A SHORT REVIEW OF ISOINDIGO ACCEPTOR FOR CONJUGATED POLYMERIC PHOTOVOLTAICS
DOI:
https://doi.org/10.51200/bsj.v38i2.4411Keywords:
Isoindigo, Conjugated copolymers, Polymeric solar cells, Small moleculesAbstract
This paper focussed on the recent development of conjugated polymers that contains isoindigo as acceptor moiety in the application of copolymeric solar cell. In the past decade, various modifications have been done either on the isoindigo acceptor itself or incorporated the isoindigo with different donor moieties. Recently, the power conversion efficiency (PCE) of this isoindigo-based polymeric photovoltaics have achieved up to ~7%. Hence, it is a promising acceptor for the photovoltaics and is expected to break through the recent PCE achievement in the future. This review briefly summarized the structures and properties of the isoindigo-based polymers that have been investigated by the past researches.
References
Ashraf, R. S., Kronemeijer, A. J., James, D. I., Sirringhaus, H., & McCulloch, I. (2012). A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications, 48(33), 3939. https://doi.org/10.1039/c2cc30169e
Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., & Mei, P. R. (2008). New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells, 92(4), 418–424. https://doi.org/10.1016/j.solmat.2007.10.003
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P.L., & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature. https://doi.org/10.1038/347539a0
Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power [3]. Journal of Applied Physics, 25(5), 676–677. https://doi.org/10.1063/1.1721711
Cheng, X., Wan, Q., Wu, Y., Guo, B., Guo, X., Li, Y., Zhang, M., Cui, C., & Li, Y. (2016). Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar cells. Solar Energy Materials and Solar Cells. https://doi.org/10.1016/j.solmat.2016.01.017
Cheng, Y., Yang, S., & Hsu, C. (2009). Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 109(11), 5868–5923. https://doi.org/10.1021/cr900182s
D ’aprano, G., Leclerc, M., & Zotti, G. (1992). Stabilization and Characterization of Pernigraniline Salt: The ” Acid-Doped ” Form of Fully Oxidized Polyanilines. Macromolecules. https://doi.org/10.1021/ma00034a013
Darling, S. B., & You, F. (2013). The case for organic photovoltaics. RSC Adv., 3, 17633– 17648. https://doi.org/10.1039/c3ra42989j
de Miguel, G., Camacho, L., & García-Frutos, E. M. (2016). 7,7′-Diazaisoindigo: a novel building block for organic electronics. J. Mater. Chem. C, 4(6), 1208–1214. https://doi.org/10.1039/C5TC03464G
Dutta, G. K., Han, A. R., Lee, J., Kim, Y., Oh, J. H., & Yang, C. (2013). Visible-near infrared absorbing polymers containing thienoisoindigo and electron-rich units for organic transistors with tunable polarity. Advanced Functional Materials, 23(42), 5317–5325. https://doi.org/10.1002/adfm.201300536
Estrada, L. A., Stalder, R., Abboud, K. A., Risko, C., Bredas, J. L., & Reynolds, J. R. (2013). Understanding the electronic structure of isoindigo in conjugated systems: A combined theoretical and experimental approach. Macromolecules, 46(22), 8832–8844. https://doi.org/10.1021/ma4013829
Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62(1), 1–19. https://doi.org/10.1016/S0927- 0248(99)00131-2
Grenier, F., Berrouard, P., Pouliot, J.-R., Tseng, H.-R., Heeger, A. J., & Leclerc, M. (2012). Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 4(6), 1836–1841. https://doi.org/10.1039/C2PY20986A
Günes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107(4), 1324–1338. https://doi.org/10.1021/cr050149z
Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life . Retrieved from http://rael.berkeley.edu/old_drupal/sites/default/files/old-site-files/2001/HerzogLipman-Kammen-RenewableEnergy-2001.pdf
Hideki, S., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of Electrically-Conducting organic Polymers: Halogen Derivatives of Polyacatylene, (CH)x. J.C.S., Chemical Communications, (16), 1–5. https://doi.org/10.1039/c39770000578
Leclerc, M. (1999). Optical and electrochemical transducers based on functionalized conjugated polymers. Advanced Materials, 11(18), 1491–1498. https://doi.org/10.1002/(SICI)1521 -4095(199912)11:18<1491::AIDADMA1491>3.0.CO;2-O
Leclerc, M., & Faid, K. (1997). Electrical and optical properties of Processable Polythiophene Derivatives: Structure-Property relationships. Advanced Materials, 9(14), 1087–1094. https://doi.org/10.1002/adma.19970091404
Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Ade. H., & Yan, H. (2014). Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 5:5293(9), doi: 10.1038/ncomms6293. https://doi.org/10.1038/ncomms6293
Mei, J., Graham, K. R., Stalder, R., & Reynolds, J. R. (2010). Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters, 12(4), 660–663. https://doi.org/10.1021/ol902512x
Morin, J.-F., Leclerc, M., Adès, D., & Siove, A. (2005). Polycarbazoles: 25 Years of Progress. Macromolecular Rapid Communications, 26(10), 761 –778. https://doi.org/10.1002/marc.200500096
Neher, D. (2001). Polyfluorene homopolymers: Conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromolecular Rapid Communications. https://doi.org/10.1002/1521 -3927(20011101)22:17<1365::AIDMARC1365>3.0.CO;2-B
Rand, B. P., Genoe, J., Heremans, P., & Poortmans, J. (2007). Solar Cells Utilizing Small Molecular Weight Organic Semiconductors. Prog. Photovolt: Res. Appl., 15(February 2013), 659–676. https://doi.org/10.1002/pip
Rehahn, M., Schlüter, A. D., Wegner, G., & Feast, W. J. (1989). Soluble poly(paraphenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via Pdcatalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer. https://doi.org/10.1016/0032-3861(89)90079-7
Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R., & Sakthivel, P. (2016). Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Letters, 57(3), 243–252. https://doi.org/10.1016/j.tetlet.2015.12.057
Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., & Brabec, C. J. (2006). Design rules for donors in bulk-heterojunction solar cells Towards 10 % energy-conversion efficiency. Advanced Materials, 18(6), 789–794. https://doi.org/10.1002/adma.200501717
Sonar, P., Tan, H.-S., Sun, S., Lam, Y. M., & Dodabalapur, A. (2013). Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors. Polymer Chemistry, 4(6), 1983. https://doi.org/10.1039/c2py20942j
Stalder, R., Mei, J., Graham, K. R., Estrada, L. a, & Reynolds, J. R. (2013). Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials, 26(1), 664–678. https://doi.org/10.1021/cm402219v
Stalder, R., Mei, J., & Reynolds, J. R. (2010). Isoindigo-based donor-acceptor conjugated polymers. Macromolecules, 43(20), 8348–8352. https://doi.org/10.1021/ma1018445
Stalder, R., Mei, J., Subbiah, J., Grand, C., Estrada, L. A., So, F., & Reynolds, J. R. (2011). n-Type Conjugated Polyisoindigos. Macromolecules, 44(16), 6303–6310. https://doi.org/10.1021/ma2012706 Tang, W. C. (1986). Two-layer Organic Photovoltaic Cell, 48(2), 183–185.
Wang, E., Ma, Z., Zhang, Z., Henriksson, P., Inganäs, O., Zhang, F., & Andersson, M. R. (2011a). An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chemical Communications, 47(17), 4908. https://doi.org/10.1039/c1cc11053e
Wang, E., Ma, Z., Zhang, Z., Vandewal, K., Henriksson, P., Inganäs, O., Zhang, F. & Andersson, M. R. (2011 b). An Easily Accessible Isoindigo-Based Polymer for HighPerformance Polymer Solar Cells. Journal of the American Chemical Society, 133(36), 14244–7. https://doi.org/10.1021/ja206610u
Wang, E., Mammo, W., & Andersson, M. R. (2014). 25th anniversary article: Isoindigobased polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Advanced Materials, 26(12), 1801 –1826. https://doi.org/10.1002/adma.201304945
Watanabe, A., Murakami, S., Mori, K., & Kashiwaba, Y. (1989). Electronic properties of polypyrrole/n-Si heterojunctions and polypyrrole/metal contacts. Macromolecules, 22(11), 4231–4235. https://doi.org/10.1021/ma00201a016
Wohrle, B. D., & Meissner, D. (1991). Organic Solar Cells, 3, 129–138.
Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer Photovoltaic Cells – Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 270(5243), 1789–1791. https://doi.org/10.1126/science.270.5243.1789
Zhang, G., Fu, Y., Xie, Z., & Zhang, Q. (2011). Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules, 44(6), 1414–1420. https://doi.org/10.1021/ma102357b
Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q., & Hou, J. (2015). Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry, 58(2), 248–256. https://doi.org/10.1007/s11426-014-5273-x
Zhou, H., Yang, L., & You, W. (2012). Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 45(2), 607–632. https://doi.org/10.1021/ma201648t