REDCLAW CRAYFISH (Cherax quadricarinatus): DISTRIBUTION, CRAYFISH PLAGUE, AND DIAGNOSTIC APPROACHES - A REVIEW
DOI:
https://doi.org/10.51200/bsj.v45i2.6010Keywords:
Aphanomyces astaci, crayfish plague, crustacean disease, redclaw crayfishAbstract
The crayfish plague, caused by Aphanomyces astaci, represents a serious threat to redclaw crayfish populations in Malaysia. This review examines the distribution of redclaw crayfish, the incidence of crayfish plague, and insights into its diagnosis. Previous research has established that A. astaci is the primary agent behind crayfish plague in both Asia and Europe. Gaining a comprehensive understanding of these biological threats, including A. astaci and other infections, is vital for protecting the redclaw crayfish industry. Implementing effective diagnosis and management strategies is crucial for preserving crayfish populations and ensuring the industry's sustainability. It is important to recognize that fungal plagues, like those caused by A. astaci, often show few symptoms until significant mortality occurs. Additional research is necessary to grasp the complex immune system of crayfish and to investigate potential therapeutic measures for managing inflammation. Collaboration and data sharing among researchers studying crayfish across different regions would significantly enhance progress in this field.
References
Alderman, D. J. & Polglase, J. L. (1986). Aphanomyces astaci: Isolation and culture. Journal of Fish Diseases, 9, 367-379.
Alderman, D. J. (1996). Geographical spread of bacterial and fungal diseases of crustaceans. Revue Scientifique Et Technique (International Office of Epizootics), 15, 603-632.
Alimon, A. R., Roustaian, P., Saad, C. R., & Kamarudin, M. S. (2003). Lipid content and fatty acid composition during early and late embryonic development of redclaw crayfish, Cherax quadricarinatus (Crustacea decapoda). Journal of Applied Ichthyology, 19, 397-398.
Aoki, T., Reantaso, M., Jones , B., & Corsin, F. (2018). Diseases in Asian aquaculture VII. Proceedings of the Seventh Symposium on Diseases in Asian Aquaculture., 385.
Barnett, Z. C., Adams, S. B., & Rosamond, R. L. (2017). Habitat use and life history of the vernal crayfish, Procambarus viaeviridis (Faxon, 1914), a secondary burrowing crayfish in Mississippi, USA. Journal of Crustacean Biology, 544- 555.
Belle, C., & Yeo, D. (2010). New observations of the exotic Australian red-claw crayfish, Cherax quadricarinatus. Nature in Singapore, 99-102.
Cerenius, L. & Soderhall, K. (1984). Chemotaxis in Aphanomyces astaci, an arthropod parasitic fungus. Journal of Invertebrate Pathology, 43, 278-281.
Cerenius, L., Soderhall, K., Persson, M., & Ajaxon, R. (1988). The crayfish plague fungus, Aphanomyces astaci-diagnosis, isolation and pathobiology. Freshwater Crayfish, 7, 131-144.
Cerenius, L., Bangyeekhun, E., Keyser, P., Söderhäll, I., & Söderhäll, K. (2003). Host prophenoloxidase expression in freshwater crayfish is linked to increased resistance to the crayfish plague fungus, Aphanomyces astaci. Cellular Microbiology, 5, 353-357.
Clark, K. F., Greenwood J., & Spencer. (2016). Next-generation sequencing and the crustacean immune system: The need for alternatives in immune gene annotation. Integrative and Comparative Biology, 56(6), 1113-1130.
David, A. S., Japo, J., Stein, I. J., Satu, V., Lennart, E., Jannicke, W., Hildegunn, V., Frederik, E., & Trude, V. (2014). Detection of crayfish plague spores in large freshwater systems. Journal of Applied Ecology, 51, 544-553.
Dorret, A. J., Porta, G., Pedicillo, G., & Lorenzoni, M. (2006). Biology of Procambarus clarkii. Bull. Fr. Pêche Piscic, 1155-1168.
European Network On Invasive Alien Species (NOBANIS) (2011). Invasive alien species fact sheet: Aphanomyces astaci. www.nobanis.org. Accessed 20-4-2018.
FAO (Food and Agriculture Organization of the United Nations). (2006). The State of World Fisheries and Aquaculture. Food and Agricultural Organization of the United Nations, Rome.
FAO (2020). FAO Yearbook. Fishery and Aquaculture Statistics 2018, Rome, 110 pp, https://doi.org/10.4060/cb1213t
Filipova, L., Petrusek, A., Matasova, K., Delaunay, C., & Grandjean, F. (2013). Prevalence of the crayfish plague Aphanomyces astaci in populations of the signal crayfish Pacifastacus leniusculus in France: Evaluating the threat to native crayfish. PloS ONE 8(7).
Füreder, L. (2013). Crayfish News: Official newsletter of the International Association of Astacology. Regional European Crayfish Meeting, 35(3-4), 3-4.
Grandjean, F., Vrålstad, T., Diéguez-Uribeondo, J., Jeliü, M., Mangombi, J., Delaunay, C., Filipová, L., Rezinciuc, S., Kozubiková-Balcarová, E., Guyonnet, D., Viljamaa-Dirks, S. & Petrusek, A. (2014). Microsatellite markers for direct genotyping of the crayfish plague pathogen Aphanomyces astaci (Oomycetes) from infected host tissues. Veterinary Microbiology, 170, 317-324.
Gruber, C., Kortet, R., Vainikka, A., Hyvarinen, P., Rantala, M. J., Pikkarainen, A., Jusilla, J., Makkonen, J., Kokko, H., & Hirvonen, H. (2014). Variation in resistance to the invasive crayfish plague and immune defence in the native noble crayfish. Ann. Zool. Fennici, 51, 371-389.
Haubrock, P.J., Oficialdegui, F.J., Zeng, Y., Patoka, J., Yeo, D.C.J. and Kouba, A. (2021), The redclaw crayfish: A prominent aquaculture species with invasive potential in tropical and subtropical biodiversity hotspots. Rev. Aquacult., 13: 1488-1530.
Hibbeler, S., Scharsack, J. P. & Becker, S. (2008). Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus. BioMed Central, 9, 18.
Holdich, D. M. (2002). Biology of freshwater crayfish. Journal of Crustacean Biology, 22(4), 969.
Hossain, A. M., Monfort, J., Brugman, M. A., & Böhm, M. (2018). Assessing the vulnerability of freshwater crayfish to climate change. Diversity and Distributions, 1-14.
Hsieh, C-Y., Huang, C-W., & Pan, Y-C. (2016). Crayfish plague Aphanomyces astaci detected in redclaw crayfish, Cherax quadricarinatus in Taiwan. Journal of Invertebrate Pathology, 136, 117-123.
Huang, T., Cerenius, L., & Soderhall, K. (1994). Analysis of genetic diversity in the crayfish plague fungus, Aphanomyces astaci, by random amplification of polymorphic DNA. Aquaculture, 126, 1-9.
Johan, I., Hena, A., & Fadly, Z. (2012). Morphological characteristics of freshwater crayfish from natural habitat in Sarawak. Malaysia International Biological Symposium, Sustainable Management of Bio-Resources 2012.
Karplus, I., Zoran, M., Milstein, A., Harpaz, S., Eran, Y., Joseph, D. & Sagic, A. (1998). Culture of the Australian red-claw crayfish (Cherax quadricarinatus) in Israel: III. Survival in earthen ponds under ambient winter temperatures. Aquaculture, 166, 259–267.
Khairul, A. A. R., Yuzine, E., & Aziz, A. (2013) The influence of alien fish species on native fish community structure in Malaysian waters. Kuroshio Science. 7(1), 81-93.
Koivu-Jolma, M., Kortet, R., Vainikka, A., & Kaitala, V. (2023). Crayfish population size under different routes of pathogen transmission. Ecology and Evolution, 13, e9647.
Kokko, H., Harlioglu, M. M., Aydin, H., Makkonen, J., Gökmen, G., Aksu, Ö., et al. (2018). Observations of crayfish plague infections in commercially important narrow-clawed crayfish populations in Turkey. Knowledge & Management of Aquatic Ecosystems, 419.
Kozubiková-Balcarová, E., Beran, L., Ćuriš, Z., Fischer, D., Horká, I., Svobodová, I., & Petrusek, A. (2014). Status and recovery of indigenous crayfish populations after recent plague outbreaks in the Czech Republic. Ethology Ecology & Evolution, 26, 299-319.
Leclerc, M. C., Guillot, J., & Deville, M. (2000). Taxonomic and phylogenetic analysis of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence comparisons. Antonie Van Leeuwenhoek, 77, 369-377.
Lee, S. Y. (2001). Initiation of innate immune responses in the freshwater crayfish Pacifastacus leniusculus. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 613.
Lightner, D. V. (2005). Biosecurity in shrimp farming: pathogen exclusion through use of SPF stock and routine surveillance. Journal of the World Aquaculture Society, 36, 229-248.
Liu, Q. N., Xin, Z. Z., Liu, Y., Wang, Z. F., Chen, Y. J., Zhang, D. Z., Jiang, S. H., Chai, X. Y., Zhou, C. L. & Tang, B. P. (2017). A ferritin gene from Procambarus clarkii, molecular characterization and in response to heavy metal stress and lipopolysaccharide challenge. Fish & Shellfish Immunology, 63.
Liu, L. K., Li, W. D., Gao, Y., Chen, R. Y., Xie, X. L., Hong, H., Wang, K. J. & Liu, H. P. (2018). A laminin-receptor-like protein regulates white spot syndrome virus infection by binding to the viral envelope protein VP28 in redclaw crayfish Cherax quadricarinatus. Developmental & Comparative Immunology, 79.
Louis, A. H., & Robert, J. D. (2020). Sustaining America’s aquatic biodiversity crayfish biodiversity and conservation. Virginia Cooperative Extension, Virginia Tech. 420-524.
Makkonen, J., Strand, D. A., Kokko, H., Vralstad, T., & Jussila, J. (2013). Timing and quantifying Aphanomyces astaci sporulation from the noble crayfish suffering from the crayfish plague. Veterinary Microbiology, 750-755.
Mohd Dali, M. Z., Mohd Nasir, M. S. A., Khaleel, A. G., Chun, L. M., Gan, H. M., Nik Wan, N. A. F., Umar, R., & Umar, Kamarudin, A. S. (2023). Predicting Cherax quadricarinatus habitat distribution patterns through the usage of GIS and eDNA analysis in Terengganu, Malaysia. Sains Malaysiana. 52. 343-354.
Morningstar, C. R., Daniel, W. M., Neilson, M. E., & Yazaryan, A. K. (2020). The first occurrence of the Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the contiguous United States. BioInvasions Record 9: 120–126.
Naguib, S. S. I., Sallehuddin, A. S., Kamarudin, A. S., Dali, M. Z. M., Kassim, Z., Lokman, M. I. N. & Ismail, N. (2021). Length weight relationship and condition factor of Australian redclaw crayfish (Cherax quadricarinatus) from three locations in Peninsular Malaysia. Bioscience Research 18(SI-2): 413-420.
Naquiddin, A. S., Rahim, K., Long, S., & Firdaus, F. (2016). The spread of the australian redclaw crayfish (Cherax quadricarinatus von Martens, 1868) in Malaysia. Journal of Sustainability Science and Management, 31-38.
Neculae, A., Barnett, Z. C., Miok, K., Dalosto, M. M., Kuklina, I., Kawai, T., Santos, S., Furse, J. M., Sîrbu, O. I., Stoeckel, J. A., & Pârvulescu, L. (2024). Living on the edge: Crayfish as drivers to anoxification of their own shelter microenvironment. PloS one, 19(1), e0287888.
Nicky, B. (2008). Crayfish Plague. Australia and New Zealand Standard Diagnostic Procedure.
Norshida, I., Nasir, M.A.N., Khaleel, A.G., Sallehuddin, A., Idrus, S., Istiqomah, I. & Kamarudin, A. (2021). First wild record of Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the east coast of Peninsular Malaysia. BioInvasions Records, 10(2): 360-368.
Othman, M. H. & Hashim, A. K. A. (2003). Prevention and management of invasive alien species. Proceedings of a Workshop on Forging Cooperation throughout South-Southeast Asia. Global Invasive Species Programme, Cape Town, South Africa.
Pauwels, Kevin, De Meester, L., Put, S., Decaestecker, E. & Stoks, R. (2010). Rapid evolution of phenoloxidase expression, a component of innate immune function, in a natural population of Daphnia magna. Limnology and Oceanography, 55(3).
Pliego, M. G., Falcón, J. H., Benitez, E. A., Novoa, R. G., & Pardo, B. F. (1998). Ventral nerve cord transection in crayfish: A study of functional anatomy. Journal of Crustacean Biology, 18(3), 449–462.
Rusaini, A. E., Burgess, G. W. & Owens, L. (2013). Investigation of an idiopathic lesion in redclaw crayfish Cherax Quadricarinatus using suppression subtractive hybridization. Journal of Virology & Microbiology. 2013, 569032.
Sanjar, A., Davis, D. R., & Kline, R. J. (2023). Evidence of an established population of Cherax quadricarinatus (von Martens, 1868) in south Texas, USA. BioInvasions Records 12(1): 284–291.
Stentiford, G. D., Bonami, J-R., & Alday-Sanz, V. (2009). A critical review of susceptibility of crustaceans to Taura syndrome, Yellowhead disease and White Spot Disease and implications of inclusion of these diseases in European legislation. Elsevier, 291(1-2), 1-17.
Strand, D. A., Jinnerot, T., Aspán, A., Viljamaa-Dirks, S., Heinikainen, S., Rolén, E., & Vrålstad, T. (2023). Molecular detection of Aphanomyces astaci - An improved species specific qPCR assay. Journal of invertebrate pathology, 201, 108008.
Sun, Y., Shan, X., Li, D., Liu, X., Han, Z., Qin, J., Guan, B., Tan, L., Zheng, J., Wei, M., & Jia, Y. (2023). Analysis of the differences in muscle nutrition among individuals of different sexes in redclaw crayfish, Cherax quadricarinatus. Metabolites, 13(2), 190.
Suryanto, M. E., Audira, G., Roldan, M. J. M., Lai, H. T., & Hsiao, C. D. (2023). Color Perspectives in Aquatic Explorations: Unveiling Innate Color Preferences and Psychoactive Responses in Freshwater Crayfish. Toxics, 11(10), 838.
Tarun, S. (2021). The Indian Subcontinent – A Cradle of Aquaculture. Retrieved in 2022. https://planet.outlookindia.com/opinions/the-indian-subcontinent-a-cradle-of-aquaculture-news-414480
Torrijos, L. M., Ríos, M. M., Herrero, G. C., Adams, S. B., Jackson, C. R., & Uribeondo, J. D. (2021). Tracing the origin of the crayfish plague pathogen, Aphanomyces astaci, to the Southeastern United States. Scientific Reports, 11(332).
Unestam, T., & Weiss, D. W. (1970). The host-parasite relationship between freshwater crayfish and the crayfish disease fungus Aphanomyces astaci: Responses to infection by a susceptible and a resistant species. Microbiology, 77-90.
Victor, S. S., & Pahirulzaman, K. A. K. (2020.) IOP Conf. Ser.: Earth Environ. Sci. 596, 012092.
Viljamaa-Dirks, S., & Heinikainen, S. (2019). A tentative new species Aphanomyces fennicus sp. nov. interferes with molecular diagnostic methods for crayfish plague. Journal of Fish Diseases.
Vrålstad, T., Knutsen, A. K., Tengs, T., & Jensen, H. (2009). A quantitative TaqMan MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces Astaci. Vet Mic, 146-155.
Walker, P. J., & Mohan, C. V. (2009). Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. Reviews in Aquaculture. 1(2), 125-154.
Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acid Research, 18, 7213-7218.
Westman, K. (1991). The crayfish fishery in Finland-its past, present and future. Finnish Fisheries Research, 12, 187-216.
World Organisation of Animal Health (OIE). Chapter 2.2.01: Crayfish plague. Manual of diagnostic tests for aquatic animals. Accessed 20-4-2018.http://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/2010/2.2.01_CRAYFISH.pdf
Wong, F. Y. K., Fowler, K. & Desmarchelier, P. M. (1995). Vibriosis due to Vibrio mimicus in Australian freshwater crayfish. Journal of Aquatic Animal Health, 7, 284-291.
Yavuzcan, H., Köksal, G., & Gunal, C. (2004). Physiological response of the crayfish, Astacus leptodactylus to saline water. Crustaceana, 77(10), 1271-1276.
Yuliana, E., Yonvitner, A. S., Subing, R. A., Ritonga, S. A., Santoso, A., Kouba, A. & Patoka, J. 2021. Import, trade and culture of non-native ornamental crayfish in Java, Indonesia. Management of Biological Invasions 12(4): 846-857.