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Abstract 
 
This paper traces the origin and development of the complex systems theory over 
the course of history, up to its latest advancement in the study of stock market 
crashes. The trail of the theory’s fuzzy evolution is expansive that covers the 
ground of the complexity epistemology, natural science and computer science. A 
meticulous review is undertaken to distinguish the complex systems theory from 
another seemingly overlapping theory of the chaos systems. The paper recounts 
how researchers from cross-disciplines, particularly from the econophysics have 
banded together to consolidate and diffuse the application of the complex 
systems theory in the economics and further discusses the methodological 
contribution of the econophysics in the area of stock market. To date, the complex 
systems theory and the methodologies from the econophysics are well-
established as the frontier for studies in stock market bubbles and crashes. 
 
JEL Classification: B5; G1; N2; P4. 
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1. Introduction 

In recent decades, the discipline of economics has experienced its most 
significant evolution in over a century. This evolution signifies an extensive 
transformation in the epistemological and empirical direction of the field 
(Beinhocke, 2006). The paradigm shift is owed mainly to the amalgamation of 
theories and methodologies originated from the natural sciences. One of the more 
prominent crossovers is the complex systems theory, which is widely applied in 
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the financial economics of late. The theory is introduced by the interdisciplinary 
econophysics, and such development could be catalysed by the mixed results 
produced with the use of the conventional econometric approaches in resolving 
issues pertaining to financial economics. This paper aims to trace the history of 
the complex systems theory and examines the latest methodological innovations 
brought about by the econophysics, particularly in the study of stock market 
crashes. An extensive review from the alternative perspective is important, as 
stock market crashes have long been considered as mere outliers from the 
Gaussian’s econometric viewpoint (Johansen & Sornette, 1998a, 1998b) albeit 
their devastating effect on the economy. 

According to Merriam Webster (2002), the meanings of complex are as 
follows: “1) a whole made up of interrelated parts; 2) a group of obviously related 
units of which the degree and nature of the relationship is imperfectly known; 
and 3) hard to separate, analyse, or solve.” A system according to the dictionary 
is defined as follows: “1) a regularly interacting or interdependent group of items 
forming a unified whole; 2) a group of interacting bodies under the influence of 
related force; and 3) a group of objects or an organisation forming a network.” 

Combining the two root words, complex systems can be interpreted as a 
network of interacting simple units with indistinctive relationships among 
themselves. These systems are obscure if they are analysed separately; however, 
when analysed as a whole, the aggregate behaviour of the simple units emerges 
in an orderly pattern and takes the form of a system. Each of the linked units in 
the system has its own capacity of self-organising that inaugurates new 
aggregated behaviours of the whole system. Therefore, the system is continuously 
evolving to adapt to new environments and has the attribute of involuntary 
feedback loops. 

The theory of complex systems in relative terms is defined as an area of study 
that is set right at the boundary of chaotic order and deterministic order 
(Kauffman, 1993). In contemporary terms, the complex systems theory is a 
system that comprises many individual components that act according to 
embedded reaction functions, which are usually assumed to be the same for every 
individual. The components are described as cellular automata. The salient 
characteristic of such systems is that their dynamic properties cannot be derived 
analytically from the knowledge of the reaction functions of the components. The 
only recourse in studying their outcomes is to resort to dynamic simulations, 
usually conducted with digital computers. 

Problems that are concerned with the self-organising individual units that 
give rise to a system are not easily discernible and hard to solve. Such a system is 
usually dynamical in order or chaotic in nature, and the structure of the system 
could be hierarchical due to the emerging behaviour from the micro level of 
individual units. The intricacy of the emerging pattern often prevents the 
prediction or forecasting of the systems directly from the simple units’ 
specification (Wolfram, 2002). 

The concept of complex systems can be traced back to the work of Henri 
Poincare, a mathematical philosopher in the late nineteenth century who 
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introduced nonlinear mathematical solutions after he discovered the 
fundamental limits of conventional equations. Through nonlinearity, he 
illustrated how minor effects could cause far-reaching impacts to end results, an 
idea which years later developed into the chaos theory. He famously worked on 
the “three body problem”, a simple system that gives rise to unpredictable 
trajectories that defy analytic description owing to the phenomena of three 
mutually attracting bodies being in motion together. He discovered that there 
could be orbits that are bounded and non-periodic and that do not devolve to a 
stable cycle. This upset some of the presumptions of Newtonian mechanics 
because he showed that it was mathematically impossible to derive equations to 
predict the trajectories for even a simple system that contains only three planets 
interacting in nonlinearity (Taleb, 2007). 

The epistemology of deterministic order came under close scrutiny in the 
1960s following the translation of Karl Popper’s ogik der Forschung (The Logic 
of Scientific Discovery) on the falsification of theories into English in 1959. The 
original work was published in German in 1934 (Popper, 1959). The “Popperian 
falsificationism” had spurted many ground-breaking explorations by 
philosophers, scientists and academicians in search of alternative hypotheses and 
theories to explain the complex phenomena. 

Throughout the 1960s, literature by Edward Lorenz (i.e., Deterministic 
Nonperiodic Flow, The Nature and Theory of the General Circulation of 
Atmosphere, and Three Approaches to Atmospheric Predictability), the father of 
the chaos theory who coined the term “the butterfly effect,” was widely 
acknowledged as the impetus to the conceptualisation of the chaos theory. On the 
other hand, a series of papers by Friedrich A. von Hayek, a Nobel laureate (i.e., 
Rules, Perception and Intelligibility, Kinds of Rationalism, and The Theory of 
Complex Phenomena), laid the foundation for the complex systems theory in the 
same period (Wible, 2000; Hayek, 2007). Nevertheless, some literature proposed 
that the seed of the chaos theory was sown earlier in 1959 by Andrey Kolmogorov, 
who found the solution to the long-standing conundrum of entropy of the 
dynamical system in the ergodic theory by applying the thermodynamics 
approach (Sinai, 2010). 

The two themes of complex systems and a chaos system used in the modelling 
of social and ecological phenomena are axiomatically distinct, but they tend to 
coalesce. Notably, there was no clear distinction in explaining the phenomena of 
complex systems and a chaos system in the early literature. Work that gave 
specifications to the two systems might not have existed when the paradigm shift 
of non-deterministic order and nonlinear dynamics was in the infancy stage. 

As a comparison, works by Lorenz and Kolmogorov were mathematically 
predominant, whereas works by Hayek were inclined to philosophy and 
epistemology on complexity. Their works had gone into the book of history as 
some of the most important contributions to a new branch of knowledge that was 
almost unfathomable prior to their era. They had brought about a whole new 
dimension in researching and resolving problems that are seemingly chaotic and 
highly complex as the theories’ namesake. 

http://en.wikipedia.org/wiki/The_Logic_of_Scientific_Discovery
http://en.wikipedia.org/wiki/The_Logic_of_Scientific_Discovery
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The subsequent decades of the 1970s and the 1980s saw a significant rise in 
the acceptance of these theories, especially among mathematicians. Academic 
courses about these theories were even made available at universities (Hodgkin, 
2005). In the early 1980s, Stephen Wolfram embarked on research with 
computer simulation to observe the evolving behaviour of computer systems. 
This study was based on a very simple configuration of sequences of zeroes and 
ones, and it was known as cellular automata. He discovered that a simple 
simulation rule with simple binary values within a system could generate a 
seemingly chaotic order after many successions of iteration. However, through 
the extremely complicated outline, regularities of fractal patterns would emerge 
eventually, forming a similar looking large fractal when combined as a whole. 
Wolfram named his discovery as the complex systems theory (Wolfram, 1984, 
1988). His progressions on the origins of complexity thereafter had helped to 
establish a solid foundation for the theory to gain recognition and flourish into 
different fields (Stephen Wolfram, n.d.). 

Over the following two decades, more meticulous descriptions of the 
characteristics of the chaos theory and the complex systems theory had emerged. 
However, the boundary between the two theories was still very vague. The 
distinction between the two systems was rather ambiguous, as their specifications 
often overlapped, but the chaos theory at that juncture was more clearly defined 
compared to the complex systems theory. As noted previously, Stuart Kauffman, 
one of the most prominent biologists of the modern era, famously termed 
complex systems as an order “at the edge of chaos,” drawing a clear distinction 
between the two theories (Kauffman, 1993). 

Wolfram (2002) in the synthetisation of his life’s works, “A New Kind of 
Science”, treated the chaos theory and the complexity theory as two different 
entities and used the term complex systems theory and complexity theory 
interchangeably. On the other hand, other more recent literature considered the 
chaos theory as a subset of the complex systems theory (Wible, 2000; Kaneko & 
Tsuda, 2001; Yu, 2006, Cencini et al., 2010). 

According to Kaneko and Tsuda (2001), the cause of ambiguity in the 
definitions of complex systems is attributed to its wide appeal across many fields 
of studies because the characterisations for the theory are conceived rather 
arbitrarily in each respective field based on the needs and interests of each field. 
It was noted that some researchers even perceived that assigning a set of 
unequivocal specifications for the complex systems theory would inhibit the 
development of their studies. On the contrary, other researchers advocated the 
need for clearer specifications to the theory, as not all systems with complicated 
orders are complex systems. 

Meyers (2011) concurred and stipulated that over the years, the features used 
to describe the complex systems theory have been expanding owing to its wide 
application across research disciplines. Taken from different contexts, such as 
biology, physics, computer science, sociology and economics, the combination of 
features for complex systems are becoming more diverse, suited accordingly to 
the respective subjects. 
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Onnela (2006) also underscored the growing acknowledgement of the 
complex systems theory as a discipline that bridges the gaps between various 
well-established sciences, such as chemistry, physics and biology, and its 
increasing influence that transcends the boundaries of natural science into areas 
such as economics, psychology and social science. 

In the early days, the complex systems theory was generally more prevalent 
in the areas of computer science and biology and to a lesser extent in sociology 
and economics, whereas the chaos theory was more widely applied in 
mathematics, physics and, to some extent, economics. Of late, the complex 
systems theory has established a firm footing in economics, particularly in 
financial economics (apart from maintaining its inherent influence in natural 
sciences and mathematics). 

 
2. Complexity Economics 

It is prevalent for economic theories and hypotheses for empirical studies to be 
derived from the notions that the economy is in a deterministic order, linear and 
founded upon a static equilibrium system bounded by a restrictive set of 
assumptions. The contradictions between economic theories and the reality of the 
economy could not be argued anymore meticulously than by Beinhocker (2006) 
and Sornette (2003). 

The divergence is ironic in the fact that the view of economics complexity, not 
dissimilar to the complex systems theory, is not something novel and has been 
deeply entrenched in the very early works of some very prominent philosophers 
in economics. For example, Karl Popper, who served as a professor at the London 
School of Economics in the 1940s and is widely acknowledged as one of the 
greatest philosophers of the twentieth century, had advocated academia to gain 
insight into the non-deterministic order in economics (SEP, n.d.) through his 
work with the problem of induction. Similarly, Friedrich A. von Hayek, a recipient 
of the Nobel Memorial Prize in Economics and a former professor at the London 
School of Economics, deliberated rigorously on the need to adopt a holistic 
approach to economic analysis in a series of papers (Nobleprize.org, n.d.). 

Hayek (1964), in his defining forethought on the nature of complexity, 
articulated that “the phenomena of life, of mind, and of society” are much more 
complex than that of the natural sciences. The emerging patterns of the complex 
interactions of the irregular phenomena in economics and social sciences have a 
higher degree of complexity compared to the patterns that emerged from the 
complex combination of elements with constant relationships within a 
deterministic structure in fields like physics. The very fact that economics has to 
impose the ubiquitous ceteris paribus restriction in the construction of theories 
and the frequent irregularity of outcomes that defy empirical predictions 
demonstrate that economics is essentially a field of complex phenomena. 

Colander (2000) chronicled that economic thoughts initially evolved from 
informal stories of the political economy in the era of Adam Smith to classical 
economics, which assigned values for theories. It later progressed to neo-classical 
economics, which advanced theories in the form of general equilibrium. In the 
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course of time, economics has gradually progressed into the path of natural 
sciences. Research is focused on simplifying complicated hypotheses into 
structural mathematical equations, or statistical models, and theories are tested 
on the empirical modelling of historical data. 

According to Colander (Ibid.), econometric modelling using macroeconomic 
variables has in fact accentuated the fallibility of modern economic analyses 
because most microeconomic and general equilibrium hypotheses do not 
conform to empirical findings, albeit they share a common theoretical 
framework. 

The economy is much more complex than as perceived by standard economics 
because the conventional assumption of “far-sighted rationality” of individuals 
does not hold. In reality,  individuals could not rationally handle all aspects of the 
economy on their own. Institutions were formed to prepare policies to deal with 
economic issues. These institutions, in turn, would influence the behaviours of 
individuals in the economy. Thus, the intervention of institutions on the market, 
which rarely conforms to the rational expectation from the micro level, renders 
the proposition that the outcome of economy is based on the rational expectation 
of individuals invalid. 

Over the decades, the proliferation of academic writings based on various 
simplified premises in explaining the complex world has drawn many criticisms. 
Carroll (2001) in his assertion on The Epidemiology of Macroeconomic 
Expectations echoes the flaw of rational assumption, and argues that elaborated 
mathematical models parametrised with the rational expectation assumption are 
ineffectual, and should be replaced with more realistic and explicit models that 
capture the dynamism of the economy as a whole. No single set of variables in a 
model could consistently produce an accurate forecast in the long-run. 
Beinhocker (2006) concurred and noted that early economic theories are too 
intertwined with the mathematics of equilibrium, requiring the contrivance of 
highly restrictive assumptions. Such developments have increasingly detached 
theoretical economics from the real world. 

The Lucas Critique famously argued that forecasting results derived from 
econometric models would immediately become obsolete and ineffectual when 
the optimal decision rules are negated by the policies enforced based on the 
model itself. Subsequently, the outcome would also systematically feed back into 
the model and change its original structure (Lucas, 1978). 

Echoing the proposition of the Lucas Critique, Arthur (1995) argued that the 
complexity of the economy and financial markets are due to many reasons, and 
the underlying causes that perpetuated the failure of conventional forecasting are 
due to the following explanation: 

 
“Actions taken by economic decision makers are typically predicated 
upon hypotheses or predictions about future states of a world that is itself 
in part the consequence of these hypotheses or predictions. When we 
attempt to model how such predictions might be generated we become 
stymied: the predictions some economic agents might form depend on the 



LBIBF (14) 2016, 68–83. 

74 
 

predictions they believe others might form; and the predictions these 
might form depend upon the predictions they believe the original group 
might form. Predictions or expectations can then become self-referential 
and deductively indeterminate. This indeterminacy pervades economics 
and game theory.” 
 

One of the classic examples of the Lucas Critique is the flawed interpretation 
that the Phillip curve (i.e., the empirical evidence that showed an inverse 
relationship between inflation and unemployment) could be capitalised to 
calibrate the economy to the desired outcome. The structure of the model would 
change if there were an attempt to artificially perpetuate inflation through 
monetary policy, as the market would alter the employment decisions based on 
the inflation expectation (Ljungqvist, 2008). 

Another example that illustrates the complexity of the economy is a scenario 
where the deliberate attempt by the Federal Reserve to prevent the stock market 
from an overdue correction through monetary easing could instead exacerbate 
the inflation the market bubble and increase the level of speculation (Vines, 
2009). Such an instance would create a chained action-reaction feedback loop 
between the Federal Reserve and investors. On the one hand, the Federal Reserve 
would adopt monetary measures to support the market. On the other hand, 
investors would take advantage of the measures to maximise their return. The 
emerging behaviour of the stock market would continue until it reaches a tipping 
point and falls like an avalanche. 

 
3. Evolution of the Complex Systems in Economics 

In one of the earliest pieces of literature in this area, Hayek (1964) suggested that 
the simplification of an abstract pattern with the general statistics methodologies 
overlooks the actual complexity of phenomena. By addressing problems from an 
elevated view, the general modelling approaches have a tendency to disregard the 
changes of the fundamental dynamism of relationships among elements and the 
organisation of structure within a system that occurs over time. Nevertheless, the 
development of economics took a very different direction, and the seed of 
complexity epistemology did not gain a footing into mainstream economics until 
many decades later. 

In the mid-1980s, a group of renowned scientists from interdisciplinary 
sciences came together and established one of today’s foremost research centres 
in complexity sciences, the Santa Fe Institute. The establishment had created an 
important foundation for the diffusion and cross sharing of ideas based on the 
complex systems theory from across disciplines such as physics, chemistry, 
biology, computer science and economics. Eventually, the institute helped to 
produce considerable literature that offered alternative theories and quantitative 
methods in resolving problems based on the general principle of “inclusiveness 
and broad perspective, one that comprehends the components of a system but 
views those elements as actors in a large, interconnected, often unpredictable 
world” (SFI, n.d.). The Santa Fe Institute compiled some of the most important 
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literature on economics in the context of complex systems, namely the three 
volumes of “The Economy as an Evolving Complex System” (2015). 

According to Sornette (2003), a complex system must be scrutinised at the 
appropriate level of specification to capture the essence of the phenomena. Thus, 
when such a system is being examined, the decomposition of stages or the 
disintegration of some parts may be required to exclude some details until the 
right level of conception is achieved. Similarly, Arthur (1995) suggested that all 
researches on complex systems should consider the complexity resulted by the 
multi-faceted components that adapt or react to the behaviour that emerges 
within the system. These components would adjust continuously to form a 
cumulative pattern; on the other hand, a pattern would feed back to the 
components in a continuous loop. With the exception of the emergence of an 
asymptotic state or equilibrium, the evolution of the dynamical complex systems 
would continue perpetually. 

Approaches used in research that are based on the complex systems theory 
are distinctive and wide-ranging. The diversity of these approaches is attributed 
to the wide espousal of the theory by different fields of studies. Methodologies 
conceived by research that examined their problems through the lens of the 
complex systems theory depart significantly from the conventional 
methodologies for all of the respective fields. This puts into perspective Hayek’s 
(1964) criticism on the general treatment of complex problems and the 
importance to rectify such deficiency. Among some of the methods are network 
models (i.e., small-world networks, random Boolean networks and neural 
networks), Markov processes (i.e., Levy’s flight and Brownian motion), 
bifurcations and diffusion and fractal and cellular automata (Gros, 2008). 

In summary, the methodologies used for complex systems research generally 
allow the information of individual units to be retained as much as possible and 
permit the dynamism within the structure and the correlation among units to 
change as required. Some methodologies (e.g., network graphs and fractal and 
cellular automata) are not developed for the purpose to prove or reject 
hypotheses like the conventional statistical approaches. On the contrary, 
predictive patterns are allowed to emerge freely from their initial abstract forms. 
The main objective is to observe how the complex systems unfold into patterns 
that allow for some extent of generalisation and predictability rather than fitting 
observations into a predetermined framework or simplifying a phenomenon that 
is inherently not simple. The flexibility in applying the complex systems theory, 
albeit not necessarily straightforward, has enabled research problems to be 
scrutinised from a wider perspective. Methodologies can be developed 
hierarchically or in stages through simulations or exploratory trials and errors as 
the observations move along. 

 
4. Complexity of Financial Market and Stock Market Crash 

A financial market crash depicts a meltdown of a financial institution, and a stock 
market crash is commonly described as a brief but abrupt and sharp drop in the 
price of stocks or stock market indices. These two events commonly occur 
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simultaneously, and the causality could be either way. A stock market crash 
specifically is caused by panic that sets in the market resulting from 
overwhelming sell orders all at once. Market crashes have great adverse impacts 
on the economy and devastating social implications. 

A crash that is caused by the inherent market mechanism, such as a 
speculative bubble, is categorised as endogenous. The most typical definition of 
a speculative bubble is the prices of stocks (or prices of assets in general) being 
overvalued due to unreasonable market demand. A crash could entail a prolonged 
decline in the market that lasts for months or years (Johansen & Sornette, 2008). 
For centuries, the world had witnessed numerous endogenous crashes, some 
more devastating than others. Among the most severe and well-documented 
crashes include the seventeenth century “Tulip Mania,” the eighteenth century 
“South Sea Bubble,” the “Great Depression” in the 1930s, the “Black Monday” in 
1987, the “Dot Com Bubble” in the late 1990s and the “Subprime Financial Crisis” 
in the end of the 2000s (Malkiel, 2007; Pele & Mazurencu-Marinescu, 2012; 
Vines, 2009). Throughout the course of history, random events created shocks to 
the market, such as the 9/11 tragedy and the breakout of war (i.e., World War I). 
Such isolated non-economic events that triggered crashes are categorised as 
exogenous (Fry, 2012; Johansen & Sornette, 2008). 

Therefore, a healthy economy rarely triggers a financial crisis or a stock 
market crash. This perfectly logical and almost universally accepted postulation, 
nevertheless, contradicts the efficient market hypothesis (EMH) of which most 
financial literature was built upon. According to Cooper (2008), the EMH 
assumes that asset prices are always in equilibrium and mirror the asset value 
correctly at any time, adjusted based on all available information in the market. 

Thus, the hypothesis is ignorant to the fact that in most times, a market rally 
occurs even when stock prices have reached an overly inflated and unsustainable 
level due to speculative herding (Shiller, 2005).  Shiller (2003) and Cross et al. 
(2005) argued that the widely accepted notion of the EMH is fundamentally 
flawed because it fails to capture the critical attributes of the market behaviour in 
reality, and the shortcomings “manifests itself most clearly in the real-world 
phenomena of non-Gaussian market statistics such as fat-tails, excess kurtosis 
and volatility clustering (and the corresponding market bubbles and crashes).” 

Cooper (Ibid.) highlighted that the brink of stock market crashes throughout 
history was often marked by the occurrences of sharp increases in market 
volatility. From a behavioural finance viewpoint, the severe volatility at this 
juncture is caused by the continuous feedback loop of actions and reactions 
between cautious traders looking for indicators to pull out from the market and 
the monetary authority (i.e., the Federal Reserve and central bank) strategising 
to keep the market afloat based on the traders’ manoeuvres. The market 
fluctuation, which is based on closely scrutinised information, naturally creates a 
perception of EMH conformity until the “crash-triggering” information bursts 
the bubble. Thus, as noted by Arthur (1995), a financial meltdown or a stock 
market crash is merely the tipping point of the underlying complex phenomena 
that occurs throughout an extended course of time. 
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White (2008) concurred and noted that in almost all financial crises in 
history, the overpricing of assets was mainly due to the credit expansion measure 
that follows a crash. The excessive flow of credit into the market enhances the 
market’s optimism and increases risk-taking endeavours among investors. In 
progression, the asset prices would deviate from the intrinsic asset values and the 
fundamentals of the economy due to artificial market sentiment. The distortion 
of economic fundamentals would then manifest in the change of the 
consumption-investment pattern. At the critical point when the market has 
transcended the psychological threshold where the realisation of an unrealistic 
level of asset prices catches up with the market expectation, “the whole 
endogenous process would go into reverse.” 

When the speculative bubble burst, the economy would be the collateral 
damage, and adversity would be exacerbated by strain in the financial market due 
to the prior credit expansion. The feedback loop is once again set in motion but 
in the reverse direction. White (Ibid.) stressed that most of the forecasting models 
only describe a section of the whole occurrence. Due to the complexity of the 
market, a qualitative assessment would seem to be the more appropriate option. 

From the angle of econophysics (Sornette, 2003), a stock market crash is 
similar to the business cycle where the market goes through a cyclical transition 
over time from a stable state to an unstable state before finally crashing. There 
are five common stages of the building up of a bubble that leads to an imminent 
stock market crash: displacement, takeoff, exuberance, critical stage and crash. A 
stock market crash is caused by the gradual evolvement of the market towards 
the state of instability due to the progressive ascendance of market price over an 
extended period. 

The inherent herding nature of traders in the market, especially during the 
market’s upward trend, reinforces market optimism and creates a loop that 
further inflates the market bubble. Therefore, the explicit cause that triggers a 
market collapse is merely superficial. When the market passes the instability 
threshold, any minor exogenous disruption will catalyse a meltdown. As such, the 
market is essentially a complex system that encompasses a network of individual 
systems that are dynamic and exhibit resembling behaviour. The interactions 
among large integrated units in the overall system usually exhibit self-organising 
and sometimes emerging patterns. 
 
5. Latest Development of the Complex Systems Theory in Stock 
 Market 

Since the late 1990s, the interest of mathematical physicists in researching 
economic phenomena has been on the rise. The proliferation of cross-disciplinary 
research with the application of solutions originated from the physics 
epistemology has entailed a gradual paradigm shift in the theoretical 
articulations and methodological approaches in economics, primarily in financial 
economics. The development has resulted in the emergence of a new branch of 
discipline, namely “econophysics,” which is broadly defined as a cross-discipline 
that applies statistical physics methodologies (which are mostly based on the 
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complex systems theory and the chaos theory) for economics analysis (Mantegna 
& Stanley, 2000). 

Mandelbrot, a distinguished mathematical physicist who ventured into the 
discipline of quantitative financial economics, was one of the independent 
pioneers who developed the random walk theory that stipulates that the 
movement of stock has no memory (Mandelbrot, 1966, 1968). He then famously 
contradicted his own ground-breaking theory years later and, through 
econophysics approaches, provided evidence that the stock market indeed has a 
long memory in the form of a self-similarity pattern, which he coined as “fractal” 
(Mandelbrot, 1999a). Mandelbrot’s works in the area of fractal and scaling in 
finance (pioneering literature, i.e., 1997a, 1997b, 1999a, 1999b, 2000, 2001a, 
2001b, 2001c, 2001d and 2004) had laid a very important methodological 
foundation that has become an integral part of most contemporary econophysics 
research, particularly in the application of the complex systems theory in 
financial economics. 

The conundrum of bubbles and stock market crashes eventually becomes the 
focal point of econophysicists, leading to a remarkable expansion of the complex 
systems theory in the study of the stock market. Many novel methodologies from 
mathematical and mechanical physics were introduced into the economics 
discipline. Among the novel methodologies that completely departed from 
conventional econometrics include scale invariance, hierarchical systems, 1/f-
noise and the use of a hazard rate in modelling the build-up of a bubble prior to 
stock market crashes (Johansen, 1997; Stanley et al., 1999). The fundamentals for 
most of these methodologies were heavily influenced by the fractal concept 
introduced by Mandelbrot. 

Over the last decade, one of the most dominant complex systems 
methodologies in financial economics is the application of log-periodic power law 
(LPPL) formulae as used in the Johansen-Ledoit-Sornette (JLS) model to predict 
the building up of financial bubbles. The JLS model (and its variations) is able to 
capture the signature of an impending bubble-induced crash and estimate the 
risk of the crash along the timeline with a hazard rate (among the earliest 
literature, see Johansen et al., 1999; Sornette et al., 1996; Sornette & Johansen, 
1997, 1998). 

Johansen et al. (Ibid.), the pioneers of the JLS model, interpret the stock 
market as a trend-chasing system that leaves a trail of positive feedback. In some 
measure, traders in the market based their trading decision on others’ decisions, 
and the loop of such interactions determines the prices of stocks. Such 
interactions also lead to the formation of self-similar clusters of traders, which 
could result in the creation of a market bubble. Therefore, the stock market is 
considered an epitome of self-organising complex systems that resembles 
nature’s other “dynamically driven out of equilibrium systems such as 
earthquakes, avalanches and crack propagation.” 

The JLS model, which adopts the assumptions of the rational expectation 
theory (one of the mainstream economic foundations) for its theoretical 
framework, categorises the traders in the market into the following two groups; 
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rational traders and noise traders. Rational traders are defined as traders who 
make sound and informed decisions based on market fundamentals, whereas 
noise traders are defined as irrational traders who collectively imitate the trading 
decisions of others (i.e., herding behaviour) (Geraskin & Fantazzini, 2013; 
Johansen et al., Ibid.). 

The intricate technicalities (e.g., assumptions, equations and algorithms) of 
the LPPL frontier are well elucidated in the literature by Geraskin and Fantazzini 
(Ibid.), Johansen et al. (Ibid.), Pele (2012) and Pele and Mazurencu-Marinescu 
(Ibid.). Criticisms of the method can be found in Chang and Feigenbaum (2008a, 
2008b), Geraskin and Fantazzini (Ibid.), Feigenbaum (2001) and van Bothmer 
and Meister (2003); some of the pioneers responded to these criticisms (Sornette 
et al., 2013). 
 
6. Conclusions 

A conventional theory in financial economics has evolved over the decades from 
an Austrian-style of methodological individualism and critical rationalism into a 
mathematically elegant and technically advanced logical empiricism discipline. 
Being rooted in the qualitative foundation that strives to explain social 
phenomena through the assumption of rational behaviour, the development of 
financial economics has never been able to fully depart from the general 
economics endeavour of mapping mathematical solutions to phenomena in the 
market that are rigidly tied up with the constraints of the rational assumption of 
interacting agents and the ceteris paribus assumption of the economic condition. 

In general, behavioural finance argued that agents not be always rational 
when dealing with financial matters in a highly intense market. Volumes of 
contradicting empirical evidence on the behaviour of the financial market over 
time suggested that the only constant in the market is change. Thus, it is difficult 
to assimilate these arguments with the generalisation of market efficiency. 

One illustration to underscore the argument is that there is no plausible 
explanation of the conundrum of who buys a share when someone sold it in the 
market. If everyone has the same rationale and shares the same information, 
transactions could almost never occur in a market deemed to be “efficient.” In 
addition, the overgeneralisation of the financial market has led to the wide 
espousal of the Gaussian distribution, which is oblivious to outliers when the 
most devastating events that could happen in the financial market are outliers 
(i.e., financial crises and stock market crashes). 

Econophysics edges out conventional economics because of its highly efficient 
nonlinear dynamics methodologies, which are rooted in statistical mechanics, 
and the common application of hierarchal processes, which is very sensitive in 
diagnosing problems. The quest of econophysics is to seek answers to problems, 
emphasising precision without dwelling on a plausible explanation at every phase 
as characterised by the chaos and complex systems theories, also introduced a 
new dimension to the field of financial economics. 

Of late, econophysics is gradually bridging the gaps between mathematical 
technicalities and the conventional economic assumptions as shown through the 
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considerable attempts to assimilate the theoretical foundation of economics with 
econophysics approaches. One such attempt was seen in the development of the 
JLS model and its subsequent variations. Despite the fact that some of these 
attempts could be construed as afterthoughts, such efforts are nevertheless 
commendable, as the synthesis of strength from both disciplines would be 
beneficial to the continuous evolution of the field. 
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