Cinnamon Essential Oil (EOCIN) Functional Diet: Effect on Growth Performance and Health Status of Penaeus vannamei in Super-Intensive Tank Culture

EOCIN diet: effect on growth & health of Penaeus vannamei

Authors

  • Padilah Bakar* National Fish Health Research Centre, 11960 Batu Maung, Penang, Malaysia (*Corresponding author: padilah@dof.gov.my) https://orcid.org/0009-0006-3287-9808
  • Rohaiza Asmini Yahya National Fish Health Research Centre, 11960 Batu Maung, Penang, Malaysia
  • Beng Chu Kua Fisheries Research Institute, 11960 Batu Maung, Penang, Malaysia

DOI:

https://doi.org/10.51200/bjomsa.v8i.5109

Keywords:

EOCIN, feed additive, health, white shrimp, growth

Abstract

A field trial was conducted to assess the application of cinnamon essential oil (EOCIN) in the super-intensive culture of white shrimp (Penaeus vannamei). The objective of this study is to determine the efficacy of EOCIN on growth performance and prophylaxis in prevention against two common diseases in farmed shrimps, specifically acute hepatopancreatic necrosis disease (AHPND) and Enterocytozoon hepatopenaei (EHP). The EOCIN dose regime, set at 1.5% (v/w kg feed), was administered for 14 days in two series of application. The experiment was carried out in two replicates for the EOCIN and control involving four (4) tank cultures, 34 m in diameter with estimation of 300,000 pieces of shrimps per tank at stocking density of 300 pieces/m2 in a single cycle of culture production. An increased in weight gain of shrimp from EOCIN group was recorded compared to control, particularly in grow-out shrimps at DOC40-56 after completion of 28-days of EOCIN application. Shrimp Specific Growth Rate (SGR) showed a compensatory growth of 4.5856% day-1 from the EOCIN group compared with control, 4.0586% day-1. Average daily weight gain for EOCIN (0.2328 g/day) was higher than control (0.1733 g/day), with survival rates of 80% and 75%, respectively. The FCR for EOCIN was lower (1.503) compared to control (2.014). The EOCIN additive regime used in this study improved the growth performance of white shrimps in particular, prevention against AHPND and control low prevalence of EHP infection detected in the early culture.

References

Amer, S. A., Metwally, A. E., & Ahmed, S. A. A. (2018). The influence of dietary supplementation of cinnamaldehyde and thymol on the growth performance, immunity, and antioxidant status of monosex Nile tilapia fingerlings (Oreochromis niloticus). Egyptian Journal of Aquatic Research, 44(4), 251–256.

Aranguren, L. F., Han, J. E., & Tang, K. F. J. (2017). EHP: A risk factor for other shrimp diseases. Global Aquaculture Advocate. https://www.globalseafood.org/advocate/ehp-risk-factor-shrimp-diseases/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA

ASEAN. (1998). Manual of ASEAN good shrimp farm management practice. Association of Southeast Asian Nations.

Austin, B., & Austin, D. A. (1999). Bacterial fish pathogens: Disease of farmed and wild fish (3rd ed.). Springer.

Bandeira Junior, G., Bianchini, A. E., de Freitas Souza, C., Descovi, S. N., da Silva Fernandes, L., de Lima Silva, L., Cargnelutti, J. F., &

Baldisserotto, B. (2022). The use of cinnamon essential oils in aquaculture: antibacterial, anesthetic, growth-promoting, and antioxidant effects. Fishes, 7, 133.

Briggs, M. (2006). Cultured aquatic species information programme: Penaeus vannamei (Boone, 1931). FAO Fisheries and Aquaculture Department.

Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.

Cabanyero, C. H., Carrascosa, E., & Jiménez, S. (2023). Exploring the effect of functional diets containing phytobiotic compounds in whiteleg shrimp health: Resistance to acute hepatopancreatic necrotic disease caused by Vibrio parahaemolyticus. Animals, 13(7), 1534.

Chaikaew, P., Rugkarn, N., Pongpipatwattana, V., & Kanokkantapong, V. (2019). Enhancing ecological-economic efficiency of intensive shrimp farm through in-out nutrient budget and feed conversion ratio. Sustainable Environment Research, 29(28), 1–11.

Chang, S. T., Chen, P. F., & Chang, S. C. (2001). Antibacterial activity of leaf essential oils and their constituents from Cinnamomun osmophloeum. Journal of Ethnopharmacology, 77(1), 123–127.

Cheung, M. K., Yip, H. Y., Nong, W., Law, P. T. W., Chu, K. H., Kwan, H. S. & Hui, J. H. L. (2015). Rapid change of microbiota diversity in the gut but not the hepatopancreas during gonadal development of the new shrimp model Neocaridina denticulata. Marine Biotechnology, 17(6), 811–819.

Cornejo-Granados, F., Gallardo-Becerra, L., Leonardo-Reza. M., Ochoa-Romo, J. P., & Ochoa-Leyva, A. (2018). A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ, 6, e5382.

Dien, L. D., Hiep, L. H., Hao, N. V., et al. (2018). Comparing nutrient budgets in integrated rice-shrimp ponds and shrimp grow-out ponds. Aquaculture, 484, 250–258.

Domínguez-Borbor, C., Sánchez-Rodríguez, A., Sonnenholzner, S., & Rodríguez, J. (2020). Essential oils mediated antivirulence therapy against vibriosis in Penaeus vannamei. Aquaculture, 529, 735639.

El-Hack., Alagawany, M., Abdel-Moneim, A-. M. E., Mohammed. N. G., Khafaga, A. F., Bin-Jumah, M., Othman, S. I., Allam, A. A., & Elnesr, S. S. (2020). Cinnamon (Cinnamomum zeylanicum) oil as a potential alternative to antibiotics in poultry. Antibiotics, 9(1), 210. https://doi.org/10.3390/antibiotics9050210

Ertas, O., N., Guler, T., Ciftci, M., Dalkilic, B., & Simsek, G. (2005). The effect of an essential oil mix derived from oregano, clove, and aniseed on broiler performance. International Journal of Poultry Science, 4(11), 879–884. https://doi.org/10.3923/ijps.2005.879.884

Ghafoor, F. (2020). Importance of herbs in aquaculture: Cinnamon as a potent enhancer of growth and immunity in fish (Ctenopharyngodon idella). Iranian Journal of Aquatic Animal Health, 6(2), 78–92.

Hoa, T. T. T., Fagnon, M. S., Thy, D. T. M., Chabrillat, T., Trung, N. B., & Kerros, S. (2023). Growth performance and disease resistance against Vibrio parahaemolyticus of whiteleg shrimp (Litopenaeus vannamei) fed essential oil blend (Phyto AquaBiotic). Animals, 13, 3320. https://doi.org/10.3390/ani13213320

Jaroenlak, P., Sanguanrut, P., Williams, B. A. P., Stentiford, G. D., Flegel, T. W., Sritunyalucksana, K., & Itsathitphaisarn, O. (2016). A nested PCR assay to avoid false positive detection of the microsporidian Enterocytozoon hepatopenaei (EHP) in environmental samples in shrimp farms. PLoS ONE, 11(11), e0166320.

Lightner, D. V., Redman, R. M., Pantoja, C. R., Noble, B. L., & Tran, L. (2012). Early mortality syndrome affects shrimp in Asia. Global Aquaculture Advocate, 15(1), 40.

Lim, S. W. (2010). How to prevent high feed conversion ratio in shrimp farming. Journal of Fish Environment, 34(1), 28–34.

Majolo, C., Rocha, S. I. B., Chagas, E. C., Chaves, F. C. M., & Bizzo, H. R. (2017). Chemical composition of Lippia spp. essential oil and antimicrobial activity against Aeromonas hydrophila. Aquaculture Research, 48(5), 2380–2387. https://doi.org/10.1111/are.13073

Öntaş, C., Baba, E., Kaplaner, E., Küükaydin, S., Öztürk, M., & Ercan, M. D. (2016). Antibacterial activity of Citrus limon peel essential oil and Argania spinosa oil against fish pathogenic bacteria. Kafkas Universitesi Veteriner Fakultesi Dergisi, 22(5), 741–749. https://doi.org/10.9775/kvfd.2016.15311

Padilah, B., Rohaiza-Asmini, Y., Gan, H-. M., Rozana, W. A. W., Sajiri, W. M. H. W. and Kua, B-. C. (2022). Detection of PirA/B toxin genes for acute hepatopancreatic necrosis disease (AHPND) and Vibrio parahaemolyticus in Penaeus vannamei culture from major white shrimp producing farms in Malaysia. Pertanika Journal of Tropical Agricultural Science, 45(1), 171–186.

Purkait, S., Bhattacharya, A., Bag, A., & Chattopadhyay, R. R. (2020). Synergistic antibacterial, antifungal, and antioxidant efficacy of cinnamon and clove essential oils in combination. Archives of Microbiology, 202, 1439-1448. https://doi.org/10.1007/s00203-020-01858-3

Shinn, A. P., Pratoomyot, J., Griffiths, D., Trong, T. Q., Vu, N. T., Jiravanichpaisal, P., & Briggs, M. (2018). Asian shrimp production and the economic costs of disease. Asian Fisheries Science, 31S, 29–58. https://doi.org/10.33997/j.afs.2018.31.S1.003

Snuossi, M., Trabelsi, N., Taleb, S. B., Dehmeni, A., Flamini, G. & Feo, V. D. (2016). Laurus nobilis, Zingiber officinale, and Anethum graveolens essential oils: composition, antioxidant, and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414. https://doi.org/10.3390/molecules21101414

Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A.. (2019). A comprehensive review of the antibacterial, antifungal, and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. https://doi.org/10.1016/micpath.2019.103580

Taw, N. (2017). A look at various intensive shrimp farming systems in Asia. Global Aquaculture Advocate. Available from https://www.globalseafood.org/advocate/intensive-shrimp-farming-asia/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA

Teichert-Coddington, D. R., Martinez, D., & Ramírez, E. (2000). Partial nutrient budgets for semi-intensive shrimp farms in Honduras. Aquaculture, 190, 139–154.

Thakur, D. P., & Lin, C. K. (2003). Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering, 27(3), 159–176. https://doi.org/10.1016/S0144-8609(02)00055-9

Villarreal, H., & Juarez, L. (2022). Editorial. Super-intensive shrimp culture: Analysis and future challenges. Journal of the World Aquaculture Society, 53, 928-932. https://doi.org/10.1111/jwas.12929

Published

2024-12-31

How to Cite

Bakar*, P., Yahya, R. A. ., & Kua, B. C. (2024). Cinnamon Essential Oil (EOCIN) Functional Diet: Effect on Growth Performance and Health Status of Penaeus vannamei in Super-Intensive Tank Culture : EOCIN diet: effect on growth & health of Penaeus vannamei. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 8, 34–49. https://doi.org/10.51200/bjomsa.v8i.5109
Total Views: 16 | Total Downloads: 21