Supplementation of Kappaphycus alvarezii Solid Waste (Bioethanol Production) in Fish Feed for Barbonymus schwanenfeldii Growth

Authors

  • Vi-Sion Chang Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Height, Cheras, 56000, Kuala Lumpur, Malaysia
  • Regina Zhi-Ling Leong Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Height, Cheras, 56000, Kuala Lumpur, Malaysia
  • Lai-Huat Lim Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Height, Cheras, 56000, Kuala Lumpur, Malaysia
  • Swee-Sen Teo* Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Height, Cheras, 56000, Kuala Lumpur, Malaysia (*Corresponding Author: teoangelia@gmail.com) https://orcid.org/0000-0002-3053-5052

DOI:

https://doi.org/10.51200/bjomsa.v7i.3757

Keywords:

Kappaphycus alvarezii, fish feed production, fish feed supplement, Barbonymus schwanenfeldii, UN SDG12

Abstract

Kappaphycus alvarezii is a renewable resource rich in dietary sources such as vitamins, proteins, carbohydrates and trace minerals. The solid waste of this marine macroalgae produced from bioethanol production was used to produce fish feed. This study aims to evaluate the efficacy of K. alvarezii fish feed in Barbonymus schwanenfeldii fish growth. The proximate analysis, micro and macronutrient and mycotoxin in the K. alvarezii fish feed were determined using a standard protocol. For the fish culture design, fish were randomly divided into two groups: group I – feed with commercial fish feed (control); group II – feed with K. alvarezii fish feed (experimental group). The initial body weight of the fish was recorded, and thereafter weekly for 12 weeks. Proximate analysis indicated that the dried K. alvarezii fish feed is high in nitrogen (46.30+0.1%) and low in moisture (6.40+0.1%), ash (4.50+0.1%) and fiber (4.75+0.1%) contents, while rich in macro and micronutrients. There was no mycotoxin found in the K. alvarezii fish feed. For the 12 weeks of the feeding of commercial and K. alvarezii fish feed, our results did not show any significant difference (P > 0.05) in the B. schwanenfeldii specific growth rate between the groups, 0.36+0.03% in the control group and 0.34+0.02% in the experimental group, respectively. Proximate analysis of the B. schwanenfeldii fish, indicated a moisture content of 19.20+0.1%, crude extract protein of 74.70+0.1% and crude lipid of 3.50+0.1% in the control group, which are significantly higher (P < 0.05) than in the experimental group [moisture content (15.60+0.1%), crude extract protein (70.00+0.1%) and crude lipid (2.60+0.1%)]. Although the proximate analysis in the control group is significantly higher than the experimental group, the use of K. alvarezii as fish feed supplement is still a good option as it utilizes the waste of K. alvarezii and can support towards the UN Sustainable Development Goal 12, Responsible Consumption and Production.

References

Anater, A., Manyes, L., Meca, G., Ferrer, E., Luciano, F. B., Pimpão, C. T., & Font, G. (2016). Mycotoxins and their consequences in aquaculture: A review. Aquaculture, 451, 1–10.

Becker, C. F., Guimarães, J. A., Mourão, P. A. S., & Verli, H. (2007). Conformation of sulfated galactan and sulfated fucan in aqueous solutions: Implications to their anticoagulant activities. Journal of Molecular Graphics & Modelling, 26, 391–399. https://doi.org/10.1016/j.jmgm.2007.01.008

Bendary, M. M., Bassiouni, M. I., Ali, M. F., Gaafar, H. M., & Shamas, A. S. (2013). Effect of premix and seaweed additives on productive performance of lactating friesian cows. International Research Journal of Agriculture Science and Soil Science, 3, 2251–44.

Bhaskar, P., Pyne, S. K., & Ray, A. K. (2015). Growth performance study of Koi fish, Anabas testudineus (Bloch) by utilization of poultry viscera, as a potential fish feed ingredient, replacing fishmeal. International Journal of Recycling of Organic Waste in Agriculture, 4, 31–37. https://doi.org/10.1007/s40093-014-0082-y.

Bhuiyan, M. R. R., Bhuyan, M. S., Anika, T. S., Sikder, M. N. A., & Zamal, H. (2016). Determination of proximate composition of fish feed ingredients locally available in Narsingdi region, Bangladesh. International Journal of Fisheries and Aquatic Studies, 4(3), 695-699.

Broekaert, K., Heyndrickx, M., Herman, L., Devlieghere, F., & Vlaemynck, G. (2011). Seafood quality analysis: Molecular identification of dominant microbiota after ice storage on several general growth media. Food Microbiology, 28, 1162–1169. https://doi.org/10.1016/j.fm.2011.03.009

Cai-Juan, S., Ramli, R., & Abdul Rahman, R. (2016). Nutrients requirements and composition in a grouper fish feed formulation. In B. Mohamad (Ed.), Challenge of ensuring research rigor in soft sciences, vol 14. European Proceedings of Social and Behavioural Sciences (pp. 60-66). Future Academy. https://doi.org/10.15405/epsbs.2016.08.10

Carrillo, S., López, E., Casas, M. M., Avila, E., Castillo, R. M., Carranco, M. E., Calvo, C., & Pérez-Gil, F. (2008). Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. Journal of Applied Phycology, 20, 721–728. https://doi.org/10.1007/s10811-008-9334-4.

Chojnacka, K., Saeid, A., Witkowska, Z., & Tuhy, Ł. (2012). Biologically active compounds in seaweed extracts the prospects for the application. The Open Conference Proceedings Journal, 2, 20–28. https://doi.org/10.2174/1876326X01203020020

Christensen, M. S. (1992). Investigations on the ecology and fish fauna of the Mahakam river in East Kalimantan (Borneo), Indonesia. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 77(4), 593–608. https://doi.org/10.1002/iroh.19920770405

Craig, S., & Helfrich, L. A. (2002). Understanding fish nutrition, feeds, and feeding. Virginia Cooperative Extension, 1–18. https://doi.org/https://pubs.ext.vt.edu/420/420-256/420-256.html

Cruz-Suárez, L. E., Ricque-Marie, D., Tapia-Salazar, M., & Guajardo-Barbosa, C. (2000). Uso de harina de kelp (Macrocystis pyrifera) en alimentos para camarón. In L.E. Cruz-Suárez, D. Ricque-Marie, M. Tapia-Sala¬zar, M.A. Olvera-Novoa and R. Cerecedo-Olvera (Eds.), Avances en Nutrición Acuícola V - Memorias del Quinto Simposium Internacional de Nutrición Acuícola, Mérida, México, 19–22 Noviembre 2000 (pp 227–266). Universidad Autónoma de Nuevo León, Monterrey, Mexico. https://nutricionacuicola.uanl.mx/index.php/acu/article/view/274

Dhaneesh, K. V., Noushad, K. M., & Ajith Kumar, T. T. (2012). Nutritional evaluation of commercially important fish species of lakshadweep Archipelago, India. PLoS One, 7. https://doi.org/10.1371/journal.pone.0045439

Duarte, C. M., Holmer, M., Olsen, Y., Soto, D., Marbà, N., Guiu, J., Black, K., & Karakassis, I. (2009). Will the oceans help feed humanity? Bioscience, 59, 967–976. doi:10.1525/bio.2009.59.11.8

FAO (Food and Agriculture Organization of the United Nations). (2010). Good practices for the feed industry - Implementing the Codex Alimentarius code of practice on good animal feeding. https://www.fao.org/documents/card/en/c/600a129d-cad8-5c04-b919-c1cf26916ab4/

Fleurence, J., Morançais, M., Dumay, J., Decottignies, P., Turpin, B., Munier, M., Garcia-Bueno, N., & Jaouen, P. (2012). What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology, 27, 57–61. https://doi.org/10.1016/j.tifs.2012.03.004

Gatlin, D. M. (2010). Principles of fish nutrition. Southern Regional Aquaculture Center, 92, 1–8. https://doi.org/10.1016/0044-8486(91)90032-3

Guiry, M. D., & Guiry, G. M. (2016). AlgaeBase. World-wide electronic publication. In: Natl. Univ. Irel. http://www.algaebase.org/search/genus/detail/?genus_id=43474

Hashim, R., & Saat, M. A. M. (1992). The utilization of seaweed meals as binding agents in pelleted feeds for snakehead (Channa striatus) fry and their effects on growth. Aquaculture, 108, 299–308. https://doi.org/10.1016/0044-8486(92)90114-Z

HPA (Health Protection Agency). (2009). Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Health Protection Agency, London 33.

Heinitz, M. L., Ruble, R. D., Wagner, D. E., & Tatini, S. R. (2000). Incidence of salmonella in fish and seafood. Journal of Food Protection, 63, 579–592. https://doi.org/10.4315/0362-028X-63.5.579

Hixson, S. M. (2014). Fish nutrition and current issues in aquaculture: The balance in providing safe and nutritious seafood, in an environmentally sustainable manner. Journal of Aquaculture Research and Development 5, 3. https://doi.org/10.4172/2155-9546.1000234

Hoffman, R. (1993). Carrageenans inhibit growth-factor binding. Biochemical Journal, 289 (2), 331–334. https://doi.org/10.1042/bj2890331

Kasnir, M., Harlina, H., & Rosmiati, R. (2014). Water quality parameter analysis for the feasibility of shrimp culture in Takalar Regency, Indonesia. Modern Applied Science, 8, 321–325. https://doi.org/10.5539/mas.v8n6p321

Kumar, C. S., Ganesan, P., Suresh, P., & Bhaskar, N. (2008). Seaweeds as a source of nutritionally beneficial compounds - A review. Journal of Food Science and Technology, 45, 1–13.

Lum, K. K., Kim, J. G., & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4, 53(2013). https://doi.org/10.1186/2049-1891-4-53

Manning, B. B. (2010). Mycotoxins in aquaculture feeds. Southern Regional Aquaculture Center, 1–4.

Marijani, E., Wainaina, J. M., Charo-Karisa, H., Nzayisenga, L., Munguti, J., Gnonlonfin, G. J. B., Kigadye, E., & Okoth, S. (2017). Mycoflora and mycotoxins in finished fish feed and feed ingredients from smallholder farms in East Africa. The Egyptian Journal of Aquatic Research, 43, 169–176. https://doi.org/10.1016/j.ejar.2017.07.001

Matejova, I., Svobodova, Z., Vakula, J., Mares, J., & Modra, H. (2016). Impact of mycotoxins on aquaculture fish species: A Review. The Journal of the World Aquaculture Society, 48, 186–200. https://doi.org/10.1111/jwas.12371

Moffat, C. F. (2017). Aquaculture. In R. E. Hester & R. M. Harrison (Eds.), Agricultural chemicals and the environment: Issues and potential solutions, Edition 2 (pp. 128–175). The Royal Society of Chemistry. http://ndl.ethernet.edu.et/bitstream/123456789/8156/1/R.E.%20Hester_2017.pdf

Mohanty, B. P., Sankar, T. V., Ganguly, S., Mahanty, A., Anandan, R., Chakraborty, K., Paul, B. N., Sarma, D., Dayal, J. S., Mathew, S., Asha, K. K., Mitra, T., Karunakaran, D., Chanda, S., Shahi, N., Das, P., Das, P., Akhtar, M. S., Vijayagopal, P., & Sridhar, N. (2016). Micronutrient composition of 35 food fishes from India and their significance in human nutrition. Biological Trace Element Research, 174, 448–458. https://doi.org/10.1007/s12011-016-0714-3

Myrick, C. A. (2011). Aquaculture: Physiology of fish in culture environments. In A.P. Farrell (Ed.), Encyclopedia of Fish Physiology (pp 2084–2089). Academic Press. https://doi.org/10.1016/B978-0-12-374553-8.00129-5

Njinkoue, J. M., Gouado, I., Tchoumbougnang, F., Ngueguim, J. Y., Ndinteh, D. T., Fomogne-Fodjo, C. Y., & Schweigert, F. J. (2016). Proximate composition, mineral content and fatty acid profile of two marine fishes from Cameroonian coast: Pseudotolithus typus (Bleeker, 1863) and Pseudotolithus elongatus (Bowdich, 1825). NFS J 4:27–31. https://doi.org/10.1016/j.nfs.2016.07.002

Obaidat, M. M., Bani Salman, A. E., & Lafi, S. Q. (2015). Prevalence of Staphylococcus aureus in imported fish and correlations between antibiotic resistance and enterotoxigenicity. Journal of Food Protection 78(11),1999–2005. https://doi.org/10.4315/0362-028X.JFP-15-104

Oehme, M., Aas, T. S., Olsen, H. J., Sørensen, M., Hillestad, M., Li, Y., & Åsgård, T. (2014). Effects of dietary moisture content of extruded diets on physical feed quality and nutritional response in Atlantic salmon (Salmo salar). Aquaculture Nutrition, 20, 451–465. https://doi.org/10.1111/anu.12099

Oladipo, I. C., & Bankole, S. O. (2013). Nutritional and microbial quality of fresh and dried Clarias gariepinus and Oreaochromis niloticus. International Journal of Applied Microbiology and Biotechnology Research, 1, 1-6.

Pereira, R., Valente, L. M. P., Sousa-Pinto, I., & Rema, P. (2012). Apparent nutrient digestibility of seaweeds by rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus). Algal Research, 1, 77–82. https://doi.org/10.1016/j.algal.2012.04.002

Saito, E., Yoshida, N., Kawano, J., Shimizu, A., & Igimi, S. (2011). Isolation of Staphylococcus aureus from raw fish in relation to culture methods. Journal of Veterinary Medical Science, 73, 287–292. https://doi.org/10.1292/jvms.10-0198

Sanjee, S. A., & Karim, M. E. (2016). Microbiological quality assessment of frozen fish and fish processing materials from Bangladesh. International Journal of Food Science, 2016, Article ID 8605689, 6 pages. https://doi.org/10.1155/2016/8605689

Shearer, K. D., Maage, A., Opstvedt, J., & Mundheim, H. (1992). Effects of high-ash diets on growth, feed efficiency, and zinc status of juvenile Atlantic salmon (Salmo salar). Aquaculture, 106, 345–355

Simon, S. S., & Sanjeev, S. (2007). Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control, 18, 1565–1568. https://doi.org/10.1016/j.foodcont.2006.12.007

Sutharshiny, S., & Sivashanthini, K. (2011). Proximate composition of three species of Scomberoides fish from Sri Lankan waters. Asian Journal of Clincal Nutrition, 3, 103–111. https://doi.org/10.3923/ajcn.2011.103.111

Tacon, A. C. J. (1987). The nutrition and feeding of farmed fish and shrimp - A training manual. 1. The essential nutrients. FAO Field Document, Project GCP/RLA/075/ITA; Field Document No. 2/E, Brasilia, Brazil, 117pp. http://www.fao.org/docrep/field/003/AB470E/AB470E00.htm

Teophilo, G. N. D., Vieira, R. H. S. D. F., Rodrigues, D. D. P., & Menezes, F. G. R. (2002). Escherichia coli isolated from seafood: Toxicity and plasmid profiles. International Microbiology, 5, 11–14. https://doi.org/10.1007/s10123-002-0052-5

Tidwell, J. H., & Allan, G. L. (2001). Fish as food: aquaculture’s contribution. EMBO Report, 2(11), 958–963. https://doi.org/10.1093/embo-reports/kve236

Trono, G. C. (1992). Eucheuma and Kappaphycus : Taxonomy and cultivation. Bulletin of Marine Science and Fisheries, Kochi University, 12, 51–65.

United Nations, Department of Economics and Social Affairs, Population Division. (2007). World population prospects: The 2006 revision. Vol. 1. Comprehensive Tables. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2006_world_population_prospects-2006_revision_volume-i.pdf

Valente, L. M. P., Gouveia, A., Rema, P., Matos, J., Gomes, E. F., & Pinto, I. S. (2006). Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 252, 85–91. https://doi.org/10.1016/j.aquaculture.2005.11.052

van den Broek, M. J. M., Mossel, D. A. A., & Mol, H. (1984). Microbiological quality of retail fresh fish fillets in The Netherlands. International Journal of Food Microbiology, 1, 53–61. https://doi.org/10.1016/0168-1605(84)90008-4

Varga, S., & Anderson, G. W. (1968). Significance of coliforms and enterococci in fish products. Applied Microbiology, 16(2), 193–196. https://doi.org/10.1128/am.16.2.193-196.1968

Warne, R. W. (2014). The micro and macro of nutrients across biological scales. Integrative and Comparative Biology, 54(5), 864–872. https://doi.org/10.1093/icb/icu071

Zhang, D., Liao, X. G., Guo, Y. C., Zhang, X. L., Chuan, H. X., & Cui, Y. (2013). Quantitative analysis of foodborne salmonella-the study of mini-modified semi solid rappaport vassiliadis most probable number method. Chinese Journal of Preventive Medicine, 47(5), 452–4

Published

2023-12-31

How to Cite

Chang, V.-S., Leong, R. Z.-L., Lim, L.-H., & Teo*, S.-S. (2023). Supplementation of Kappaphycus alvarezii Solid Waste (Bioethanol Production) in Fish Feed for Barbonymus schwanenfeldii Growth . Borneo Journal of Marine Science and Aquaculture (BJoMSA), 7, 14–29. https://doi.org/10.51200/bjomsa.v7i.3757
Total Views: 144 | Total Downloads: 74