.
- Ruhul, A. S., Kamrul, H., & Sahar, S. (2014). Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries. *Energy Economics*, 44(July), 350–360.
- Saidi, K., & Hammami, S. (2015). The impact of energy consumption and CO₂ emissions on economic growth: Fresh evidence from dynamic simultaneous-equations models. *Sustainable Cities and Society*, 14(February), 178–186.
- Saidi, K., & Hammami, S. (2016). Economic growth, energy consumption and carbone dioxide emissions: Recent evidence from panel data analysis for 58 countries. *Quality and Quantity*, *50*(1), 361-383.
- Saidi, K., & Mbarek, M. B. (2016). The impact of income, trade, urbanization, and financial development on CO₂ emissions in 19 emerging economies. *Environmental Science and Pollution Research*, 1-10. doi:10.1007/s11356-016-6303-3.
- Salahuddin, M., Gow, J., & Ozturk, I. (2015). Is the long-run relationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust? *Renewable and Sustainable Energy Reviews*, *51*(November), 317–326.
- Sarraf, M., Rismanchi, B., Saidur, R., Ping, H., & Rahim, N. (2013). Renewable energy policies for sustainable development in Cambodia. *Renewable and Sustainable Energy Reviews, 22*(June), 223–229.
- Sumabat, A. K., Lopez, N. S., Yu, K. D., Hao, H., Li, R., Geng, Y., & Chiu, A. S. (2016). Decomposition analysis of Philippine CO₂ emissions from fuel combustion and electricity generation. *Applied Energy*, 164(February), 795-804.
- Tang, C. F. (2008). A re-examination of the relationship between electricity consumption and economic growth in Malaysia. *Energy Policy*, *36*(8), 3077-3085.
- Tang, C. F. (2009). Electricity consumption, income, foreign direct investment, and population in Malaysia: New evidence from multivariate framework analysis. *Journal of Economic Studies*, *36*(4), 371-382.
- Tang, C. F., & Muhammad, S. (2013). Sectoral analysis of the causal relationship between electricity consumption and real output in Pakistan. *Energy Policy*, 60(September), 885-891.
- Tang, C. F., & Salah, A. (2014). The impacts of tourism, energy consumption and political instability on economic growth in the MENA countries. *Energy Policy*, *68*, 458-464.

LBIBF (14) 2016, 14–51.

- Tang, C. F., & Tan, B. W. (2014). The linkages among energy consumption, economic growth, relative price, foreign direct investment, and financial development in Malaysia. *Quality and Quantity*, *48*(2), 781-797.
- Tang, C. F., & Tan, B. W. (2015). The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. *Energy*, *7*9(January), 447–454.
- Tang, C. F., & Tan, E. C. (2012). Electricity consumption and economic growth in Portugal: Evidence from a multivariate framework analysis. *Energy Journal*, 33(4), 23-48.
- Tang, C. F., & Tan, E. C. (2013). Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia. *Applied Energy*, *104*(April), 297-305.
- Tang, C. F., Muhammad, S., & Mohamed, A. (2013). Re-investigating the electricity consumption and economic growth nexus in Portugal. *Energy Policy*, *62*, 1515-1524.
- Tang, T. C., & Chea, R. (2013). Export-led growth in Cambodia: An empirical study. *Economics Bulletin.*, *33*(1), 655-662.
- Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. *Journal of Econometrics*, 66(1-2), 225-250.
- United Nations. (2003). An investment guide to Cambodia: Opportunities and conditions. New York and Geneva: United Nations. Retrieved 5 6, 2014, from http://unctad.org/en/Docs/iteiia20036_en.pdf.
- Wang, Y., Han, R., & Kubota, J. (2016b). Is there an environmental Kuznets curve for SO2 emissions? A semi-parametric panel data analysis for China. *Renewable and Sustainable Energy Reviews*, *54*(February), 1182-1188.
- Wang, Y., Lili, C., & Kubota, J. (2016a). The relationship between urbanization, energy use and carbon emissions: Evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. *Journal of Cleaner Production*, 112(January), 1368-1374.
- Wolde-Rufael, Y. (2014). Electricity consumption and economic growth in transition countries: A revisit using bootstrap panel Granger causality analysis. *Energy Economics*, 44(July), 325-330.
- Yorucu, V. (2016). Growth impact of CO₂ emissions caused by tourist arrivals in Turkey. *International Journal of Climate Change Strategies and Management*, 8(1), 19-37.
- Yu, B., Li, X., Qiao, Y., & Shi, L. (2015). Low-carbon transition of iron and steel industry in China: Carbon intensity, economic growth and policy intervention. *Journal of Environmental Sciences*, 28(February), 137–147.
- Yuan, X., Mu, R., Zuo, j., & Wang, Q. (2015). Economic development, energy consumption, and air pollution: A critical assessment in China. *Human* and Ecological Risk Assessment: An International Journal, 21(3), 781-798.

- Zaman, K., Abdullah, A., Khan, A., Moh Nasir, M. R., Tengku Hamzah, T. A., & Hussain, S. (2016a). Dynamic linkages among energy consumption, environment, health and wealth in BRICS countries: Green growth key to sustainable development. *Renewable and Sustainable Energy Reviews*, 56(April).
- Zaman, K., Shahbaz, M., Loganathan, N., & Raza, S. A. (2016b). Tourism development, energy consumption and environmental Kuznets curve: Trivariate analysis in the panel of developed and developing countries. *Tourism Management*, *54*(June), 275-283.
- Zhang, L., & Gao, j. (2016). Exploring the effects of international tourism on China's economic growth, energy consumption and environmental pollution: Evidence from a regional panel analysis. *Renewable and Sustainable Energy Reviews*, 53(January), 225-234.
- Zhang, Y.-J., & Da, Y.-B. (2015). The decomposition of energy-related carbon emission and its decoupling with economic growth in China. *Renewable and Sustainable Energy Reviews, 41*(January), 1255–1266.
- Ziaei, S. M. (2015). Effects of financial development indicators on energy consumption and CO₂ emission of European, East Asian and Oceania countries. *Renewable and Sustainable Energy Reviews, 42*(February), 752–759.

A	Appendix A: Summary of the Most Recent Studies (2015-2016).								
No.	Study	Country	Variables	Methods	Main Findings				
1.	Abbasi and Riaz (2016)	Pakistan 1971-2011	CO ₂ emissions, GDP per capita, financial intermediation development, stock market development, and FDI.	Cointegration (ARDL - bounds test) and VECM.	Per capita CO_2 emissions were cointegrated with financial development indicators and per capita GDP. GDP per capita had a significant impact on CO_2 . Long-run: economic growth increased energy consumption. The financial sector contributed to CO_2 increases. Short-run: growth in per capita incomes was associated with a rise in the CO_2 . FDI > CO_2 . Private sector credit and stock market turnover> CO_2 .				
2.	Jiranyakul (2016)	Thailand 2001Q1- 2014Q2	Electricity consumption, energy price, and GDP.	Cointegration (ARDL - bounds test) and VECM.	The three variables were cointegrated. <i>Long-run:</i> GDP> electricity consumption. <i>Short-run:</i> GDP <> electricity consumption.				
3.	Ahmed et al. (2016)	Brazil, India, China, South Africa (BICS) 1970-2013	CO ₂ emissions, GDP, trade openness, and energy consumption (per capita).	Panel cointegration, pairwise Granger causality and innovative account approach.	The variables were cointegrated. $CO_2 <>$ energy consumption. Trade openness> CO_2 , energy consumption and economic growth. Economic growth> CO_2 . Trade openness and economic growth reduced CO_2 emissions in the long- run - support EKC hypothesis.				
4.	Al-Mulali et al. (2016)	Kenya 1980-2012	CO ₂ emissions, GDP, renewable electricity, fossil fuel electricity, financial development, trade openness, urban population ratio.	Cointegration (ARDL-bounds test) – long-run and short-run.	A long-run relationship between these variables. Fossil fuel energy consumption, GDP, urbanisation and trade openness increased air pollution mutually in the long-run and short-run. Renewable energy consumption mitigated air pollution. Financial development reduced air pollution only in the long- run. EKC was supported.				

Appendix A: Summary of the Most Recent Studies (2015-2016).

5.	Apergis (2016)	15 countries 1960-2013	GDP and CO ₂	Panel cointegration.	Panel cointegration tests were inconclusive. EKC held in 12 out of the 15 countries.
6.	Bae et al. (2016)	15 post-Soviet Union countries 2000-2011	CO ₂ , GDP, corruption index, FDI, energy intensity, population density, EU dummy, trade openness, alternative and nuclear energy consumption.	Multiple- equation generalised method of moment (GMM).	GDP influenced CO_2 directly, and indirectly through its impact on corruption. Corruption affected CO_2 directly and indirectly through GDP. Political democracy and economic freedom increased CO_2 indirectly through economic growth. Improved energy efficiency and the EU climate policy reduced CO_2 . FDI inflows tended to increase CO_2 .
7.	Baek (2016)	5 ASEAN countries 1981-2010	CO ₂ , GDP, energy consumption, and inward FDI.	Dynamic panels - pooled mean group (PMG).	FDI increased CO ₂ , supporting pollution haven hypothesis. Income and energy consumption had a detrimental impact on reducing CO ₂ .
8.	Balaguer and Cantavella (2016)	Spain 1874-2011	CO ₂ , GDP, population, and international oil prices (crude oil).	Cointegration (ARDL-bounds test)	A cointegrating relationship among CO ₂ , GDP, GDP squared, and prices. EKC hypothesis was supported. Real oil prices were a valuable indicator of pollutant energy consumption.
9.	Bento and Moutinho (2016)	Italy 1960-2011	CO ₂ , GDP, non- renewable and renewable electricity production, and international trade.	Cointegration (ARDL-bounds test) and Granger causality (Toda- Yamamoto (TY)).	Cointegration among the variables with structural breaks. EKC held. Renewable electricity production reduced CO_2 in the short-run and long-run. International trade> CO_2 and non-renewable electricity production (rep). Output> rep. Non-rep> rep.
10.	Dogan and Seker (2016)	23 top countries listed in Renewable Energy Country Attractiveness Index 1985-2011	CO ₂ , GDP, electricity power – (1) renewable sources, (2) non- renewable sources, trade openness, and financial development.	Panel cointegration - bootstrap approach.	The variables were cointegrated. FMOLS and DOLS – increases in renewable energy consumption, trade openness and financial development decreased CO ₂ . Increases in non- renewable energy consumption contributed to CO ₂ . EKC was

					supported for the top renewable energy countries.
11.	Dogan and Turkekul (2016)	US 1960-2010	CO ₂ , GDP, energy consumption, urbanisation, trade openness, and financial development.	Cointegration (ARDL-bounds test)	The variables were cointegrated. Long-run: energy consumption and urbanisation increased environmental degradation. Trade leads to environmental improvements. EKC was not supported. $CO_2 <>$ GDP. $CO_2 <>$ energy consumption. $CO_2 <>$ urbanisation. GDP $<>$ urbanisation. GDP $<>$ trade openness. GDP $>$ energy consumption. Financial development $>$ > output. Urbanisation $>$
12.	Fujii and Managi (2016)	39 countries and 14 industries 1995-2009	Eightairpollutants $(CO_2,$ CH_4 , N ₂ O, NOX,SOX,CO,NMVOCandNH ₃),GDP,populationandpolicy variable.	Panel regression analysis.	At least ten individual industries rejected EKC (in 8 pollutants). The key industries that dictated EKC relationship existed in CO ₂ , N ₂ O, CO, and NMVOC.
13.	Javid and Shari (2016)	Pakistan 1972-2013	CO ₂ , total energy use, GDP, financial development, and trade openness.	Cointegration (ARDL-bounds test) and Granger causality.	The variables were cointegrated. EKC held both short- and long- term. The key factors to CO_2 were income, energy consumption and financial development. Openness had no the case.
14.	Jebli et al. (2016)	25 OECD countries 1980-2010	Renewable and non-renewable energy consumption, CO ₂ , GDP, real exports and real imports.	Panel cointegration and Granger causality.	There was cointegration between the variables. Short-run: Renewable energy consumption <> imports. Renewable energy <> non- renewable energy. Non- renewable energy <> trade. Exports> renewable energy. Trade > CO ₂ . Output> renewable energy. Long- run: Bidirectional causalities between all the variables. Inverted U- shaped EKC found. Increasing non-renewable energy increased CO ₂ .

					Increasing trade or renewable energy reduced CO ₂ .
15.	Kais and Sami (2016)	58 countries 1990-2012	CO ₂ , energy use, GDP, urbanisation, and trade openness. (Total data are used than per capita))	Panel data model.	Energy use had a positive impact on the CO_2 for all panels. Per capita GDP had a positive impact on carbon. The presence of an inverted U-shaped curve between CO_2 and GDP per capita.
16.	Katrakilidis et al. (2016)	Greek 1960-2012	CO₂, health quality, and GDP per capita.	Cointegration (Johansen and ARDL-bounds test), VECM, and Granger causality.	Economic growth led to CO_2 emissions and had a positive effect on health quality. Environmental degradation negatively affected health quality. Environmental degradation and economic activity systematically affected health quality.
17.	Khan et al. (2016)	Pakistan 1975-2012	CO ₂ , energy consumption, and water resources.	Cointegration, ECM, and VAR Granger causality.	A long-run relationship between the variables. Energy consumption and water resources had a positive relationship with air pollution. Total natural resources rent had the least contributor to air pollution.
18.	Lee and Chong (2016)	U.S. building sector 1973-2012	Residential and commercial sectors: total energy resource consumption, energy prices, and the total amount of CO ₂ emissions.	Granger causality (TY) and generalised impulse response function.	Long-run:Naturalgasprices>naturalgasconsumption(residentialand commercial sectors).Electricityprices>electricityconsumption(commercialsector).Electricityandcoalconsumption>CO2(residentialandcommercialsectors).Short-run:Naturalgasconsumptionwasthemostsensitivetowardschangeschangesin naturalgaspricepricein theresidentialsector.Electricityconsumptionwasthemostsensitivetowardselectricityelectricitypricesin thecosinitiveconsumptionwasmostsensitiveconsumptionwaselectricitypricesin thecosinitivecommercialsector.Commercialsector'senergyconsumptiongeneratedgreater

					influence on CO ₂ than the residential sector.
19.	Li et al. (2016)	China - 28 provinces 1996-2012	Environmental pollution, GDP, energy consumption, trade openness, urbanisation.	Dynamic panel model - GMM and ARDL.	EKC hypothesis was well supported.Positive effectseffectsofenergy consumption on various pollutantpollutantemissions.Tradeandurbanisation mightdeteriorate environmental quality in the long-run, albeit not in the short-run.
20.	Saidi and Hammami (2016)	58 1990-2012	GDP, energy consumption, CO ₂ , capital stock, FDI, financial development, population, trade openness, and urbanisation.	Dynamic simultaneous- equation panel – GMM estimator.	Energy consumption $\langle \rangle$ economic growth. Energy consumption $\langle \rangle$ CO ₂ for the four panels. CO ₂ > economic growth (Latin American and the Caribbean), which implies that environment degradation had a negative impact on growth.
21.	Saidi and Mbarek (2016)	19 emerging economies 1990-2013	CO ₂ , financial development, trade openness, GDP, and urbanisation.	Panel cointegration (system GMM panel).	Positive monotonic relationship between income and CO ₂ . No support of EKC. Financial development had long- run negative impact on CO ₂ . Urbanisation decreases CO ₂ .
22.	Sumabat et al. (2016)	Philippine 2000-2010	Net fuel consumption, electricity consumption, population, and GDP.	Accounting CO ₂ , and index decomposition analysis.	Negative impacts of economic growth and a higher standard of living to CO_2 . The contribution of economic activity and energy intensity to CO_2 offset each other.
23.	Wang et al. (2016a)	8 ASEAN 1980-2009	Total energy use, total carbon emissions, and urbanisation.	Panel cointegration and Granger causality.	A long-run equilibrium relationship between the variables. A 1% rise in urban population resulted in a 0.20% increase in carbon emissions. <i>Short-</i> <i>run:</i> Urbanisation > carbon emissions. <i>Long-run:</i> Urbanisation with energy use> carbon emissions.
24.	Wang et al. (2016b)	Provinces of China. 1990-2012	Sulphur dioxide emissions, population, energy use, GDP, and urbanisation.	Semi- parametric panel fixed effects regression.	The inverted U-shaped curve was supported between economic growth and sulphur dioxide emissions, but little

	Voue	Turche	00 (6.1	Orietta	evidence for urbanisation and sulphur dioxide emissions.
25.	Yorucu (2016)	Turkey 1960-2010	CO ₂ (fuel consumption, transport, and electricity heating), foreign tourist arrivals, and electricity consumption.	Cointegration (ARDL-bounds test)	Long-run equilibrium relationships existed. Foreign tourists and electricity consumption were significant factors of a long-run equilibrium relationship with CO_2 from electricity and heat production and CO_2 from transport, respectively. <i>Long-run:</i> Foreign tourist arrivals and electricity consumption> CO_2 . <i>Short-run:</i> significant dynamic relationships between CO_2 , electricity consumption and tourist arrival.
26.	Zaman et al. (2016a)	Brazil, Russia, India, China, South Africa (BRICS) 1975-2013	Environmental, energy, health, and GDP per capita.	Panel cointegration.	Environmental variables had a deleterious effect on the BRICS economic growth. Energy sources significantly increased economic growth. Health expenditures and infrastructure were important for health issues.
27.	Zaman et al. (2016b)	34 countries 2005-2013	Tourism (expenditures, receipts, and arrivals), energy use, CO ₂ , GDP, gross fixed capital formation and health expenditures.	Panel two stage least square, and principal component analysis for tourism development.	Invested U-shaped between CO_2 and income. Causal relationships: Tourism induced CO_2 , energy induced CO_2 , investment induced CO_2 , growth led tourism, investment led tourism and health led tourism.
28.	Zhang and Gao (2016)	China – 30 provinces 1995-2011	Tourism receipts, energy consumption, and CO ₂ emissions.	Panel cointegration and Granger causality.	A cointegration relationship among the variables in all regions. Tourism-induced EKC did not exist in central China, and weakly supported in eastern and western China. Tourism had a negative impact on CO_2 in the eastern region. Causality of both short- and long-runs was mixed among regions.

29.	Robalino- Lopez et al. (2015)	Venezuela 1980-2025	CO ₂ , energy consumption, and GDP.	Kaya identity and GDP formation approach – cointegration.	EKC did not hold including a coming future under different economic scenarios.
30.	Ajmi et al. (2015)	G7 (excluding Germany) 1960-2010	GDP, energy consumption, and CO ₂ (per capita).	Granger causality – classical and time-varying.	GDP <> Japan energy consumption. GDP> Italy energy consumption. Energy consumption> Canada's GDP. Energy consumption <> US CO ₂ . Energy consumption <> France CO ₂ . GDP> Italy and Japan CO ₂ . No support to EKC for Italy and Japan.
31.	Al-Mulali et al. (2015a)	99 countries 1980-2008	Ecological footprint, GDP, energy consumption, trade openness, and financial development.	Panel regression (fixed and random effects models).	EKC held for upper middle- and high-income countries. Energy consumption, urbanisation, and trade openness increased environmental damage through their positive effect ecological footprint. Financial development reduced environmental degradation.
32.	Al-Mulali et al. (2015b)	Vietnam 1981-2011	Electricity consumption, GDP, capital, labour force, export and import.	Cointegration (ARDL-bounds test)	Pollutionhavenhypothesis held. Importsincrease pollution. Fossilfuel energy consumptionincreasedpollution.Renewableenergyconsumption had no effectinreducingpollution.Labourforcereducespollution.EKCdid notexist.
33.	Al-Mulali et al. (2015c)	23 European countries 1990-2013	Five disaggregated renewable electricity production, GDP, trade openness, financial development, and CO ₂ .	Panel cointegration, and VECM Granger causality.	All variables were cointegrated. GDP growth, urbanisation, and financial development increase CO_2 in the long- run, while trade openness reduced it. Renewable electricity had a negative long-run effect on CO_2 . GDP growth> CO_2 .
34.	Al-Mulali (2015)	16 major biofuel energy producing and consuming countries. 2000-2010	Biofuel energy consumption, Biofuel energy production, GDP growth, CO ₂ , consumer price	Panel cointegration, and Granger causality – VECM.	The long-run relationship was presented. Biofuel energy increased GDP growth and reduced the level of pollution. It increased both agriculture

LBIBF (14) 2016, 14–51.

			food index, and total crop production index.		production and agriculture crop prices.
35.	Alshehry and Belloumi (2015)	Saudi Arabia 1971-2010	Energy consumption, GDP, energy prices, and CO ₂ .	Cointegration (Johansen), and Granger causality.	A long-run relationship among the variables. <i>Long-run:</i> Energy consumption> economic growth and CO ₂ . CO ₂ <> economic growth. Energy price> economic growth and CO ₂ . <i>Short-run:</i> CO ₂ > energy consumption and economic output. Energy price> CO ₂ . Energy-led growth held.
36.	Asongu (2015)	24 African countries 1982-2011	GDP, energy consumption, and CO ₂ .	Panel cointegration (ARDL), and Granger causality.	A long-run relationship among the variables in 24 countries. Long-run: GDP and $CO_2 \rightarrow energy$ consumption. CO_2 (and energy consumption) <> GDP.
37.	Bastola and Sapkota (2015)	Nepal 1980-2011	GDP, CO ₂ , and primary energy consumption.	Cointegration (Johansen and ARDL-bounds), and Granger causality.	Two cointegrating vectors i.e., energy consumption and carbon emissions equations. <i>Long-run:</i> Energy consumption <> CO ₂ . Economic growth> CO ₂ and energy consumption.
38.	Begum et al. (2015)	Malaysia 1970-1980	CO ₂ , GDP, energy consumption, and population growth.	Cointegration (ARDL- bounds).	Cointegration existed among the variables. CO ₂ decreased with increasing per capita GDP. EKC was not supported. Energy consumption and GDP has long-term positive impacts with CO ₂ . Growth might have an adverse effect on CO ₂ (long-run).
39.	Burke et al. (2015)	189 countries 1961-2010	CO₂ and GDP.	Panel approach - OLS and generalised least squares (GLS) estimators	No strong support that emissions-income elasticity is larger during individual years of economic expansion as compared to the recession. Economic growth increased emissions in the same year and subsequent years. Emissions tended to grow more quickly after booms and slowly after recessions. Economic

					growth and emissions had been more tightly linked in fossil-fuel rich countries.
40.	Farhani and Ozturk (2015)	Tunisia 1971-2012	CO ₂ , GDP, energy consumption, financial development, trade openness, and urbanisation.	Cointegration (Johansen and ARDL-bounds), and Granger causality.	One cointegration relationship. Financial development had a positive sign with CO ₂ . A positive monotonic relationship between GDP and CO ₂ – rejected EKC. <i>Long-run:</i> GDP, energy consumption, financial development, trade openness and urbanisation> CO ₂ . CO ₂ , GDP, energy consumption, trade openness, and urbanisation> financial development. <i>Short-run:</i> GDP, energy consumption and urbanisation> CO ₂ . CO ₂ , GDP, energy consumption and trade openness> financial development. CO ₂ , GDP, energy consumption and urbanisation> trade openness.
41.	Georgiev and Mihaylov (2015)	30 OECD 1990-2005	Sulphur oxides, nitrogen oxides, carbon monoxide, volatile organic compounds, carbon dioxide, greenhouse gases, GDP, and population density.	Panel and cross-section - Spatial econometric analysis.	EKC existed only for CO, VOC and NO_x , and for CO_2 the curve is monotonically increasing. GHG supported EKC. SO_x followed a U-shaped curve.
42.	Hao and Liu (2015)	China – 29 provinces 1995-2011	FDI, trade, CO ₂ , GDP, domestic capital stock, and population growth.	Two-equation model – GMM.	FDI on CO_2 was negative (direct), and it dominates the positive indirect effect through FDI's influence on per capita GDP. Foreign trade on CO_2 was insignificant with potential endogeneity and dynamics introduced.
43.	Haseeb and Azam (2015)	Pakistan 1975-2013	Energy consumption, CO ₂ , and growth.	Cointegration and Granger causality.	Long-run relationship among the variables. CO ₂ <> growth. Energy consumption> CO ₂ .

44.	Heidari et al. (2015)	ASEAN 1980-2008	CO ₂ , GDP, and energy consumption.	Panel smooth transition regression (PSTR).	Rejected the null hypothesis of linearity. First regime (GDP per capita below 4686USD), environmental degradation increases with economic growth while the trend was reversed in the second regime. Energy consumption with either first or second regime increased CO ₂ . EKC was supported.
45.	Jammazi and Aloui (2015a)	6 Gulf Cooperation Council (GCC) 1980-2013	CO ₂ , energy consumption, and economic growth.	Wavelet windowed cross- correlation (WWCC)	Energy consumption <> economic growth. Energy consumption> CO ₂ . The intensity of the co- movements reached its zenith at coarser scales (long-run). Supported neighborhood-effect.
46.	Jammazi and Aloui (2015b)	6 GCC countries 1980-2012	CO ₂ , energy consumption, and economic growth.	WWCC – Granger causality.	Energy consumption <> economic growth. Energy consumption> CO ₂ . Economic growth <> CO ₂ .
47.	Jebli and Youssef (2015)	Tunisia 1980-2009	CO ₂ , renewable and non- renewable energy consumption, GDP, and international trade.	Cointegration (ARDL- bounds), and VECM Granger causality	A long-run relationship among variables. <i>Short-</i> <i>run:</i> Trade, GDP, CO ₂ and non-renewable energy> renewable energy. <i>Long-</i> <i>run:</i> Non-renewable energy and trade had a positive impact on CO ₂ . EKC was not supported.
48.	Kasman and Duman (2015)	15 countries 1992-2010	Primary energy consumption, GDP, CO ₂ , trade openness, and urbanisation.	Panel cointegration and Granger causality.	The variables were cointegrated. Supported EKC. Short-run: Energy consumption, trade openness and urbanisation> CO ₂ . GDP> energy consumption. GDP, energy consumption and urbanisation> trade openness. Urbanisation > GDP. Urbanisation > trade openness.
49.	Long et al. (2015)	China 1952-2012	GDP, CO ₂ , labour, capital stock, and energy consumption.	Cointegration, Granger causality, etc.	At least one cointegration relationship among the variables. Coal had a dominant impact on economic growth and CO ₂ . GDP <> CO ₂ , coal, gas,

					and electricity
50.	Omri et al. (2015)	12 Middle East and North Africa (MENA) 1990-2011	GDP, CO ₂ , financial development, trade openness, capital stock, energy consumption, urbanisation, inflation, and FDI.	Panel cointegration, and simultaneous- equation panel data.	consumption. Variables included were not cointegrated. CO ₂ <> economic growth. Economic growth <> trade openness. Trade openness <> financial development. Financial development> economic growth. Trade openness> CO ₂ . Verified EKC.
51.	Saidi and Hammami (2015)	58 countries 1990-2012	Energy consumption, CO ₂ , capital stock, labour force, FDI, and GDP.	Dynamic panel (GMM).	Energy consumption had a positive impact on economic growth. CO ₂ emissions had a negative impact on economic growth.
52.	Salahuddin et al. (2015)	6 GCC countries 1980-2012	CO ₂ , electricity consumption, GDP, and financial development.	Panel cointegration, Granger causality, etc.	The long-run relationship was found. Electricity consumption and economic growth had a positive long-run relationship with CO_2 . The negative relationship between CO_2 and financial development. Economic growth <> CO_2 . Electricity consumption > CO_2 .
53.	Tang and Tan (2015)	Vietnam 1976-2009	CO ₂ , GDP, energy consumption, and FDI.	Cointegration, and VECM Granger causality.	All variables were cointegrated. Supported EKC. $CO_2 <>$ income. FDI $<> CO_2$. Energy consumption $> CO_2$. Energy consumption, FDI, and income were the key determinants of CO_2 .
54.	Yu et al. (2015)	China - iron and steel industry 1990-2010	CO ₂ , GDP growth rate, investment and technology expenditure.	VAR, Granger causality, and impulse response function.	Technology expenditure significantly reduced CO ₂ . Investment negatively impacted CO ₂ .
55.	Yuan et al. (2015)	China 2000-2012	Air pollutants emissions (regional level), energy consumption, and GDP.	Resource and environmental performance index, REPI.	Economic development had negative impact on energy consumption and air environment, but it could be favourable if reasonable energy and industrial structure, improved energy efficiency, and strict environmental policies were put in place.

56.	Zhang and Da (2015)	China 1996-2010	GDP, added value of primary, secondary and tertiary industries, final consumption.	Log mean Divisia index (LMDI), and decoupling index.	EconomicgrowthincreasedCO2.Energyintensity and final energyconsumptionplayedsignificantrolesindecreasingCO2andcarbon emission intensity.
57.	Ziaei (2015)	25 countries 1989-2011	CO ₂ , energy consumption, and financial development	Panel VAR, and impulse response function.	The strength of energy consumption shock on stock return rate in European countries was greater than East Asian and Oceania countries. Conversely, shocks to stock return rate influence energy consumption in the long horizon for East Asia and Oceania countries.
58.	Mohammadi and Parvaresh (2014)	14 Oil- exporting countries 1980-2007	$\begin{array}{lll} GDP, & energy\\ consumption, & \\ urbanisation, CO_2\\ emissions & and\\ real exports. & \end{array}$	Panel cointegration and ECM.	Energy consumption and output for 14 oil-exporting countries were cointegrated. Energy consumption <> growth.
59.	Araç and Mübariz (2014)	Turkey 1960–2010	Energy consumption and GDP per capita.	Cointegration (Johansen and ARDL-bounds test), smooth transition vector autoregressive model, etc.	The variables were not cointegrated. Asymmetric effects of positive versus negative and small versus large energy consumption shocks on output growth, and vice versa. Negative energy shocks had a greater effect on output growth than positive energy shocks, and that big negative energy shocks affected output much more than small negative energy shocks. Positive output shock had a greater impact on energy consumption whereas negative shocks had almost no effect on energy consumption.
60.	Onafowora and Oluwole (2014)	Brazil, China, Egypt, Japan, Mexico, Nigeria, South Korea, and South Africa 1970-2010	CO ₂ emissions, GDP, energy consumption, trade, and population density.	Cointegration (ARDL-bounds test) and variance decomposition.	A long-run relationship among CO ₂ and its determinants for all countries. Inverted U- shaped EKC hypothesis held in Japan and South Korea. Other six countries, N-shaped trajectory between

					economic growth and CO_2 in the long-run. CO_2 > output growth (Brazil, Japan, Egypt, Nigeria and South Africa). Output growth to CO_2 (China and South Korea). Economic growth <> CO_2 (Mexico). Energy consumption> both CO_2 and economic growth (all countries).
61.	Ruhul et al. (2014)	29 OECD countries 1980-2011	GDP, industrial output, capital, labour force and renewable and non-renewable energy consumption.	Panel cointegration and Granger causality.	A long-run relationship among the variables. Industrial output <> renewable and non- renewable energy consumption. GDP growth <> non- renewable energy consumption. GDP growth> renewable energy consumption.
62.	Abdul (2014)	29 net energy importer and 19 net energy exporter countries 1970-2012	GDP, capita stock, the level of employment, total energy consumption, and trade openness.	Panel cointegration and Granger causality.	Long-run relationship between energy consumption and economic growth. Energy consumption, capita stock, investment flows, the level of employment and trade openness had a positive impact on economic growth of both groups. The existence of cross section dependence among the countries.
63.	Wolde-Rufael (2014)	15 transition economies 1975–2010	Electricity consumption, and GDP.	Bootstrap panel causality.	Causality from electricity consumption to economic growth for Belarus and Bulgaria. Causality from economic growth to electricity consumption for Czech Republic, Latvia, Lithuania and the Russian Federation. Bi- directional causality for Ukraine.
64.	Chandran and Tang (2013a)	China and India 1965-2009	CO ₂ emissions, GDP and coal consumption	Time series cointegration and Granger causality.	Three variables were cointegrated. China: Economic growth> CO ₂ . Economic growth <> coal consumption. CO ₂ <> coal consumption. India: Economic growth

65.	Chandran and Tang (2013b)	ASEAN-5 1971-2008	CO ₂ emissions, energy consumption for road transportation sector, FDI, and GDP.	Time series cointegration and Granger causality.	> coal consumption. Economic growth <> CO_2 . CO_2 <> coal consumption. CO_2 and other variables were cointegrated for Indonesia, Malaysia and Thailand – income and transport energy consumption significantly influence CO_2 (FDI was not the case). Economic growth contributed to CO_2 . Long-run: economic growth <> CO_2 (Indonesia and Thailand). Economic growth> CO_2 (Malaysia). Bi-directional causality between transport energy consumption, FDI and CO_2 in Thailand and Malaysia.
66.	Al-Mulali and Tang (2013)	GCC countries 1980-2009	CO ₂ emissions, FDI, energy consumption, and GDP (per capita).	Panel cointegration and panel Granger causality.	The four variables were cointegrated. FMOLS: energy consumption and GDP growth increase CO ₂ emission; FDI inflows had a long-run negative relationship with CO ₂ . Granger causality: FDI had no short-run causal relationship with CO ₂ and energy consumption; energy consumption and GDP growth were positively caused by CO ₂ . The pollution haven hypothesis was rejected. Energy-led growth hypothesis was valid.
67.	Alam (2013)	A panel of 25 countries 1993-2010	GDP, nuclear energy consumption and CO ₂ emissions.	Panel cointegration and panel Granger causality.	The three series were cointegrated. All countries: CO ₂ > nuclear energy consumption. Economic growth> CO ₂ . Nuclear energy consumption> CO ₂ . Economics growth <> CO ₂ . Nuclear energy consumption> CO ₂ . Developed countries: CO ₂ > economics growth. Economics growth> CO ₂ and nuclear energy

					consumption> CO ₂ . Developing countries: Economics growth> CO ₂ .
68.	Liew et al. (2012)	Pakistan 1980-2007	Energy consumption, and outputs.	Cointegration (Johansen's) and Granger causality.	Energyconsumption, agricultureagricultureandservicesoutputswerecointegrated.Energyconsumption<>agricultureoutput.Servicesandindustrialoutput>energyconsumption.
69.	Ang (2007)	France 1960-2000	CO ₂ emissions, energy consumption, and GDP.	Cointegration (ARDL-bounds test) and vector ECM.	The long-run relationship was found. Growth influenced energy consumption, and CO ₂ (long-run). Energy consumption> output growth (short-run).
70.	Asafu-Adjaye (2000)	India and Indonesia 1973-1995 Thailand and Philippines 1971-1995	Commercial energy use, GDP and consumer price index (CPI).	Cointegration (Johansen's) and ECM.	Energy, income and prices variables were cointegrated. Energy consumption> income for India and Indonesia. Energy consumption <> income for Thailand and the Philippines. Energy, income and prices were mutually causal. Only Indonesia and India that energy and income were neutral.

Notes: --> refers to "does Granger-cause"; -/-> refers to "does not Granger-cause"; <--> refers to bidirectional causation.

Appendix B: FMOLS and DOLS Estimates.												
Dep.	(a)		(b)		(c)		(d)		(e)		(f)	
Var.	lnY		lnOC		$lnCO_2$		lnY		<i>ln</i> PEC		$lnCO_2$	
	FMOLS	DOLS	FMOLS	DOLS	FMOLS	DOLS	FMOLS	DOLS	FMOLS	DOLS	FMOLS	DOLS
С	-11.184 ^{**} (0.027)	-35.40 (0.554)	-1.896 (0.176)	-4.330 ^{**} (0.018)	5.046 ^{***} (0.000)	3.48 ^{***} (0.001)	-8.775 (0.277)	117.7 (0.629)	-6.352 ^{***} (0.000)	-8.7 ^{***} (0.000)	9.012^{***} (0.000)	9.25 ^{***} (0.000)
lnCO ₂	1.679^{**} (0.035)	5.352 (0.551)	0.687 ^{***} (0.000)	0.952^{***} (0.000)	-	-	1.631 ^{**} (0.038)	-9.692 (0.657)	0.637^{***} (0.000)	0.89 ^{***} (0.000)	-	-
lnY	-	-	0.036 (0.579)	-0.043 (0.207)	0.150 ^{**} (0.014)	0.042 (0.378)	-	-	0.037 (0.545)	-0.038 (0.271)	0.151 ^{**} (0.016)	0.039 (0.427)
lnOC	0.375 (0.680)	-3.011 (0.714)	-	-	0.801 ^{***} (0.000)	1.16 ^{***} (0.000)	-	-	-	-	-	-
lnPEC	-	-	-	-	-	-	0.412 (0.667)	11.39 (0.591)	-	-	0.853^{***} (0.000)	1.24 ^{***} (0.000)
AR^2	0.739	0.793	0.822	0.970	0.857	0.900	0.739	0.797	0.819	0.969	0.854	0.896
S.E.	1.535	1.306	0.449	0.182	0.479	0.356	1.536	1.295	0.426	0.173	0.485	0.363

Appendix B: FMOLS and DOLS Estimates.

Notes: (***) and (**) denote significance levels at 1% and 5%, respectively. The DOLS estimates are based on one lead and one lag. The estimated coefficients are reported with the *p*-values in parenthesis. AR² is adjusted R-squared.