ADDITIVES FOR CELLULASE ENHANCEMENT
DOI:
https://doi.org/10.51200/bijb.v1i.1174Keywords:
cellulases, hemicellulases, laccases , LPMOs, salts, surfactantsAbstract
Cellulases have been vital for the saccharification of lignocellulosic biomass into reduced sugars to produce biofuels and other essential biochemicals. However, the sugar yields achievable for canonical cellulases (i.e. endoglucanases, exoglucanases and β-glucosidases) have not been convincing in support of the highly acclaimed prospects and end-uses heralded. The persistent pursuit of the biochemical industry to obtain high quantities of useful chemicals from lignocellulosic biomass has resulted in the supplementation of cellulose-degrading enzymes with other biological
complementation. Also, chemical additives (e.g. salts, surfactants and chelating agents) have been employed to enhance the stability and improve the binding and overall functionality of cellulases to increase product titre. Herein, we report the roadmap of cellulase-additive supplementations and the associated yield performances.
References
Abou-hachem, M., Karlsson, E. N., Simpson, P. J., Linse, S., Sellers, P., Williamson, M. P., … Holst,
O. (2002). Calcium binding and thermostability of carbohydrate binding module
CBM4-2 of Xyn10A from rhodothermus marinus ±. Biochemistry, 41 (18), 5720 – 5729.
DOI: 10.1021/bi012094a
Agrawal, R., Satlewal, A., Gaur, R., Mathur, A., Kumar, R., Gupta, R. P., & Tuli, D. K. (2015). Pilot scale
pretreatment of wheat straw and comparative evaluation of commercial enzyme
preparations for biomass saccharification and fermentation. Biochem. Eng. J., 102, 54 –
DOI: 10.1016/j.bej.2015.02.018
Balan, V., Bals, B., Chundawat, S. P., Marshall, D., & Dale, B. E. (2009). Lignocellulosic biomass
pretreatment using AFEX. In J. R. Mielenz (Ed.), Biofuels: Methods in molecular biology
(Methods and protocols) (pp. 61 – 77). Totowa, NJ: Humana Press. DOI: 10.1007/978-1-
-214-8_5
Berlin, A. (2013). No barriers to cellulose breakdown. Science, 342 (6165), 1454 – 1456. DOI:
1126/science.1247697
Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 18 (5),
– 383. DOI: 10.1016/S0734-9750(00)00041-0
Bolam, D. N., Xie, H., Pell, G., Hogg, D., Galbraith, G., Henrissat, B., & Gilbert, H. J. (2004). X4
modules represent a new family of carbohydrate-binding modules that display novel
properties. J. Biol. Chem., 279, 22953 – 22963. DOI: 10.1074/jbc.M313317200
Bommarius, A. S., Sohn, M., Kang, Y., Lee, J. H., & Realff, M. J. (2014). Protein engineering of
cellulases. Curr. Opin. Biotechnol., 29, 139 – 145. DOI: 10.1016/j.copbio.2014.04.007
Boyce, A., & Walsh, G. (2015). Characterisation of a novel thermostable endoglucanase from
Alicyclobacillus vulcanalis of potential application in bioethanol production. Appl.
Microbiol. Biotechnol., 99 (18), 7515 – 7525. DOI: 10.1007/s00253-015-6474-8
Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in
mixed-culture solid-state fermentation of soybean hulls supplemented with wheat
bran. Process Biochem., 45, 120 – 128. DOI: 10.1016/j.procbio.2009.08.015
Brondi, M. G., Vasconcellos, V. M., Giordano, R. C., & Farinas, C. S. (2019). Alternative low-cost
additives to improve the saccharification of lignocellulosic biomass. Appl. Biochem.
Biotechnol., 187, 461 – 473. DOI: 10.1007/s12010-018-2834-z
Bura, R., Chandra, R., & Saddler, J. (2009). Influence of xylan on the enzymatic hydrolysis of
steam-pretreated corn stover and hybrid poplar. Biotechnol. Prog., 25 (2), 315 – 322.
DOI: 10.1002/btpr.98
Chandel, A. K., & Silvério da Silva, S. (Eds.). (2013). Sustainable degradation of lignocellulosic
biomass: Techniques, applications and commercialization. London: InTech Open. DOI:
5772/1490
Chandel, A. K., Gonçalves, B. C. M., Strap, J. L., & da Silva, S. S. (2015). Biodelignification
of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy
for clean energy production. Crit. Rev. Biotechnol., 35 (3), 281 – 293. DOI:
3109/07388551.2013.841638
Chang, L., Ding, M., Bao, L., Chen, Y., Zhou, J., & Lu, H. (2011). Characterization of a bifunctional
xylanase/endoglucanase from yak rumen microorganisms. Appl. Microbiol. Biotechnol.,
, 1933 – 1942. DOI: 10.1007/s00253-011-3182-x
Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of
lignocellulosic Biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng., 2, 121 –
DOI: 10.1146/annurev-chembioeng-061010-114205
Czjzek, M., Cicek, M., Zamboni, V., Bevan, D. R., Henrissat, B., & Esen, A. (2000). The mechanism of
substrate (aglycone) specificity in beta-glucosidases is revealed by crystal structures
of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes.
Proc. Natl. Acad. Sci., 97 (25), 13555 – 13560. DOI: 10.1073/pnas.97.25.13555
Das, A., Paul, T., Ghosh, P., Halder, S. K., Das Mohapatra, P. K., Pati, B.R., & Mondal, K. C. (2015).