Utilization of fluorescence images in chlorophyll in Cirebon waters, Indonesia

Authors

  • Brian Dika Praba P Cahya Earth Science Master Program, Bandung Institute of Technology
  • Susanna Nurdjaman Department of Oceanography, Faculty of Earth Sciences and Technology, Bandung Institute of Technology
  • Khalid Haidar Al-Ghifari Earth Science Master Program, Bandung Institute of Technology
  • Syarifudin Nur Earth Science Master Program, Bandung Institute of Technology

DOI:

https://doi.org/10.51200/bjomsa.v5i1.2714

Keywords:

Aqua MODIS imagery, Chlorophyll, Cirebon Waters, Fluorescence.

Abstract

Satellite is one of the tools used to detect chlorophyll concentration. MODIS chlorophyll concentrations appears to be disturbed by colored dissolved organic matter (CDOM). The fluorescence approach can represent the chlorophyll concentration near the coast more accurately. The data for this study was obtained from satellite Aqua MODIS Level 2 which consisted of MODIS chlorophyll, MODIS fluorescence data, and Observation data. The data was taken on 6 September 2020 in Cirebon Waters. Results of the chlorophyll concentration field data ranged from 0.64 mg m-³ - 4.26 mg m-³. Estimation of chlorophyll concentrations using the standard chlorophyll method ranged from 2.55 mg m-³ - 7.20 mg m-³ and the chlorophyll concentrations using the fluorescence method were 2.58 mg m-³ - 3.5 mg m-³. Comparison of field data with satellite images is better with the florescence method than the standard MODIS chlorophyll technique, with an error of 47.8% for fluorescence and 235.5% for the standard MODIS chlorophyll.

References

Nazeer M, Nichol JE. Improved water quality retrieval by identifying optically unique water classes. J Hydrol. 2016;541:1119-1132. doi:10.1016/j.jhydrol.2016.08.020

Han L, Jordan KJ. Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM + data. Int J Remote Sens. 2005;26(23):5245-5254. doi:10.1080/01431160500219182

Behrenfeld MJ, Falkowski PG. Engle et al.,2000 - Google Search. 1997;(January). https://www.google.com/search?q=Engle+et+al.%2C2000&oq=Engle+et+al.%2C2000&aqs=chrome..69i57.11777j0j8&sourceid=chrome&ie=UTF-8

Gower JFR, Borstad GA. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer. Int J Remote Sens. 1990;11(2):313-320. doi:10.1080/01431169008955022

Letelier RM, Abbott MR. An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS). Remote Sens Environ. 1996;58(2):215-223. doi:10.1016/S0034-4257(96)00073-9

Neville RA, Gower JFR. PASSIVE REMOTE SENSING OF PHYTOPLANKTON VIA CHLOROPHYLL alpha FLUORESCENCE. J Geophys Res. 1977;82(24):3487-3493. doi:10.1029/JC082i024p03487

McClain CR, Barnes RA, Eplee J, et al. Volume 10, SeaWiFS postlaunch calibration and validation analyses, part 2. NASA Tech Memo - SeaWIFS Postlaunch Tech Rep Ser. 2000;11(10):1-57.

Gower J, King S, Statham S, Fox R, Young E. The malaspina dragon: A newly-discovered pattern of the early spring bloom in the strait of georgia, british columbia, canada. Prog Oceanogr. 2013;115:181-188. doi:10.1016/j.pocean.2013.05.024

Gower J, King S. Use of satellite images of chlorophyll fluorescence to monitor the spring bloom in coastal waters. Int J Remote Sens. 2012;33(23):7469-7481. doi:10.1080/01431161.2012.685979

Timmermans KR, Van Der Woerd HJ, Wernand MR, Sligting M, Uitz J, De Baar HJW. In situ and remote-sensed chlorophyll fluorescence as indicator of the physiological state of phytoplankton near the Isles Kerguelen (Southern Ocean). Polar Biol. 2008;31(5):617-628. doi:10.1007/s00300-007-0398-4

Eaton AD, Clesceri LS, Franson MAH, et al. Standard Methods for the Examination of Water & Wastewater. American Public Health Association; 2005. https://books.google.co.id/books?id=buTn1rmfSI4C

Abbott MR, Letelier RM. Chlorophyll fluorescence (MODIS product number 20) (ATBD 22). Ocean Color web page. 1999;(20):1-42. http://oceancolor.gsfc.nasa.gov/DOCS/atbd_mod22.pdf

Hu C, Carder KL, Muller-Karger FE. How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors. Remote Sens Environ. 2001;76(2):239-249. doi:10.1016/S0034-4257(00)00206-6

Hu C, Muller-Karger FE, Taylor C, et al. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens Environ. 2005;97(3):311-321. doi:10.1016/j.rse.2005.05.013

Lara C, Saldías GS, Westberry TK, Behrenfeld MJ, Broitman BR. First assessment of MODIS satellite ocean color products (OC3 and NFLH) in the inner sea of Chiloé, northern patagonia. Lat Am J Aquat Res. 2017;45(4):822-827. doi:10.3856/vol45-issue4-fulltext-18

Behrenfeld MJ, Westberry TK, Boss ES, et al. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences. 2009;6(5):779-794. doi:10.5194/bg-6-779-2009

Published

2021-11-30

How to Cite

Dika Praba P Cahya, B., Nurdjaman, S., Haidar Al-Ghifari, K., & Nur, S. (2021). Utilization of fluorescence images in chlorophyll in Cirebon waters, Indonesia. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 5(1), 37–41. https://doi.org/10.51200/bjomsa.v5i1.2714
Total Views: 177 | Total Downloads: 142