PEMETAAN CORAK POTENSI RISIKO PENYAKIT COVID-19 BERDASARKAN PERLAKUAN PENDUDUK MENGGUNAKAN ANALISIS SPATIAL DI KOTA KINABALU, SABAH

MAPPING THE POTENTIAL PATTERN OF COVID-19 DISEASE RISK USING SPATIAL ANALYSIS IN KOTA KINABALU, SABAH

Authors

  • OLIVER VALENTINE EBOY Fakulti Sains Sosial dan Kemanusiaan, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah
  • LIZALIN KALANG Fakulti Sains Sosial dan Kemanusiaan, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah
  • KONG TECK SIENG Fakulti Sains Sosial dan Kemanusiaan, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah

DOI:

https://doi.org/10.51200/ejk.v27i1.3656

Keywords:

Perintah Kawalan Pergerakan (PKP), COVID-19, corak kepasatan, analisis spatial, Kernel density, pertindanan, Movement Control Order (MCO), density pattern, spatial analysis, Geographic Information System (GIS), overlay

Abstract

Perintah Kawalan Pergerakan (PKP) telah diisytiharkan di Malaysia pada 17 Mac 2020 untuk memutuskan rantai wabak COVID-19. Sejak saat itu, tidak ada vaksin yang dibuat untuk menyembuhkan penyakit. Oleh itu, PKP adalah kaedah terbaik yang dilaksanakan oleh banyak negara untuk meminimumkan atau membasmi penyakit ini. COVID-19 adalah penyakit berjangkit yang mudah dijangkiti oleh orang lain melalui sentuhan, mulut, hidung dan mata. Oleh itu, penjarakan fizikal antara satu sama lain mesti diamalkan dan tempat yang sesak mesti dielakkan. Walau bagaimanapun, orang ramai cenderung melanggar peraturan PKP dan jarak fizikal. Hal ini terbukti berdasarkan catatan dari fasa 1 hingga fasa 5 PKP di Malaysia. Bilangan kes positif COVID-19 menurun semasa fasa awal PKP tetapi mendapat daya tarikan pada fasa 4 dan 5. Pada masa yang sama, jumlah tenaga kerja di pihak berkuasa terhad dan sukar bagi mereka untuk memantau di semua tempat. Faktor geografi dan jaraknya juga merupakan beberapa cabaran yang harus dihadapi untuk memastikan rakyat mengikuti peraturan PKP. Tujuan kajian ini adalah untuk menganalisis taburan spatial faktor lokasi yang sering dikunjungi orang ramai dengan bantuan analisis spatial melalui Sistem Maklumat Geografi (GIS). Dengan menggunakan teknik pertindanan dan Kernel density dari kaedah analisis spatial, kajian ini kemudian dapat menghasilkan peta kepadatan risiko COVID-19 yang berpotensi. Selepas itu, kajian ini dapat mengenal pasti kawasan potensi risiko COVID-19 dan mengesahkannya dengan lokasi terkini kes positif di daerah Kota Kinabalu, Sabah. Melalui hasil kajian, walaupun tidak mencapai ketepatan yang dikehendaki tetapi ia masih boleh dijadikan sebagai salah satu panduan kepada pihak berkuasa untuk mengawal kawasan yang terlibat. Akhir sekali, penemuan kajian ini sesuai untuk pihak berkuasa bertindak dan memfokuskan kawasan berisiko tinggi penyebaran COVID-19.

 

Movement Control Order (MCO) has been declared in Malaysia on 17th Mac 2020 to break the chain of the COVID-19 pandemic. Since at that time, no vaccine was made to cure the disease, therefore, the MCO was the best method implemented by many countries to minimize or eradicate the disease. COVID-19 is a contagious disease that can be easily contracted to others based on touch, mouth, nose, and eye. Thus, physical distance from each other must be applied and crowded places must be avoided. However, people tend to violate the MCO ruling and the physical distance. This was evident based on the record from phase 1 to phase 5 of MCO in Malaysia. The number of COVID-19 positive cases were decreased during the early phase of MCO but gain traction in phase 4 and 5. At the same time, the number of manpower in the authority is limited and it was difficult for them to monitor in all places. The geographical factors and the distance were also some of the challenges that they must face to make sure the people follow the MCO ruling. The aim of this study is to analyze the spatial distribution of the location factors that the people frequently visited with the help of spatial analysis through Geographic Information System (GIS). By using the Kernel density and overlay technique from the spatial analysis method, this study could then produce a density map of potential COVID-19 risk. Subsequently, this study manages to identify the area of potential risk of COVID-19 that can be contracted and validate it with the current location of the positive cases in Kota Kinabalu district of Sabah. Although some places unable to show the desired result but it still good enough as one of the guidance for the relevant authorities to take action. Lastly, the findings of this study are suitable for the authorities to act and mainly focused the high-risk area of COVID-19 spreading.

References

Dick, Joseph M., & Dick, Matthew S. (2014). Developing an analysis process for

crime hot spot identification and comparison. Saint Mary’s University of

Minnesota Central Services Press.

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial

analysis and GIS in the study of COVID-19. A review. Science of the Total

Environment. 140033. Kastner, John, Hong Wei & Hanan Samet. (2020). Viewing the progression of

COVID-19 with newsstand.

King, T. L., Bentley, R. J., Thornton, L. E., & Kavanagh, A. M. (2016). Using kernel

density estimation to understand the influence of neighbourhood destinations

on BMI. BMJ Open, 6(2).

Klein, C., Kuhnen, A., Felippe, M. L., & Silveira, B. B. (2018). Place-centered or

person-centered? Considerations about the behavioral mapping approach.

Temas em Psicologia, 26(2), 593-604.

Kong Teck Sieng & Oliver V. Eboy. (2018). Mapping of ethnographic patterns

of Kadazan Dusun community in Tambunan, Sabah using Geographic

Information System (GIS). BIMP-EAGA Journal for Sustainable Tourism

Development, 7(1).

Lizalin Kalang & Oliver V. Eboy. (2019). Application of crime risk mapping within

the school focus area in Kota Kinabalu using GIS. Malaysian Journal of

Remote Sensing & GIS, 8(2).

Lovett, D.A., Poots, A.J., Clements, J.T., Green, S.A., Samarasundera, E., & Bell, D.

(2014). Using geographical information systems and cartograms as a health

service quality improvement tool. Spatial and Spatio-temporal Epidemiology,

, 67–74.

Marušić, B. G., & Marušić, D. (2012). Behavioural maps and GIS in place evaluation

and design. Application of Geographic Information Systems, 115-138.

Mollalo, A., Mao, L., Rashidi, P., & Glass, G.E. (2019). A GIS-based artificial neural

network model for spatial distribution of tuberculosis across the continental

United States. Int. J. Environ. Res. Public Health, 16(1).

Mollalo, A., Vahedi, B., & Rivera, K. M. (2020). GIS-based spatial modeling of

COVID-19 incidence rate in the continental United States. Science of The

Total Environment, 138884.

Oliver Valentine Eboy. (2017). Pengenalan kepada teknik analisis asas GIS. (Tidak

Diterbitkan)

Schulze Bäing A. (2014). Spatial analysis. In Michalos A.C. (eds.), Encyclopedia

of Quality of Life and Well-Being Research. Springer, Dordrecht. https://doi.

org/10.1007/978-94-007-0753-5_2818

Silverman, B. W. (1986). Density estimation for statistics and data analysis. New

York: Chapman and Hall.

Spencer Chainey, Lisa Tompson & Sebastian Uhlig. (2008). The utility of hotspot

mapping for predicting spatial patterns of crime. Security Journal.

Suhaimi Sarif & Rohaziah Yahya. (2020). Managing crisis with “unprecedented

situation deals with unprecedented measures”: The Case Movement Control

Order on coronavirus disease 19 (COVID-19) in Malaysia, Researchgate.net.

The Star. (2020). MCO offenders not recorded in criminal register, says IGP. 30

April 2020. Tianzhi Wu, Xijin Ge & Guangchuang Yu. (2020). An R package and a website

with real-time data on the COVID-19 Coronavirus Outbreak. https://Doi.

Org/10.1101/2020.02.25.20027433 Diakses pada 18 April 2020.

Trevillion, Paul. (2005). The Esri Guide to GIS Analysis, Volume 2. Proceedings

ESRI.

United Nations. (2020). The Social Impact of COVID-19. Retrieved from. https://

www.un.org/development/desa/dspd/2020/04/social-impact-of-covid-19/.

World Health Organization (WHO). (2020a). Report of theWHO-China Joint Mission

on Coronavirus Disease 2019 (COVID-19). https://www.who.int/docs/defaultsource/

coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf

Diakses pada 18 April 2020.

World Health Organization (WHO). (2020b). Coronavirus Disease 2019 (COVID-19)

Situation Report – 209. https://www.who.int/docs/default-ource/coronaviruse/

situation-reports/20200816-covid-19-sitrep-209.pdf?sfvrsn= 5dde1ca2_2

Diakses pada 18 April 2020.

Zahra Arab-Mazar, Shahid Beheshti Ranjit Sah, Ali A. Rabaan & Kuldeep Dhama

& Alfonso J. Rodriguez Morales. (2020). Mapping the incidence of the

COVID-19 hotspot in Iran-implications for travellers. Journal of Travel

Medicine and Infectious Disease.

Published

2021-06-30

How to Cite

OLIVER VALENTINE EBOY, LIZALIN KALANG, & KONG TECK SIENG. (2021). PEMETAAN CORAK POTENSI RISIKO PENYAKIT COVID-19 BERDASARKAN PERLAKUAN PENDUDUK MENGGUNAKAN ANALISIS SPATIAL DI KOTA KINABALU, SABAH: MAPPING THE POTENTIAL PATTERN OF COVID-19 DISEASE RISK USING SPATIAL ANALYSIS IN KOTA KINABALU, SABAH. Jurnal Kinabalu, 27, 167–184. https://doi.org/10.51200/ejk.v27i1.3656
Total Views: 555 | Total Downloads: 428