A SHORT REVIEW OF ISOINDIGO ACCEPTOR FOR CONJUGATED POLYMERIC PHOTOVOLTAICS

Authors

  • Mohd Sani Sarjadi
  • Shu Er Tan
  • Wahidah Zabidi

DOI:

https://doi.org/10.51200/bsj.v38i2.4411

Keywords:

Isoindigo, Conjugated copolymers, Polymeric solar cells, Small molecules

Abstract

This paper focussed on the recent development of conjugated polymers that contains isoindigo as acceptor moiety in the application of copolymeric solar cell. In the past decade, various modifications have been done either on the isoindigo acceptor itself or incorporated the isoindigo with different donor moieties. Recently, the power conversion efficiency (PCE) of this isoindigo-based polymeric photovoltaics have achieved up to ~7%. Hence, it is a promising acceptor for the photovoltaics and is expected to break through the recent PCE achievement in the future. This review briefly summarized the structures and properties of the isoindigo-based polymers that have been investigated by the past researches.

References

Ashraf, R. S., Kronemeijer, A. J., James, D. I., Sirringhaus, H., & McCulloch, I. (2012). A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications, 48(33), 3939. https://doi.org/10.1039/c2cc30169e

Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., & Mei, P. R. (2008). New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells, 92(4), 418–424. https://doi.org/10.1016/j.solmat.2007.10.003

Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P.L., & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature. https://doi.org/10.1038/347539a0

Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power [3]. Journal of Applied Physics, 25(5), 676–677. https://doi.org/10.1063/1.1721711

Cheng, X., Wan, Q., Wu, Y., Guo, B., Guo, X., Li, Y., Zhang, M., Cui, C., & Li, Y. (2016). Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar cells. Solar Energy Materials and Solar Cells. https://doi.org/10.1016/j.solmat.2016.01.017

Cheng, Y., Yang, S., & Hsu, C. (2009). Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 109(11), 5868–5923. https://doi.org/10.1021/cr900182s

D ’aprano, G., Leclerc, M., & Zotti, G. (1992). Stabilization and Characterization of Pernigraniline Salt: The ” Acid-Doped ” Form of Fully Oxidized Polyanilines. Macromolecules. https://doi.org/10.1021/ma00034a013

Darling, S. B., & You, F. (2013). The case for organic photovoltaics. RSC Adv., 3, 17633– 17648. https://doi.org/10.1039/c3ra42989j

de Miguel, G., Camacho, L., & García-Frutos, E. M. (2016). 7,7′-Diazaisoindigo: a novel building block for organic electronics. J. Mater. Chem. C, 4(6), 1208–1214. https://doi.org/10.1039/C5TC03464G

Dutta, G. K., Han, A. R., Lee, J., Kim, Y., Oh, J. H., & Yang, C. (2013). Visible-near infrared absorbing polymers containing thienoisoindigo and electron-rich units for organic transistors with tunable polarity. Advanced Functional Materials, 23(42), 5317–5325. https://doi.org/10.1002/adfm.201300536

Estrada, L. A., Stalder, R., Abboud, K. A., Risko, C., Bredas, J. L., & Reynolds, J. R. (2013). Understanding the electronic structure of isoindigo in conjugated systems: A combined theoretical and experimental approach. Macromolecules, 46(22), 8832–8844. https://doi.org/10.1021/ma4013829

Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62(1), 1–19. https://doi.org/10.1016/S0927- 0248(99)00131-2

Grenier, F., Berrouard, P., Pouliot, J.-R., Tseng, H.-R., Heeger, A. J., & Leclerc, M. (2012). Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 4(6), 1836–1841. https://doi.org/10.1039/C2PY20986A

Günes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107(4), 1324–1338. https://doi.org/10.1021/cr050149z

Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life . Retrieved from http://rael.berkeley.edu/old_drupal/sites/default/files/old-site-files/2001/HerzogLipman-Kammen-RenewableEnergy-2001.pdf

Hideki, S., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of Electrically-Conducting organic Polymers: Halogen Derivatives of Polyacatylene, (CH)x. J.C.S., Chemical Communications, (16), 1–5. https://doi.org/10.1039/c39770000578

Leclerc, M. (1999). Optical and electrochemical transducers based on functionalized conjugated polymers. Advanced Materials, 11(18), 1491–1498. https://doi.org/10.1002/(SICI)1521 -4095(199912)11:18<1491::AIDADMA1491>3.0.CO;2-O

Leclerc, M., & Faid, K. (1997). Electrical and optical properties of Processable Polythiophene Derivatives: Structure-Property relationships. Advanced Materials, 9(14), 1087–1094. https://doi.org/10.1002/adma.19970091404

Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Ade. H., & Yan, H. (2014). Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 5:5293(9), doi: 10.1038/ncomms6293. https://doi.org/10.1038/ncomms6293

Mei, J., Graham, K. R., Stalder, R., & Reynolds, J. R. (2010). Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters, 12(4), 660–663. https://doi.org/10.1021/ol902512x

Morin, J.-F., Leclerc, M., Adès, D., & Siove, A. (2005). Polycarbazoles: 25 Years of Progress. Macromolecular Rapid Communications, 26(10), 761 –778. https://doi.org/10.1002/marc.200500096

Neher, D. (2001). Polyfluorene homopolymers: Conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromolecular Rapid Communications. https://doi.org/10.1002/1521 -3927(20011101)22:17<1365::AIDMARC1365>3.0.CO;2-B

Rand, B. P., Genoe, J., Heremans, P., & Poortmans, J. (2007). Solar Cells Utilizing Small Molecular Weight Organic Semiconductors. Prog. Photovolt: Res. Appl., 15(February 2013), 659–676. https://doi.org/10.1002/pip

Rehahn, M., Schlüter, A. D., Wegner, G., & Feast, W. J. (1989). Soluble poly(paraphenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via Pdcatalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer. https://doi.org/10.1016/0032-3861(89)90079-7

Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R., & Sakthivel, P. (2016). Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Letters, 57(3), 243–252. https://doi.org/10.1016/j.tetlet.2015.12.057

Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., & Brabec, C. J. (2006). Design rules for donors in bulk-heterojunction solar cells Towards 10 % energy-conversion efficiency. Advanced Materials, 18(6), 789–794. https://doi.org/10.1002/adma.200501717

Sonar, P., Tan, H.-S., Sun, S., Lam, Y. M., & Dodabalapur, A. (2013). Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors. Polymer Chemistry, 4(6), 1983. https://doi.org/10.1039/c2py20942j

Stalder, R., Mei, J., Graham, K. R., Estrada, L. a, & Reynolds, J. R. (2013). Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials, 26(1), 664–678. https://doi.org/10.1021/cm402219v

Stalder, R., Mei, J., & Reynolds, J. R. (2010). Isoindigo-based donor-acceptor conjugated polymers. Macromolecules, 43(20), 8348–8352. https://doi.org/10.1021/ma1018445

Stalder, R., Mei, J., Subbiah, J., Grand, C., Estrada, L. A., So, F., & Reynolds, J. R. (2011). n-Type Conjugated Polyisoindigos. Macromolecules, 44(16), 6303–6310. https://doi.org/10.1021/ma2012706 Tang, W. C. (1986). Two-layer Organic Photovoltaic Cell, 48(2), 183–185.

Wang, E., Ma, Z., Zhang, Z., Henriksson, P., Inganäs, O., Zhang, F., & Andersson, M. R. (2011a). An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chemical Communications, 47(17), 4908. https://doi.org/10.1039/c1cc11053e

Wang, E., Ma, Z., Zhang, Z., Vandewal, K., Henriksson, P., Inganäs, O., Zhang, F. & Andersson, M. R. (2011 b). An Easily Accessible Isoindigo-Based Polymer for HighPerformance Polymer Solar Cells. Journal of the American Chemical Society, 133(36), 14244–7. https://doi.org/10.1021/ja206610u

Wang, E., Mammo, W., & Andersson, M. R. (2014). 25th anniversary article: Isoindigobased polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Advanced Materials, 26(12), 1801 –1826. https://doi.org/10.1002/adma.201304945

Watanabe, A., Murakami, S., Mori, K., & Kashiwaba, Y. (1989). Electronic properties of polypyrrole/n-Si heterojunctions and polypyrrole/metal contacts. Macromolecules, 22(11), 4231–4235. https://doi.org/10.1021/ma00201a016

Wohrle, B. D., & Meissner, D. (1991). Organic Solar Cells, 3, 129–138.

Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer Photovoltaic Cells – Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 270(5243), 1789–1791. https://doi.org/10.1126/science.270.5243.1789

Zhang, G., Fu, Y., Xie, Z., & Zhang, Q. (2011). Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules, 44(6), 1414–1420. https://doi.org/10.1021/ma102357b

Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q., & Hou, J. (2015). Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry, 58(2), 248–256. https://doi.org/10.1007/s11426-014-5273-x

Zhou, H., Yang, L., & You, W. (2012). Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 45(2), 607–632. https://doi.org/10.1021/ma201648t

Downloads

Published

11-07-2023
Total Views: 21 | Total Downloads: 27