
ABSTRACT

Stock market return was used as a leading 
indicator that measures the strength of the 
economy. The performance of stock market can 
be measured by stock market returns. However, 
the uncertainty in the stock market will cause 
systematic risk for investors. The aim of the 
paper to measures the systematic risk factors in 
Malaysia stock market. The study makes used 
of principal components analysis to construct 
a Kuala Lumpur Composite Index (KLCI) that 
serves a proxy variable of Malaysia stock market 
return and macroeconomic variables as sources 
of systematic risk factors. This paper used 
Malaysian time series data covering a period 
from January 2009 to December 2019. The study 
gives insight for understanding the components 
in the principal component analysis of the 
correlation matrix of a group of risks may contain 
useful financial information by identifying highly 
correlated pair or larger groups of risks. The 
results of the study can be a benefit to investor’s 
applies to manage their portfolio. 

INTRODUCTION

Stock market provided an important channel 
to raise capital for the economy and also to 
stimulate the economy. The stock market was 
used as a leading indicator that measures the 
strength of the economy (Nordin, Nordin, & 
Ismail, 2014). The performance of stock market 
can be measured by stock market returns. The 
increase in stock market return has a tendency 
to be related to increase in business investment 
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and vice versa. The principal component 
analysis is a standard method in statistics for 
extracting an ordered set of uncorrelated 
sources of variation in the multivariate system 
(Jolliffe, 1990). The theoretical underpinning 
the effect between macroeconomic variables 
and the stock market is explained by Arbitrage 
pricing theory (APT) model (Ross, 1976). The 
APT was known as multi factors model which 
can compare more than one factor to analyze 
the explanatory power of the variables to 
stock market returns. APT hypothesizes the 
relationship between stock market return and 
certain macroeconomic variables. APT models 
clarify how the fluctuations in macroeconomic 
variables can influence stock market returns. 
Macroeconomic variables were the primary 
source of risk known as systematic risk factors. 
Systematic risk is unpredictable and impossible 
to avoid completely, thus systematic risk always 
exist in the markets. In addition, there always a 
chance to encounter with economic downturn 
either the whole industry or a particular 
industry segment and systematic risk cannot 
be avoided or reduced through diversification, 
but only through hedging or by using the right 
asset allocation strategy can minimize or limit 
of the systematic risk. Unlike the normal logic 
argument that the higher returns bear more 
the risk. The simpler logic or reasoning will 
be the sensitivity of the expected returns on 
the factor movements. Two assets considered 
close substitute can have the same price and 
offer the same returns because they have the 
same sensitivity to each of systematic risk 
factors. In effect, they only differ marginally in 
unsystematic or residual risk that they might 
bear. This can be explained mathematically,
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where: 𝑅𝑅 = the actual return, 𝐸𝐸 = the expected return on the asset, 𝛽𝛽 = measures the sensitivity, 𝛽𝛽 = the 
actual return on systematic risk factor, ℯ = measures return on unsystematic risk factor 

 
 Thus, actual returns equals to expect returns add factor sensitivity multiply by factor movement 
plus residual risk. Actually there is more than one factor, and then the equation (1.1) is expanded to: 
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where: 𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3, 𝛽𝛽4, 𝛽𝛽5, 𝛽𝛽6, 𝛽𝛽7 are the economic forces. 
 
 The factors that create these risks are usually macroeconomic factors. Sources of systematic risk 
can be macroeconomic factors such as inflation rate, interest rates, exchange rate, foreign direct 
investment, recessions, natural disasters, wars and government regulations (Tripathi & Neerza, 2015; 
Zahiri, Mehrara, & Falahati, 2014). Macroeconomic factors that affect the direction and instability of the 
whole market will be systematic risk. Based on the scenario mentioned above, the risk of money supply, 
interest rate, inflation rate, exchange rate, financial development, crude oil price and industrial production 
index were suitable variables to represent systematic risk in Malaysia context. Since in this study all 
observes is unanticipated variables, therefore all the variables except financial development (FD) will be 
converted into unanticipated variables. All the macroeconomic variables will be regressed with the lagged 
two of its own variable to obtain the residuals. The residuals will be powered by two to obtain the 
variance which represents the risk of each variable. This study suggested the unanticipated money supply 
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where:  F1 , F2 , F3 , F4 , F5 , F6 , F7  are the economic 
forces.

 The factors that create these risks are 
usually macroeconomic factors. Sources of 
systematic risk can be macroeconomic factors 
such as inflation rate, interest rates, exchange 
rate, foreign direct investment, recessions, 
natural disasters, wars and government 
regulations (Tripathi & Neerza, 2015; Zahiri, 
Mehrara, & Falahati, 2014). Macroeconomic 
factors that affect the direction and instability 
of the whole market will be systematic risk. 
Based on the scenario mentioned above, the 
risk of money supply, interest rate, inflation 
rate, exchange rate, financial development, 
crude oil price and industrial production index 
were suitable variables to represent systematic 
risk in Malaysia context. Since in this study all 
observes is unanticipated variables, therefore 
all the variables except financial development 
(FD) will be converted into unanticipated 
variables. All the macroeconomic variables will 
be regressed with the lagged two of its own 
variable to obtain the residuals. The residuals 
will be powered by two to obtain the variance 
which represents the risk of each variable. 
This study suggested the unanticipated 
money supply (UMS), unanticipated interest 
rate (UIR), unanticipated inflation rate (UCPI), 
unanticipated exchange rate (UEXR), financial 
development rate (FD), unanticipated crude 
oil price (UOP) and unanticipated industrial 
production index (UIPI). The parameter  is the 
factor sensitivity. If the  has a higher value, it 
was considered a steeper liner line with the 
assumption that all other factors were zero. 
The asset of the  is considered highly sensitive. 
If the value of  is low then it can be considered 
the factor with that  will be less sensitive to 
the factor where  belongs. The  can also be 
positive or negative indicating the direction 
and magnitude of the sensitivity.
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stock P has higher returns (25 per cent) compared to stock B (20 per cent). Arbitrage opportunity takes 
place. No doubt the sensitivity of the factors can be the same but at the end of the day, the outcome makes 
the difference. When the investor reduces the stock B and replaces with stock P, the price of stock B falls 
but the price P increases. At lower price stock B might look attractive compared to stock P. This process 
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 Stock A is the risks less portfolio, the 
expected return is ER. Stocks B and C have an 
expected return of 20 per cent and 35 per cent 
respectively. Stocks B and P have the same 
factor sensitivity but stock P has higher returns 
(25 per cent) compared to stock B (20 per cent). 
Arbitrage opportunity takes place. No doubt 
the sensitivity of the factors can be the same 
but at the end of the day, the outcome makes 
the difference. When the investor reduces the 
stock B and replaces with stock P, the price of 
stock B falls but the price P increases. At lower 
price stock B might look attractive compared 
to stock P. This process goes on until actual 

return equals to expected returns in all the 
stocks. Then all the stocks will be on the same 
linear line, arbitrage will not exist anymore. 

 Scholars (Connor & Korajczyk, 1993; 
McGowan & Francis, 1991) emphasized that 
factor analysis need to conduct to identify 
the appropriate systematic risk factors to be 
included to measure stock market return. 
Factor analysis is used to estimate a model 
which explains variance or covariance between 
a set of observed variables (in a population) 
by a set of (fewer) unobserved factor and 
weightings. 
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ESTIMATION APPROACH

Therefore, a model needs to be constructed to 
explain the covariance between the systematic 
risk factors. The covariance between the 
systematic risk factors can exist because of 
some unobserved factors like political scandal, 
corruption and others. These factors can cause 
variance and covariance (causality effects). 
The unobserved factors each have different 
weightage (w). There is a set of weight and a 
set of unobserved factors. The analysis will 
measure the weightage of observed factors. 
The unobserved factors can also be correlated. 

Assume there is a set of the unobserved factor 
for each systematic risk factor.  the unobserved 
factors for money supply,  the unobserved 
factors for interest rate,  the unobserved factors 
for inflation rate,  the unobserved factors 
for exchange rate,  the unobserved factors 
for financial development,  the unobserved 
factors for crude oil price and  the unobserved 
factors for industrial production index. If the 
unobserved factors like  and  were correlated 
to each other than will have a set of covariance. 
Each systematic risk factor is represented by a 
vector ( and ). 

Each vector (Yi) is a representation of all the vectors of (Yi) at different time period.
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𝑁𝑁                                                          

                                  (2.1) 

This is similar for all the vectors 
Vector of equations:  

ɳ1= unobserved factor 1 

ɳ2= unobserved factor 2 

Thus,  
                                  𝑌𝑌1 =  ɳ11ɳ 1 + 𝜆𝜆1 2ɳ 2 + 𝜀𝜀1 

𝑌𝑌2 =  ɳ21ɳ 1 + 𝜆𝜆2 2ɳ 2 + 𝜀𝜀2 

𝑌𝑌3 =  ɳ31ɳ 1 + 𝜆𝜆3 2ɳ 2 + 𝜀𝜀3 

                 𝑌𝑌4 =  ɳ41ɳ 1 + 𝜆𝜆4 2ɳ 2 + 𝜀𝜀4 

𝑌𝑌5 =  ɳ51ɳ 1 + 𝜆𝜆5 2ɳ 2 + 𝜀𝜀5 

𝑌𝑌6 =  ɳ61ɳ 1 + 𝜆𝜆6 2ɳ 2 + 𝜀𝜀6 

 = unobserved factor 1

     

goes on until actual return equals to expected returns in all the stocks. Then all the stocks will be on the 
same linear line, arbitrage will not exist anymore.  
 
 Scholars (Connor & Korajczyk, 1993; McGowan & Francis, 1991) emphasized that factor 
analysis need to conduct to identify the appropriate systematic risk factors to be included to measure stock 
market return. Factor analysis is used to estimate a model which explains variance or covariance between 
a set of observed variables (in a population) by a set of (fewer) unobserved factor and weightings.  
 

ESTIMATION APPROACH 
 
Therefore, a model needs to be constructed to explain the covariance between the systematic risk factors. 
The covariance between the systematic risk factors can exist because of some unobserved factors like 
political scandal, corruption and others. These factors can cause variance and covariance (causality 
effects). The unobserved factors each have different weightage (w). There is a set of weight and a set of 
unobserved factors. The analysis will measure the weightage of observed factors. The unobserved factors 
can also be correlated. Assume there is a set of the unobserved factor for each systematic risk factor. 𝐸𝐸1 
the unobserved factors for money supply, 𝐸𝐸2 the unobserved factors for interest rate, 𝐸𝐸3 the unobserved 
factors for inflation rate, 𝐸𝐸4 the unobserved factors for exchange rate, 𝐸𝐸5 the unobserved factors for 
financial development, 𝐸𝐸6 the unobserved factors for crude oil price and 𝐸𝐸7 the unobserved factors for 
industrial production index. If the unobserved factors like 𝐸𝐸1, 𝐸𝐸2, 𝐸𝐸3, 𝐸𝐸4, 𝐸𝐸5, 𝐸𝐸6 and 𝐸𝐸7 were correlated to 
each other than will have a set of covariance. Each systematic risk factor is represented by a vector 
(𝑌𝑌1, 𝑌𝑌2, 𝑌𝑌3, 𝑌𝑌4, 𝑌𝑌5, 𝑌𝑌6 and 𝑌𝑌7).  
 
Each vector (𝑌𝑌𝑖𝑖) is a representation of all the vectors of (𝑌𝑌𝑖𝑖) at different time period. 
 
  𝑌𝑌1

𝑡𝑡      𝑌𝑌7
𝑡𝑡   

𝑌𝑌1 =  𝑌𝑌1
𝑡𝑡+1           .    .    .    .    . 𝑌𝑌7  = 𝑌𝑌7

𝑡𝑡+1 

              .        . 

              .                             . 

             𝑌𝑌1
𝑡𝑡+2     𝑌𝑌7

𝑡𝑡+2 

  𝑌𝑌1
𝑁𝑁                  𝑌𝑌7

𝑁𝑁                                                          

                                  (2.1) 

This is similar for all the vectors 
Vector of equations:  

ɳ1= unobserved factor 1 

ɳ2= unobserved factor 2 

Thus,  
                                  𝑌𝑌1 =  ɳ11ɳ 1 + 𝜆𝜆1 2ɳ 2 + 𝜀𝜀1 

𝑌𝑌2 =  ɳ21ɳ 1 + 𝜆𝜆2 2ɳ 2 + 𝜀𝜀2 

𝑌𝑌3 =  ɳ31ɳ 1 + 𝜆𝜆3 2ɳ 2 + 𝜀𝜀3 

                 𝑌𝑌4 =  ɳ41ɳ 1 + 𝜆𝜆4 2ɳ 2 + 𝜀𝜀4 

𝑌𝑌5 =  ɳ51ɳ 1 + 𝜆𝜆5 2ɳ 2 + 𝜀𝜀5 

𝑌𝑌6 =  ɳ61ɳ 1 + 𝜆𝜆6 2ɳ 2 + 𝜀𝜀6 

 = unobserved factor 2

Thus, 
                                

                                            

goes on until actual return equals to expected returns in all the stocks. Then all the stocks will be on the 
same linear line, arbitrage will not exist anymore.  
 
 Scholars (Connor & Korajczyk, 1993; McGowan & Francis, 1991) emphasized that factor 
analysis need to conduct to identify the appropriate systematic risk factors to be included to measure stock 
market return. Factor analysis is used to estimate a model which explains variance or covariance between 
a set of observed variables (in a population) by a set of (fewer) unobserved factor and weightings.  
 

ESTIMATION APPROACH 
 
Therefore, a model needs to be constructed to explain the covariance between the systematic risk factors. 
The covariance between the systematic risk factors can exist because of some unobserved factors like 
political scandal, corruption and others. These factors can cause variance and covariance (causality 
effects). The unobserved factors each have different weightage (w). There is a set of weight and a set of 
unobserved factors. The analysis will measure the weightage of observed factors. The unobserved factors 
can also be correlated. Assume there is a set of the unobserved factor for each systematic risk factor. 𝐸𝐸1 
the unobserved factors for money supply, 𝐸𝐸2 the unobserved factors for interest rate, 𝐸𝐸3 the unobserved 
factors for inflation rate, 𝐸𝐸4 the unobserved factors for exchange rate, 𝐸𝐸5 the unobserved factors for 
financial development, 𝐸𝐸6 the unobserved factors for crude oil price and 𝐸𝐸7 the unobserved factors for 
industrial production index. If the unobserved factors like 𝐸𝐸1, 𝐸𝐸2, 𝐸𝐸3, 𝐸𝐸4, 𝐸𝐸5, 𝐸𝐸6 and 𝐸𝐸7 were correlated to 
each other than will have a set of covariance. Each systematic risk factor is represented by a vector 
(𝑌𝑌1, 𝑌𝑌2, 𝑌𝑌3, 𝑌𝑌4, 𝑌𝑌5, 𝑌𝑌6 and 𝑌𝑌7).  
 
Each vector (𝑌𝑌𝑖𝑖) is a representation of all the vectors of (𝑌𝑌𝑖𝑖) at different time period. 
 
  𝑌𝑌1

𝑡𝑡      𝑌𝑌7
𝑡𝑡   

𝑌𝑌1 =  𝑌𝑌1
𝑡𝑡+1           .    .    .    .    . 𝑌𝑌7  = 𝑌𝑌7

𝑡𝑡+1 

              .        . 

              .                             . 

             𝑌𝑌1
𝑡𝑡+2     𝑌𝑌7

𝑡𝑡+2 

  𝑌𝑌1
𝑁𝑁                  𝑌𝑌7

𝑁𝑁                                                          

                                  (2.1) 

This is similar for all the vectors 
Vector of equations:  

ɳ1= unobserved factor 1 

ɳ2= unobserved factor 2 

Thus,  
                                  𝑌𝑌1 =  ɳ11ɳ 1 + 𝜆𝜆1 2ɳ 2 + 𝜀𝜀1 

𝑌𝑌2 =  ɳ21ɳ 1 + 𝜆𝜆2 2ɳ 2 + 𝜀𝜀2 

𝑌𝑌3 =  ɳ31ɳ 1 + 𝜆𝜆3 2ɳ 2 + 𝜀𝜀3 

                 𝑌𝑌4 =  ɳ41ɳ 1 + 𝜆𝜆4 2ɳ 2 + 𝜀𝜀4 

𝑌𝑌5 =  ɳ51ɳ 1 + 𝜆𝜆5 2ɳ 2 + 𝜀𝜀5 

𝑌𝑌6 =  ɳ61ɳ 1 + 𝜆𝜆6 2ɳ 2 + 𝜀𝜀6 

                                          

(2.2)

where:
vectors for all the variables communality
ε = unique variables

                                                               𝑌𝑌7 =  ɳ71ɳ 1 + 𝜆𝜆7 2ɳ 2 + 𝜀𝜀7                                                        

(2.2) 

where: 
vectors for all the variables communality 
𝜀𝜀 = unique variables 
 
Each equations has fixed weightage for each vectors represented by 𝜆𝜆 and there were parts that varies on 
each equation shown by ʅ (actual scores of the hidden individuals) 
 
 
    ɳ 𝑖𝑖 1

  1  

ɳ 1 =      ɳ 𝑖𝑖 1
  2  

             ɳ 𝑖𝑖 1
  3                                                                                                   (2.3) 

 
Stack each equation one on top the other, we can obtain a matrix. 

 
     𝑌𝑌𝑖𝑖 1    =       𝜆𝜆1 1    𝜆𝜆1 2       ɳ𝑖𝑖 1        +       𝜀𝜀𝑖𝑖 1 

       𝑌𝑌𝑖𝑖 2    =       𝜆𝜆2 1   𝜆𝜆2 2        ɳ𝑖𝑖 2       +       𝜀𝜀𝑖𝑖 2 

               𝑌𝑌𝑖𝑖 3    =        𝜆𝜆3 1   𝜆𝜆3 2       ɳ𝑖𝑖 3       +       𝜀𝜀𝑖𝑖 3 

       𝑌𝑌𝑖𝑖 4    =       𝜆𝜆4 1   𝜆𝜆4 2       ɳ𝑖𝑖 4        +       𝜀𝜀𝑖𝑖 4 

𝑌𝑌𝑖𝑖 5    =       𝜆𝜆5 1   𝜆𝜆5 2       ɳ𝑖𝑖 5        +       𝜀𝜀𝑖𝑖 5 

𝑌𝑌𝑖𝑖 6    =       𝜆𝜆6 1   𝜆𝜆6 2       ɳ𝑖𝑖 6        +       𝜀𝜀𝑖𝑖 6 

𝑌𝑌𝑖𝑖 7    =       𝜆𝜆7 1   𝜆𝜆7 2       ɳ𝑖𝑖 7        +       𝜀𝜀𝑖𝑖 7                                                (2.4) 

 
 
Weightage unobserved factor 
This can also be written the equation in another from as: 
 
  =−

𝑌𝑌   ɳ~
𝜆𝜆  + 𝜀𝜀 

  𝑌𝑌𝑖𝑖𝑖𝑖 =  𝜆𝜆𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 1 + 𝜆𝜆 𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 2 +  𝜀𝜀 𝑖𝑖 𝑖𝑖                                                      

(2.5) 

 
where: 
𝑖𝑖 = 1,  .  .   .   .     .   .   .N (time) 
𝑗𝑗 = 1,2,3,4,5,6,7 (no of systematic risk factor) 
 
 𝑌𝑌1 1 𝑌𝑌1 2  ɳ 1 1 ɳ 1 2    𝜆𝜆 1 1      𝜆𝜆 1 2                  𝜀𝜀1 1   𝜀𝜀1 2  

 𝑌𝑌2 1 𝑌𝑌2 2  ɳ 2 1 ɳ 2 2    𝜆𝜆 2 1       𝜆𝜆 2 2           𝜀𝜀2 1     𝜀𝜀2 2 

 . . = . .     .        .       +          .        . 

 . .  . .     .        .                   .     . 
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Each equations has fixed weightage for each vectors represented by λ and there were parts that 
varies on each equation shown by 

                                                               𝑌𝑌7 =  ɳ71ɳ 1 + 𝜆𝜆7 2ɳ 2 + 𝜀𝜀7                                                        

(2.2) 

where: 
vectors for all the variables communality 
𝜀𝜀 = unique variables 
 
Each equations has fixed weightage for each vectors represented by 𝜆𝜆 and there were parts that varies on 
each equation shown by ʅ (actual scores of the hidden individuals) 
 
 
    ɳ 𝑖𝑖 1

  1  

ɳ 1 =      ɳ 𝑖𝑖 1
  2  

             ɳ 𝑖𝑖 1
  3                                                                                                   (2.3) 

 
Stack each equation one on top the other, we can obtain a matrix. 

 
     𝑌𝑌𝑖𝑖 1    =       𝜆𝜆1 1    𝜆𝜆1 2       ɳ𝑖𝑖 1        +       𝜀𝜀𝑖𝑖 1 

       𝑌𝑌𝑖𝑖 2    =       𝜆𝜆2 1   𝜆𝜆2 2        ɳ𝑖𝑖 2       +       𝜀𝜀𝑖𝑖 2 

               𝑌𝑌𝑖𝑖 3    =        𝜆𝜆3 1   𝜆𝜆3 2       ɳ𝑖𝑖 3       +       𝜀𝜀𝑖𝑖 3 

       𝑌𝑌𝑖𝑖 4    =       𝜆𝜆4 1   𝜆𝜆4 2       ɳ𝑖𝑖 4        +       𝜀𝜀𝑖𝑖 4 

𝑌𝑌𝑖𝑖 5    =       𝜆𝜆5 1   𝜆𝜆5 2       ɳ𝑖𝑖 5        +       𝜀𝜀𝑖𝑖 5 

𝑌𝑌𝑖𝑖 6    =       𝜆𝜆6 1   𝜆𝜆6 2       ɳ𝑖𝑖 6        +       𝜀𝜀𝑖𝑖 6 

𝑌𝑌𝑖𝑖 7    =       𝜆𝜆7 1   𝜆𝜆7 2       ɳ𝑖𝑖 7        +       𝜀𝜀𝑖𝑖 7                                                (2.4) 

 
 
Weightage unobserved factor 
This can also be written the equation in another from as: 
 
  =−

𝑌𝑌   ɳ~
𝜆𝜆  + 𝜀𝜀 

  𝑌𝑌𝑖𝑖𝑖𝑖 =  𝜆𝜆𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 1 + 𝜆𝜆 𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 2 +  𝜀𝜀 𝑖𝑖 𝑖𝑖                                                      

(2.5) 

 
where: 
𝑖𝑖 = 1,  .  .   .   .     .   .   .N (time) 
𝑗𝑗 = 1,2,3,4,5,6,7 (no of systematic risk factor) 
 
 𝑌𝑌1 1 𝑌𝑌1 2  ɳ 1 1 ɳ 1 2    𝜆𝜆 1 1      𝜆𝜆 1 2                  𝜀𝜀1 1   𝜀𝜀1 2  

 𝑌𝑌2 1 𝑌𝑌2 2  ɳ 2 1 ɳ 2 2    𝜆𝜆 2 1       𝜆𝜆 2 2           𝜀𝜀2 1     𝜀𝜀2 2 

 . . = . .     .        .       +          .        . 

 . .  . .     .        .                   .     . 

 (actual scores of the hidden individuals)
    

                 

                                                               𝑌𝑌7 =  ɳ71ɳ 1 + 𝜆𝜆7 2ɳ 2 + 𝜀𝜀7                                                        

(2.2) 

where: 
vectors for all the variables communality 
𝜀𝜀 = unique variables 
 
Each equations has fixed weightage for each vectors represented by 𝜆𝜆 and there were parts that varies on 
each equation shown by ʅ (actual scores of the hidden individuals) 
 
    ɳ 𝑖𝑖 1

  1  

ɳ 1 =      ɳ 𝑖𝑖 1
  2  

             ɳ 𝑖𝑖 1
  3                                                                                                   (2.3) 

 
Stack each equation one on top the other, we can obtain a matrix. 

 
     𝑌𝑌𝑖𝑖 1    =       𝜆𝜆1 1    𝜆𝜆1 2       ɳ𝑖𝑖 1        +       𝜀𝜀𝑖𝑖 1 

       𝑌𝑌𝑖𝑖 2    =       𝜆𝜆2 1   𝜆𝜆2 2        ɳ𝑖𝑖 2       +       𝜀𝜀𝑖𝑖 2 

               𝑌𝑌𝑖𝑖 3    =        𝜆𝜆3 1   𝜆𝜆3 2       ɳ𝑖𝑖 3       +       𝜀𝜀𝑖𝑖 3 

       𝑌𝑌𝑖𝑖 4    =       𝜆𝜆4 1   𝜆𝜆4 2       ɳ𝑖𝑖 4        +       𝜀𝜀𝑖𝑖 4 

𝑌𝑌𝑖𝑖 5    =       𝜆𝜆5 1   𝜆𝜆5 2       ɳ𝑖𝑖 5        +       𝜀𝜀𝑖𝑖 5 

𝑌𝑌𝑖𝑖 6    =       𝜆𝜆6 1   𝜆𝜆6 2       ɳ𝑖𝑖 6        +       𝜀𝜀𝑖𝑖 6 

𝑌𝑌𝑖𝑖 7    =       𝜆𝜆7 1   𝜆𝜆7 2       ɳ𝑖𝑖 7        +       𝜀𝜀𝑖𝑖 7                                                (2.4) 

 
 
Weightage unobserved factor 
This can also be written the equation in another from as: 
 
  =−

𝑌𝑌   ɳ~
𝜆𝜆  + 𝜀𝜀 

  𝑌𝑌𝑖𝑖𝑖𝑖 =  𝜆𝜆𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 1 + 𝜆𝜆 𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 2 +  𝜀𝜀 𝑖𝑖 𝑖𝑖                                                      

(2.5) 

 
where: 
𝑖𝑖 = 1,  .  .   .   .     .   .   .N (time) 
𝑗𝑗 = 1,2,3,4,5,6,7 (no of systematic risk factor) 
 
 𝑌𝑌1 1 𝑌𝑌1 2  ɳ 1 1 ɳ 1 2    𝜆𝜆 1 1      𝜆𝜆 1 2                  𝜀𝜀1 1   𝜀𝜀1 2  

 𝑌𝑌2 1 𝑌𝑌2 2  ɳ 2 1 ɳ 2 2    𝜆𝜆 2 1       𝜆𝜆 2 2           𝜀𝜀2 1     𝜀𝜀2 2 

 . . = . .     .        .       +          .        . 

 . .  . .     .        .                   .     . 

 𝑌𝑌𝑁𝑁 1 𝑌𝑌𝑁𝑁 2  ɳ 𝑁𝑁 1 ɳ 𝑁𝑁 2        𝜆𝜆 𝑁𝑁 1      𝜆𝜆 𝑁𝑁 2                  𝜀𝜀𝑁𝑁 1   𝜀𝜀𝑁𝑁 2 

                                                                                         

(2.3)

Stack each equation one on top the other, we can obtain a matrix.

                       

                                                               𝑌𝑌7 =  ɳ71ɳ 1 + 𝜆𝜆7 2ɳ 2 + 𝜀𝜀7                                                        

(2.2) 

where: 
vectors for all the variables communality 
𝜀𝜀 = unique variables 
 
Each equations has fixed weightage for each vectors represented by 𝜆𝜆 and there were parts that varies on 
each equation shown by ʅ (actual scores of the hidden individuals) 
 
    ɳ 𝑖𝑖 1

  1  

ɳ 1 =      ɳ 𝑖𝑖 1
  2  

             ɳ 𝑖𝑖 1
  3                                                                                                   (2.3) 

 
Stack each equation one on top the other, we can obtain a matrix. 

 
     𝑌𝑌𝑖𝑖 1    =       𝜆𝜆1 1    𝜆𝜆1 2       ɳ𝑖𝑖 1        +       𝜀𝜀𝑖𝑖 1 

       𝑌𝑌𝑖𝑖 2    =       𝜆𝜆2 1   𝜆𝜆2 2        ɳ𝑖𝑖 2       +       𝜀𝜀𝑖𝑖 2 

               𝑌𝑌𝑖𝑖 3    =        𝜆𝜆3 1   𝜆𝜆3 2       ɳ𝑖𝑖 3       +       𝜀𝜀𝑖𝑖 3 

       𝑌𝑌𝑖𝑖 4    =       𝜆𝜆4 1   𝜆𝜆4 2       ɳ𝑖𝑖 4        +       𝜀𝜀𝑖𝑖 4 

𝑌𝑌𝑖𝑖 5    =       𝜆𝜆5 1   𝜆𝜆5 2       ɳ𝑖𝑖 5        +       𝜀𝜀𝑖𝑖 5 

𝑌𝑌𝑖𝑖 6    =       𝜆𝜆6 1   𝜆𝜆6 2       ɳ𝑖𝑖 6        +       𝜀𝜀𝑖𝑖 6 

𝑌𝑌𝑖𝑖 7    =       𝜆𝜆7 1   𝜆𝜆7 2       ɳ𝑖𝑖 7        +       𝜀𝜀𝑖𝑖 7                                                (2.4) 

 
 
Weightage unobserved factor 
This can also be written the equation in another from as: 
 
  =−

𝑌𝑌   ɳ~
𝜆𝜆  + 𝜀𝜀 

  𝑌𝑌𝑖𝑖𝑖𝑖 =  𝜆𝜆𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 1 + 𝜆𝜆 𝑖𝑖 𝑖𝑖 ɳ 𝑖𝑖 2 +  𝜀𝜀 𝑖𝑖 𝑖𝑖                                                      

(2.5) 

 
where: 
𝑖𝑖 = 1,  .  .   .   .     .   .   .N (time) 
𝑗𝑗 = 1,2,3,4,5,6,7 (no of systematic risk factor) 
 
 𝑌𝑌1 1 𝑌𝑌1 2  ɳ 1 1 ɳ 1 2    𝜆𝜆 1 1      𝜆𝜆 1 2                  𝜀𝜀1 1   𝜀𝜀1 2  

 𝑌𝑌2 1 𝑌𝑌2 2  ɳ 2 1 ɳ 2 2    𝜆𝜆 2 1       𝜆𝜆 2 2           𝜀𝜀2 1     𝜀𝜀2 2 

 . . = . .     .        .       +          .        . 

 . .  . .     .        .                   .     . 

 𝑌𝑌𝑁𝑁 1 𝑌𝑌𝑁𝑁 2  ɳ 𝑁𝑁 1 ɳ 𝑁𝑁 2        𝜆𝜆 𝑁𝑁 1      𝜆𝜆 𝑁𝑁 2                  𝜀𝜀𝑁𝑁 1   𝜀𝜀𝑁𝑁 2 
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where:
N  =  row (years)
f  =  number of factors
V  =  observed characteristics
2   =  Unobserved factor
7  =  Observed factor
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Equation for factor analysis written in complete form: 
 

𝑌𝑌
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~ 𝑁𝑁 f   𝑃𝑃
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~  f v  + 𝑈𝑈~ 𝑁𝑁 v  𝐷𝐷
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DESCRIPTION OF VARIABLES AND DATA SOURCES 

 
Stock Market Return 
The stock market return is a return from the stock investment. Stock market returns indicate a 
combination of expected returns (risk factors) and residual returns that were correlated with industry 
specific news. Monthly composite market indexed in Bursa Malaysia. 
 
Money Supply 
Money supply is volume of money available in the market. Based on portfolio theory, an increase in the 
money supply can results in a portfolio change from non-interest bearing money assets to financial assets 
like stock. When a surplus of liquidity condition available in market will allow investors to buy more 
stock and arise the prices of stock were raising due to the demand for a stock increase. The monthly 
money circulation in Malaysia market of category 2 (broad money M2) was used in this study. 
 
Interest Rate 
Interest rate risk is the cost of payment the borrower requires to pay or the payment need paid by the bank 
to depositors as a value of money depends on the time period. Interest rate is used as an important 
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DESCRIPTION OF VARIABLES AND 
DATA SOURCES

Stock Market Return

The stock market return is a return from 
the stock investment. Stock market returns 
indicate a combination of expected returns 
(risk factors) and residual returns that were 
correlated with industry specific news. Monthly 
composite market indexed in Bursa Malaysia.

Money Supply

Money supply is volume of money available 
in the market. Based on portfolio theory, an 
increase in the money supply can results in a 
portfolio change from non-interest bearing 
money assets to financial assets like stock. 
When a surplus of liquidity condition available 
in market will allow investors to buy more 
stock and arise the prices of stock were raising 
due to the demand for a stock increase. The 
monthly money circulation in Malaysia market 
of category 2 (broad money M2) was used in 
this study.

Interest Rate

Interest rate risk is the cost of payment the 
borrower requires to pay or the payment 
need paid by the bank to depositors as a 
value of money depends on the time period. 
Interest rate is used as an important variable 
because interest rate can determine the price 
of the financial assets. The monthly overnight 
interest rate in Malaysia was used in this study.

Inflation rate

The increase of commodity price named as 
inflation rate. The inflation rate fluctuation 
represents percentage of risk related with 
increase uncertainty in the activity of stock 
market. The consumer price index (CPI) 
represent inflation rate in this study. The monthly 
consumer price index in Malaysia was used in 
this study to represent the rate of inflation.

Exchange Rate 

The price of one currency used to exchange 
for other currency called as exchange 
rate. Exchange rate is related through the 
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changes in the value of domestic currency 
relative to foreign currencies and it takes 
into consideration of inflation rate. Monthly 
currency exchange rate between Ringgit 
Malaysia (MYR)/ US Dollar (USD).

Financial Development

Financial development can be defined in two 
parts, firstly increasing a total of financial 
institutions and services available in a nation 
and second, an increase of financial institutions 
per capita and financial services or an increase 
in the ratio of financial assets to income. 
Financial development plays an important 
role in decreasing the cost of investment 
which contributed to the performance of the 
stock market. Particularly, strong financial 
development will have a positive effect on 
the country economy as well as on the stock 
market. The monthly ratio of M2 over GDP of 
Malaysia was used to represent the financial 
development in the study.

Crude Oil Price

An increase in crude oil prices will cause 
expected earning to decrease due to the 
operation and production costs. Crude oil prices 
have a significant role in determine the country 
economic. The monthly oil price of one barrel in 
Malaysia was used as the crude oil price.

Industrial Production Index

Industrial production index is used to 
forecasting future gross domestic product 
(GDP) and economic performance. Increase 

in industrial production index will raise 
the corporate earnings and the impact of 
increment will improve the present value of 
the company. Hence, it will lead to increase 
the investment in the stock market which 
eventually improves the stock market returns. 
The monthly change in output in Malaysian 
manufacturing, mining, construction, and 
electricity, gas and water was used to represent 
the industrial production index in this study.

DATA AND EMPIRICAL RESULTS

The research is based on the Kuala Lumpur 
Composite Index (KLCI) stock market as 
dependent variables and independent 
variables the set of systematic risk factors 
chosen in this study is based on the 
macroeconomic variables affected by the 
Economic Transformation Programme (ETP) 
during the study period. The economic factors 
were unanticipated money supply (UMS), 
unanticipated interest rate (UIR), unanticipated 
inflation rate (UCPI), unanticipated exchange 
rate (UEXR), financial development (FD), 
unanticipated crude oil price (UOP) and 
unanticipated industrial production index 
(UIPI). Since the observation is only from 
January 2009 to December 2016, the study 
only focuses on the era of the New Economic 
Model (NEM). Thus, in this sample time frame, 
there is a degree of variance and covariance 
between the economic or systematic risk 
factor chosen.  All these observed variables 
were analyzed using principal components 
analysis. The results were presented in Table 1.
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Table 1  Principal component analysis of systematic risk factor results

Table 1(a) Eigenvalues explained by principal components
1 2 3 4 5 6 7

1.709 1.241 1.085 0.968 0.731 0.657 0.608

Table 1(b) Per cent of total variance explained
1 2 3 4 5 6 7

24.41 17.73 15.51 13.83 10.45 9.38 8.69

Table 1(c) Eigenvectors (Loadings)
Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7

UMS 0.352 0.498 −0.193 −0.336 0.552 0.225 0.350

UIR −0.120 0.455 0.273 0.760 0.046 −0.089 0.339

UCPI 0.511 −0.273 −0.121 0.195 0.303 −0.721 −0.211

UEXR 0.390 −0.343 −0.305 0.490 0.062 0.619 −0.099

FD 0.512 −0.100 0.313 −0.163 −0.574 0.047 0.520

UOP 0.424 0.530 0.129 0.019 −0.261 −0.007 −0.674

UIPI 0.082 −0.249 0.815 −0.063 0.446 0.191 −0.164

 

 The summary of the eigenvalues in Table 
1 (a) showed the value and the percentage 
of total variance explained and the principal 
components on a correlation matrix for the 7 
variables is to 7. Kaiser (1960) stated that the 
components with on eigenvalues of less than 
one should be eliminated so that only the 
components that have eigenvalues greater than 
one were retained for interpretation (Chatfield 
& Collins, 1980). The first three components 
were extracted and others components were 
eliminated. The first principal component 
accounts for 24.41 per cent of the total variance 
(1.709/7 = 0.2441), while the second account 
for 17.73 per cent (1.241/7 = 0.1773) of the total 
and the third principal component account for 
15.51 per cent (1.085/7 = 0.1551) of the total. 
When the percentage of the total variance of 
three extracted components were accumulated 
(Table 1(b)), it can be seen that these three 
principal components account for 57.65 per 
cent of the total variance of the original data. 
Since the first three components account for 
over 55 per cent of the total variation, this 
means that the majority of the variance of 
the original data has been accounted for by 
these extracted components. However, since 

this study also performed other analysis on 
the data, therefore it needed at least 90 per 
cent of the variance explained by the principal 
components. Alternatively, many scholars 
agree that it is problematic and inefficient 
when it comes to determining the number 
of factors to extract or eliminate components 
(Hayton, Allen, & Scarpello, 2004; Fabrigar, 
Wegener, MacCallum, & Strahan, 1999). This 
was supported by Zwick and Velicer (1986) that 
this method can lead to arbitrary decisions; for 
instance, it does not make such sense to regard 
a factor with an eigenvalue of 1.01 as major and 
one with an eigenvalue of 0.99 as trivial.

 Table 1(c) section describes the linear 
combination coefficients. The first principal 
component (PC1) is a roughly equal linear 
combination of all 7 of the systematic risk 
factor, it might reasonably be interpreted 
as a general systematic risk factors. All the 
variables have positive loadings except for 
unanticipated interest rate (UIR) variables 
which had negative loadings (−0.120). In these 
results, the first principal component (PAC1) 
has a large positive association with financial 
development (FD) (0.512) and unanticipated 



61

Measuring the Systematic Risk Factors in Malaysia Stock Market Returns: A Principal Component Analysis Approach

inflation (UCPI) (0.511). Thus, this component 
primarily measured long run economic growth. 
The second principal component (PC2) has 
negative loadings for four systematic risk factors 
which is financial development (FD) (−0.100), 
unanticipated inflation rate (UCPI) (−0.273), 
unanticipated exchange rate (UEXR) (−0.343) 
and unanticipated industrial production index 
(UIPI) (−0.250) and the positive loadings for 
three variables which is unanticipated interest 
rate (UIR) (0.455), unanticipated money supply 
(UMS) (0.498) and unanticipated oil price (UOP) 
(0.530). The second principal component 
(PAC2) has a large positive association with 
unanticipated oil price (UOP) (0.530). Therefore, 
this component primarily measures the stability 
of oil price in markets.

 Meanwhile, the third principal 
component (PC3) has negative loadings 
for three systematic risk factors which 
were unanticipated inflation rate (UCPI) 
(−0.121), unanticipated exchange rate 
(UEXR) (−0.305) and unanticipated money 
supply (UMS) (−0.193). In contrast, four 
variables has positive loadings for third 
principal component (PC3) which is financial 

development (FD) (0.313), unanticipated 
industrial production index (UIPI) (0.815), 
unanticipated interest rate (UIR) (0.274), and 
unanticipated oil price (UOP) (0.129). The third 
principal component (PAC3) has large positive 
association with unanticipated industrial 
production index (UIPI) (0.815). Therefore, 
this component primarily measured change 
in output at Malaysian manufacturing, mining, 
construction, and electricity, gas and water. 
However, the other four principal components 
(PC4, PC5, PC6 and PC7) has to be eliminated 
even though the fourth principal component 
(PC4) has large positive association with 
unanticipated interest rate (UIR) (0.761), fifth 
principal component (PC5) has large positive 
association with unanticipated money supply 
(UMS) (0.552) and sixth principal component 
(PC6) also has large positive association with 
unanticipated exchange rate (UEXR) (0.619). 
Therefore, problematic and inefficient do exists 
when using this method that used eigenvalues 
of the correlation matrix with unities at the 
diagonal. In addition, this method also has 
demonstrated a tendency to substantially 
overestimate the number of factors in some 
cases and even underestimate them in some 
cases (Zwick & Velicer, 1986).

Table 1(d) Ordinary correlation
UMS UIR UCPI UEXR FD UOP UIPI

UMS 1

UIR −0.018 1

UCPI 0.112 −0.104 1

UEXR 0.023 −0.058 0.311 1

FD 0.119 −0.104 0.252 0.164 1

UOP 0.299 0.117 0.131 0.049 0.242 1

UIPI −0.082 0.008 0.048 −0.031 0.157 −0.010 1

 

 Table 1(d) showed the ordinary 
correlations matrix obtained from the 
principal component analysis. The table aimed 
to show the correlation values between each 
systematic risk factor. The results showed that 
7 variables were seen all hang together in one 
distinct group only which is a weak group 
below 0.4 (Evans, 1996). First, the correlation 
relationship between UCPI and UEXR (0.311), 

UMS and UOP (0.299), FD and UCPI (0.252), 
FD and UOP (0.242), FD and UEXR (0.164), FD 
and UIPI (0.157), UCPI and UOP (0.131), FD 
and UMS (0.119), UIR and UOP (0.117), UCPI 
and UMS (0.112) has a positive but weak 
correlation between them. In addition, UEXR 
and UOP (0.049), UCPI and UIPI (0.048), UEXR 
and UMS (0.023), UIPI and UIR (0.008) also have 
a positive but weak correlation between the 
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variables. Moreover, FD and UIR (−0.104), UCPI 
and UIR (−0.104), UEXR and UIR (−0.058), UEXR 
and UIPI (−0.031), UIPI and UMS (−0.082), UIR 
and UMS (−0.018), UIPI and UOP (−0.010) has 
a negative and weak correlation between the 
variables. Therefore, as a result the correlation 
between the systematic risk factors showed 
relatively weak correlations among each other. 
These clearly indicate that each systematic 
risk variable does not have either a strong or 
even moderate correlation with each other. 
Therefore multicollinearity issue does not exist 
among the independent variables.

 The correlations result totally differ 
from the expectation rational theory where 
the correlations between variables were 
strong with each other because when the 
inflation rate increases it will also increase the 
interest rate through contractionary monetary 
policy, which indirectly increases saving. The 
increase in saving caused the demand of MYR 
to increase and the increase in demand for 
MYR caused an increase in exchange rate. In 
addition, an increase in saving also affected the 
capital formation which increased investment 
and gross domestic product (GDP). Meanwhile, 
increase in saving also increased the 
financial development (FD) because financial 
development variables were measured using 
the ratio of money supply (M2) over the gross 
domestic product (GDP) and it also affected 
the money supply variables due to increase 
in others variables because the variables 
were correlated to each other. No doubt, in 
theory, the variables should be correlated 
but since this study employed unanticipated 
data to represent each independent variable 
as systematic risk factor expects for financial 
development the results differed.

 Based on Table 1(d), it can be 
concluded that unanticipated inflation (UCPI), 
unanticipated exchange rate (UEXR) and 
financial development (FD) were the factors 
to be considered as independent variables 
to represent systematic risk factors. Other 

independent variables like unanticipated 
interest rate (UIR), unanticipated money 
supply (UMS), unanticipated oil price (UOP) 
and unanticipated industrial production index 
(UIPI) were found to have a low explanation 
in variance from the total variation. Scholars 
like Ledesma and Mora (2007) supported the 
study by Zwick and Velicer (1986) that principal 
component analysis narrowed the number of 
variances by using the total variance explained 
by those variables. However, this method is 
also found to be problematic and inefficient 
when it comes to determining the number of 
factor to extracted or eliminate components. 
Therefore, other variables deemed important 
that might not show high variation explained 
through principal component analysis, but 
it can be included in the analysis to prove 
the changes in these variables that can have 
given an impact to the stock market returns 
because of the new transformation policy 
introduced during the period of analysis. 
Therefore, no doubt principal component 
analysis suggests excluding unanticipated 
interest rate (UIR), unanticipated money 
supply (UMS), unanticipated oil price (UOP) 
and unanticipated industrial production 
index (UIPI) these variables were included in 
the study due to its significant contribution 
through the new economic transformation 
policy. Moreover, the correlation matrix for 
all the independent variables as systematic 
risk factors clearly indicated there were 
no multicollinearity problems among the 
variables. This finding was supported by 
Katchova (2013) that principal component 
analysis was undertaken in the case when 
there is a sufficient correlation among the 
original variables to warrant the factor or 
component representation. Moreover, when 
data is mostly uncorrelated with each other 
principal component analysis method should 
not be implementing to summaries using 
common factor or component but if the data 
have a very high degree of correlation among 
the variables then it’s good to use principal 
component analysis.
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CONCLUSION

The objectives of this paper were to measure 
the systematic risk factors of Malaysia stock 
market. The study proposes KLCI index 
as the observed variables for the stock 
market return (KLCI), unanticipated money 
supply (UMS), unanticipated interest rate 
(UIR), unanticipated inflation rate (UCPI), 
unanticipated exchange rate (UEXR), financial 
development (FD), unanticipated oil price 
(UOP) and unanticipated industrial production 
index (UIPI) were selected for the analysis. 
Through the principal components analysis 
method found that the problem related to 
factor analysis and not with the APT model. 
The scholars (Diacogiannis, 1986; Dhrymes, 
Friend, & Gultelcin, 1985; Dhrymes, 1984; 
Shanken, 1982; Reinganum, 1981) claimed 
the techniques of factor identification in the 
APT by applying factor analysis were quite 
unclear. Among the problem mentioned 
by the scholars like the factor analysis was 
incapable to examine specific hypotheses 
thoroughly. Certain studies practices factor 
analysis in measuring the APT however the 
statistical methods fail to show the effect 
of a specific factor in the model. In contrast, 
regression analysis is a statistical tool that can 
be applied to examine thoroughly the model 
specification and showed whether or not the 
data support the model being examined. The 
second problem which rises by the previous 
scholars about the sampling error can easily 
affect the outcomes. Dhrymes et al. (1984) 
claimed that the factor analysis applied to 
examine the APT was seriously inconsistent 
because the number of factors is subject to the 
number of assets included in the sample group 
and also whether a likely ‘factor’ is priced, 
cannot be examined directly. Besides that, 
the availability of large and heterogeneous 
data banks generates another problem. 
Additionally, many scholars claimed that the 
number of significant factors described in 
previous research was too small because the 
data selected were insufficient. Meanwhile, 
Kryzanowski and To (1983) supported and 

claimed that the larger is sample size, the 
simpler was the factor structure in term of the 
number of related factors. Meanwhile, the last 
problem mention by scholars related to factor 
analysis about the recognizing factors that 
were statistically categorized by factor analysis 
is crucial and difficult. Therefore, it can be 
concluded that all the variables were selected 
as a variables in measure the risk that will 
influence the stock market return in Malaysia. 
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