A mini review on challenges and opportunities in dinoflagellates cultivation

Authors

  • Carlos Yure Oliveira Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
  • Alfredo Olivera Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil

DOI:

https://doi.org/10.51200/bjomsa.v4i1.2300

Keywords:

Dinoflagellates, cultivation, bioactive molecules

Abstract

Dinoflagellates are photosynthetic protists commonly distributed in marine and freshwater environments and can be found in symbiotic associations. They are a significant primary producer and play a fundamental role in the functioning of aquatic ecosystems – especially for coral reefs. Dinoflagellates can produce a wide variety of secondary metabolites, and their toxins can affect fish, birds and mammals. In recent years these toxins have been found to have potential cytotoxic, anticancer, antibiotics, antifungals activities. This mini review covers the main genera of dinoflagellates, and challenges and advances in their cultivation in addition to prospects for development of dinoflagellates-based products.

References

Anderson, D.M., Alpermann, T.J., Cembella, A.D., Collos, Y., Masseret, E. & Montresor, M. (2012). The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14: 10-35.

Bachvaroff, T.R., Adolf, J.E., Place & A.R. (2009). Strain variation in Karlodinium veneficum (Dinophyceae): toxin profiles, pigments, and growth characteristics. Journal of Phycology 45: 137-153.

Balech, E. (1989). Redescription of Alexandrium minutum Halim (Dinophyceae) type species of the genus Alexandrium. Phycologia 28(2): 206-211.

Band-Schmidt, C. J., Rojas-Posadas, D. I., Morquecho, L. & Hernández-Saavedra, N. Y. (2008). Heterogeneity of LSU rDNA sequences and morphology of Gymnodinium catenatum dinoflagellate strains in Bahía Concepción, Gulf of California, Mexico. Journal of Plankton Research 30(7): 755-763.

Band-Schmidt, C.J., Bustillos-Guzmán, J.J., Hernández-Sandoval, F.E., Núñez-Vázquez, E.J. & López-Cortés, D. J. (2014). Effect of temperature on growth and paralytic toxin profiles in isolates of Gymnodinium catenatum (Dinophyceae) from the Pacific coast of Mexico. Toxicon 90: 199-212.

Barros, M. P., Pinto, E., Colepicolo, P. & Pedersén, M. (2001). Astaxanthin and peridinin inhibit oxidative damage in Fe2+-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochemical and Biophysical Research Communications 288(1): 225-232.

Ben-Amotz, A. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species. In: Handbook of Microalgal Culture: Biotechnology and applied phycology. Blackwell science Ltd, v. 273, p. 273-280.

Benstein, R.M., Çebi, Z., Podola, B. & Melkonian, M. (2014). Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor. Marine Biotechnology 16(6): 621-628.

Bernasconi, R., Stat, M., Koenders, A. & Huggett, M.J. (2019). Global networks of Symbiodinium-bacteria within the coral holobiont. Microbial Ecology 77(3), 794-807.

Burkholder, J.M., Glibert, P.M. & Skeltona, H.M. (2008). Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8, 77–93.

Downloads

Published

2020-12-23

How to Cite

Oliveira, C. Y., & Olivera, A. (2020). A mini review on challenges and opportunities in dinoflagellates cultivation. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 4(1), 1–5. https://doi.org/10.51200/bjomsa.v4i1.2300
Total Views: 423 | Total Downloads: 420