ADDITIVES FOR CELLULASE ENHANCEMENT

Authors

  • Eugene M. Obeng Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Chan Yi Wei Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Siti Nurul Nadzirah Adam Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Clarence M. Ongkudon Bioprocess Engineering Research Group, Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA.Energy Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, 88400, MALAYSIA.

DOI:

https://doi.org/10.51200/bijb.v1i.1174

Keywords:

cellulases, hemicellulases, laccases , LPMOs, salts, surfactants

Abstract

Cellulases have been vital for the saccharification of lignocellulosic biomass into reduced sugars to produce biofuels and other essential biochemicals. However, the sugar yields achievable for canonical cellulases (i.e. endoglucanases, exoglucanases and β-glucosidases) have not been convincing in support of the highly acclaimed prospects and end-uses heralded. The persistent pursuit of the biochemical industry to obtain high quantities of useful chemicals from lignocellulosic biomass has resulted in the supplementation of cellulose-degrading enzymes with other biological
complementation. Also, chemical additives (e.g. salts, surfactants and chelating agents) have been employed to enhance the stability and improve the binding and overall functionality of cellulases to increase product titre. Herein, we report the roadmap of cellulase-additive supplementations and the associated yield performances.

References

Abou-hachem, M., Karlsson, E. N., Simpson, P. J., Linse, S., Sellers, P., Williamson, M. P., … Holst,

O. (2002). Calcium binding and thermostability of carbohydrate binding module

CBM4-2 of Xyn10A from rhodothermus marinus ±. Biochemistry, 41 (18), 5720 – 5729.

DOI: 10.1021/bi012094a

Agrawal, R., Satlewal, A., Gaur, R., Mathur, A., Kumar, R., Gupta, R. P., & Tuli, D. K. (2015). Pilot scale

pretreatment of wheat straw and comparative evaluation of commercial enzyme

preparations for biomass saccharification and fermentation. Biochem. Eng. J., 102, 54 –

DOI: 10.1016/j.bej.2015.02.018

Balan, V., Bals, B., Chundawat, S. P., Marshall, D., & Dale, B. E. (2009). Lignocellulosic biomass

pretreatment using AFEX. In J. R. Mielenz (Ed.), Biofuels: Methods in molecular biology

(Methods and protocols) (pp. 61 – 77). Totowa, NJ: Humana Press. DOI: 10.1007/978-1-

-214-8_5

Berlin, A. (2013). No barriers to cellulose breakdown. Science, 342 (6165), 1454 – 1456. DOI:

1126/science.1247697

Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 18 (5),

– 383. DOI: 10.1016/S0734-9750(00)00041-0

Bolam, D. N., Xie, H., Pell, G., Hogg, D., Galbraith, G., Henrissat, B., & Gilbert, H. J. (2004). X4

modules represent a new family of carbohydrate-binding modules that display novel

properties. J. Biol. Chem., 279, 22953 – 22963. DOI: 10.1074/jbc.M313317200

Bommarius, A. S., Sohn, M., Kang, Y., Lee, J. H., & Realff, M. J. (2014). Protein engineering of

cellulases. Curr. Opin. Biotechnol., 29, 139 – 145. DOI: 10.1016/j.copbio.2014.04.007

Boyce, A., & Walsh, G. (2015). Characterisation of a novel thermostable endoglucanase from

Alicyclobacillus vulcanalis of potential application in bioethanol production. Appl.

Microbiol. Biotechnol., 99 (18), 7515 – 7525. DOI: 10.1007/s00253-015-6474-8

Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in

mixed-culture solid-state fermentation of soybean hulls supplemented with wheat

bran. Process Biochem., 45, 120 – 128. DOI: 10.1016/j.procbio.2009.08.015

Brondi, M. G., Vasconcellos, V. M., Giordano, R. C., & Farinas, C. S. (2019). Alternative low-cost

additives to improve the saccharification of lignocellulosic biomass. Appl. Biochem.

Biotechnol., 187, 461 – 473. DOI: 10.1007/s12010-018-2834-z

Bura, R., Chandra, R., & Saddler, J. (2009). Influence of xylan on the enzymatic hydrolysis of

steam-pretreated corn stover and hybrid poplar. Biotechnol. Prog., 25 (2), 315 – 322.

DOI: 10.1002/btpr.98

Chandel, A. K., & Silvério da Silva, S. (Eds.). (2013). Sustainable degradation of lignocellulosic

biomass: Techniques, applications and commercialization. London: InTech Open. DOI:

5772/1490

Chandel, A. K., Gonçalves, B. C. M., Strap, J. L., & da Silva, S. S. (2015). Biodelignification

of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy

for clean energy production. Crit. Rev. Biotechnol., 35 (3), 281 – 293. DOI:

3109/07388551.2013.841638

Chang, L., Ding, M., Bao, L., Chen, Y., Zhou, J., & Lu, H. (2011). Characterization of a bifunctional

xylanase/endoglucanase from yak rumen microorganisms. Appl. Microbiol. Biotechnol.,

, 1933 – 1942. DOI: 10.1007/s00253-011-3182-x

Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of

lignocellulosic Biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng., 2, 121 –

DOI: 10.1146/annurev-chembioeng-061010-114205

Czjzek, M., Cicek, M., Zamboni, V., Bevan, D. R., Henrissat, B., & Esen, A. (2000). The mechanism of

substrate (aglycone) specificity in beta-glucosidases is revealed by crystal structures

of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes.

Proc. Natl. Acad. Sci., 97 (25), 13555 – 13560. DOI: 10.1073/pnas.97.25.13555

Das, A., Paul, T., Ghosh, P., Halder, S. K., Das Mohapatra, P. K., Pati, B.R., & Mondal, K. C. (2015).

Published

2020-12-23

How to Cite

Obeng, E. M. ., Chan Yi Wei, Nadzirah Adam, S. N. ., & Ongkudon, C. M. (2020). ADDITIVES FOR CELLULASE ENHANCEMENT. Borneo International Journal of Biotechnology (BIJB), 1, 1–18. https://doi.org/10.51200/bijb.v1i.1174
Total Views: 288 | Total Downloads: 325