Sponges from North Borneo and their bioactivity against human colorectal cancer cells

  • Yoong Soon Yong Biotechnology Research Institute, Universiti Malaysia Sabah http://orcid.org/0000-0003-0248-817X
  • Swee-Cheng Lim
  • Ping-Chin Lee
  • Yee-Soon Ling


Invertebrates are a major reservoir for numerous cytotoxic compounds that are used to defence themselves against prey and adaptation towards the environment. Throughout the years, numerous studies discovered from sponge extracts were effective against a wide range of cancer cells. In this study, 23 sponges comprising of some 19 species were collected from Northeast Borneo. Sponges were treated and extracted using modified Folch extraction method, followed by cytotoxicity assay to determine their effectiveness against different colorectal cancer cells. From the results, Monanchora clathrate, Dysidea sp., and Jaspis sp. were found to possess different degrees of cytotoxicity against wide range of human colorectal cancer cell. Monanchora clathrate (KDT07), Dysidea sp. (KDT09), and Jaspis sp. (KDT18) are among the demosponges which possess significant cytotoxicity against colorectal cancer cell lines, including HCT116, LoVo, SW480, and SW620. Besides, we found that environmental factors tend to alter chemical yield from the different species under the same genera. Among them, KDT08 and KDT21 which fall under same genus Dysidea, yet possess insignificant cytotoxicity against colorectal cancer cells. This research article provides a preliminary test for cytotoxicity activity of a wide range of marine sponges. Throughout this study, acquired results could provide useful information to determine the worthiness to further isolate nor purify the nature product from these sponges.


Belarbi, E. H., Contreras Gómez, A., Chisti, Y., Garcı, x, a Camacho, F., & Molina Grima, E. (2003). Producing drugs from marine sponges. Biotechnology Advances 21(7), 585-598. doi:https://doi.org/10.1016/S0734-9750(03)00100-9

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8), 911-917. doi:https://doi.org/10.1139/o59-099

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2016). Marine natural products. Natural Product Reports 33(3), 382-431. doi:https://doi.org/10.1039/C5NP00156K

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2017). Marine natural products. Natural Product Reports 34(3), 235-294. doi:https://doi.org/10.1039/C6NP00124F

Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L., & Korn, E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. Journal of Biological Chemistry 269(21), 14869-14871

Ebada, S. S., Lin, W., & Proksch, P. (2010). Bioactive Sesterterpenes and Triterpenes from Marine Sponges: Occurrence and Pharmacological Significance. Marine Drugs 8(2), 313. doi:https://doi.org/10.3390/md8020313

Gallimore, W. A., Kelly, M., & Scheuer, P. J. (2005). Alkaloids from the Sponge Monanchora unguifera. Journal of Natural Products 68(9), 1420-1423. doi:https://doi.org/10.1021/np050149u

Gerwick, William H., & Moore, Bradley S. (2012). Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology. Chemistry & Biology 19(1), 85-98. doi:http://dx.doi.org/10.1016/j.chembiol.2011.12.014

Green, A., & Mous, P. (2008). Delineating the Coral Triangle, its ecoregions and functional seascapes Version 5.0. TNC Coral Triangle Program Report 1(08.44)

Groweiss, A., Newcomer, J. J., O'Keefe, B. R., Blackman, A., & Boyd, M. R. (1999). Cytotoxic Metabolites from an Australian Collection of the Sponge Jaspis Species. Journal of Natural Products 62(12), 1691-1693. doi:https://doi.org/10.1021/np9902688

Guzii, A. G., Makarieva, T. N., Denisenko, V. A., Dmitrenok, P. S., Kuzmich, A. S., Dyshlovoy, S. A., Krasokhin, V. B., & Stonik, V. A. (2010). Monanchocidin: A New Apoptosis-Inducing Polycyclic Guanidine Alkaloid from the Marine Sponge Monanchora pulchra. Organic Letters 12(19), 4292-4295. doi:https://doi.org/10.1021/ol101716x

Hanum, F., Kudus, K., & Saari, N. (2012). Plant diversity and biomass of Marudu bay mangroves in Malaysia. Pakistan Journal of Botany 44, 151-156

Hentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C., & Hacker, J. (2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology 35(3), 305-312. doi:https://doi.org/10.1111/j.1574-6941.2001.tb00816.x

Ho, D. J., Maryam, D. S., Madihah, J.-S., & Than, A. (2013). Influence of weather condition on pelagic fish landings in Kota Kinabalu, Sabah, Malaysia. Journal of Tropical Biology and Conservation 10(1), 11-21.

Hooper, J., Kennedy, J., & Van Soest, R. (2000). Annotated checklist of sponges (Porifera) of the South China Sea region. The Raffles Bulletin of Zoology Supplement Series No. 8, 125-207.

Hua, H.-m., Peng, J., Fronczek, F. R., Kelly, M., & Hamann, M. T. (2004). Crystallographic and NMR studies of antiinfective tricyclic guanidine alkaloids from the sponge Monanchora unguifera. Bioorganic & Medicinal Chemistry 12(24), 6461-6464. doi:https://doi.org/10.1016/j.bmc.2004.09.026

Jiao, W.-H., Shi, G.-H., Xu, T.-T., Chen, G.-D., Gu, B.-B., Wang, Z., Peng, S., Wang, S.-P., Li, J., Han, B.-N., Zhang, W., & Lin, H.-W. (2016). Dysiherbols A–C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge. Journal of Natural Products 79(2), 406-411. doi:https://doi.org/10.1021/acs.jnatprod.5b01079

Jiao, W.-H., Xu, T.-T., Yu, H.-B., Chen, G.-D., Huang, X.-J., Yang, F., Li, Y.-S., Han, B.-N., Liu, X.-Y., & Lin, H.-W. (2014). Dysideanones A–C, Unusual Sesquiterpene Quinones from the South China Sea Sponge Dysidea avara. Journal of Natural Products 77(2), 346-350. doi:https://doi.org/10.1021/np4009392

Kobayashi, J. i., Murata, O., Shigemori, H., & Sasaki, T. (1993). Jaspisamides A-C, New Cytotoxic Macrolides from the Okinawan Sponge Jaspis Sp. Journal of Natural Products 56(5), 787-791. doi:https://doi.org/10.1021/np50095a021

Kobayashi, J. i., Yuasa, K., Kobayashi, T., Sasaki, T., & Tsuda, M. (1996). Jaspiferals A ∼ G, new cytotoxic isomalabaricane-type nortriterpenoids from Okinawan marine sponge Jaspis stellifera. Tetrahedron 52(16), 5745-5750. doi:http://dx.doi.org/10.1016/0040-4020(96)00206-2

Lim, S.-C., Putchakarn, S., Thai, Q., Wang, D., & Huang, Y. (2016). Inventory of sponge fauna from the Singapore Strait to Taiwan Strait along the western coastline of the South China Sea. The Raffles Bulletin of Zoology Supplement Series No. 34, 104-129

Lin, C., Wu, H., Tjeerdema, R., & Viant, M. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 3(1), 55-67. doi:https://doi.org/10.1007/s11306-006-0043-1

Liu, H., Fujiwara, T., Nishikawa, T., Mishima, Y., Nagai, H., Shida, T., Tachibana, K., Kobayashi, H., Mangindaan, R. E. P., & Namikoshi, M. (2005). Lissoclibadins 1–3, three new polysulfur alkaloids, from the ascidian Lissoclinum cf. badium. Tetrahedron 61(36), 8611-8615. doi:https://doi.org/10.1016/j.tet.2005.07.002

Mann, J. (2002). Natural products in cancer chemotherapy: Past, present and future. Nature Reviews Cancer 2(2), 143-148. doi:https://doi.org/10.1038/nrc723

Meragelman, K. M., McKee, T. C., & Boyd, M. R. (2001). New Cytotoxic Isomalabaricane Triterpenes from the Sponge Jaspis Species. Journal of Natural Products 64(3), 389-392. doi:https://doi.org/10.1021/np000478g

Ogi, T., Taira, J., Margiastuti, P., & Ueda, K. (2008). Cytotoxic Metabolites from the Okinawan Ascidian Diplosoma virens. Molecules 13(3), 595. doi:https://doi.org/10.3390/molecules13030595

Page, M. J., Northcote, P. T., Webb, V. L., Mackey, S., & Handley, S. J. (2005). Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycale hentscheli (Demospongiae: Poecilosclerida). Aquaculture 250(1), 256-269. doi:https://doi.org/10.1016/j.aquaculture.2005.04.069

Palanisamy, S. K., Rajendran, N. M., & Marino, A. (2017). Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. Natural Products and Bioprospecting 7(1), 1-111. doi:https://doi.org/10.1007/s13659-016-0115-5

Perdicaris, S., Vlachogianni, T., & Valavanidis, A. (2013). Bioactive natural substances from marine sponges: new developments and prospects for future pharmaceuticals. Natural Products Chemistry & Research 1(3), 1-8. doi:http://dx.doi.org/10.4172/2329-6836.1000115

Reegan, A. D., Kinsalin, A. V., Paulraj, M. G., & Ignacimuthu, S. (2015). Larvicidal, ovicidal, and repellent activities of marine sponge Cliona celata (Grant) extracts against Culex quinquefasciatus Say and Aedes aegypti L.(Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine 8(1), 29-34. doi:https://doi.org/10.1016/S1995-7645(14)60183-8

Senderowicz, A. M. J., Kaur, G., Sainz, E., Laing, C., Inman, W. D., Rodriguez, J., Crews, P., Malspeis, L., Grever, M. R., Sausville, E. A., & Duncan, K. L. K. (1995). Jasplakinolide's Inhibition of the Growth of Prostate Carcinoma Cells In Vitro With Disruption of the Actin Cytoskeleton. JNCI: Journal of the National Cancer Institute 87(1), 46-51. doi:https://doi.org/10.1093/jnci/87.1.46

Takishima, S., Ishiyama, A., Iwatsuki, M., Otoguro, K., Yamada, H., Õmura, S., Kobayashi, H., van Soest, R. W. M., & Matsunaga, S. (2009). Merobatzelladines A and B, Anti-Infective Tricyclic Guanidines from a Marine Sponge Monanchora sp. Organic Letters 11(12), 2655-2658. doi:https://doi.org/10.1021/ol9006794

Tommonaro, G., De Rosa, S., Carnuccio, R., Maiuri, M. C., & De Stefano, D. (2015). Marine Sponge Sesterpenoids as Potent Apoptosis-Inducing Factors in Human Carcinoma Cell Lines. In S.-K. Kim (Ed.), Handbook of Anticancer Drugs from Marine Origin (pp. 439-479): Springer International Publishing.doi:https://doi.org/10.1007/978-3-319-07145-9_22

Tsuda, M., Ishibashi, M., Agemi, K., Sasaki, T., & Kobayashi, J. i. (1991). Stelliferins A–F, new antineoplastic isomalabaricane triterpenes from the Okinawan marine sponge Jaspis stellifera. Tetrahedron 47(12), 2181-2194. doi:https://doi.org/10.1016/S0040-4020(01)96129-0

Van Soest, R. W. M., Boury-Esnault, N., Hooper, J. N. A., Rützler, K., de Voogd, N. J., Alvarez, B., Hajdu, E., Pisera, A. B., Manconi, R., Schönberg, C., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M., Díaz, M.-C., Cárdenas, P., Carballo, J. L., Ríos, P., & Downey, R. (2018). World Porifera Database. Retrieved on 3/2/2018 from http://www.marinespecies.org/porifera

Vervoort, H., Fenical, W., & Epifanio, R. d. A. (2000). Tamandarins A and B: New Cytotoxic Depsipeptides from a Brazilian Ascidian of the Family Didemnidae. The Journal of Organic Chemistry 65(3), 782-792. doi:https://doi.org/10.1021/jo991425a

Zampella, A., D'Auria, M. V., Debitus, C., & Menou, J.-L. (2000). New Isomalabaricane Derivatives from a New Species of Jaspis Sponge Collected at the Vanuatu Islands. Journal of Natural Products 63(7), 943-946. doi:https://doi.org/10.1021/np000088u

Zampella, A., Giannini, C., Debitus, C., Roussakis, C., & D'Auria, M. V. (1999). New Jaspamide Derivatives from the Marine Sponge Jaspis splendans Collected in Vanuatu. Journal of Natural Products 62(2), 332-334. doi:https://doi.org/10.1021/np9803225