Turutan Pembelajaran-Pemudahcaraan” konsep tenaga pelajar fizik sekolah menengah menggunakan model pembinaan semula PdPC berasaskan tradisi Didaktik-Jerman

Authors

  • Azlinah Ispal

Keywords:

Tradisi Didaktik-Jerman, Model Pembinaan Semula PdPC (MPSP), elementarisasi, turutan pembelajaran-pemudahcaraan, pengajaran eksperimen, laluan pembelajaran, German-Didaktik tradition, del of educational reconstruction (MER), elementarization, teaching-learning-sequence, teaching experiment, learning pathways

Abstract

Turutan pembelajaran-pemudahcaraan konsep tenaga adalah berasaskan penyelidikan pendidikan saintifik berskala mikro yang direka khusus untuk mengkaji topik tunggal dalam PdPC bilik darjah. Terdapat beberapa model di bawah trend ini tetapi artikel ini hanya mengkhusus kepada Model Pembinaan Semula PdPC (MPSP) atau lebih dikenali sebagai Model of Educational Reconstruction (MER) dalam bahasa Inggeris yang ditemukan bermula dari negara Jerman. Model ini dianggap penting dalam penyelidikan pendidikan saintifik kerana ciri uniknya yang berupaya ‘mentransformasikan’ struktur kandungan fizik yang difahami oleh komuniti saintis agar menjadi struktur kandungan fizik yang mudah difahami pelajar di dalam bilik darjah. Hal ini kerana, menurut MPSP struktur PdPC fizik mestilah dibina berdasarkan perspektif pelajar, terutamanya konsep pra-pengetahuan dan trajektori pembelajaran mereka. MPSP ini terdiri daripada tiga komponen iaitu pemerihalan dan analisis kandungan subjek, penyelidikan PdPC dan reka bentuk persekitaran PdPC. Objektif penyelidikan ini ialah meneroka cara bagaimana konsepsi pelajar terhadap konsep tenaga yang berorientasikan aktiviti harian dapat ditransfomasikan/dibina semula kepada konsep yang berorientasikan fizik. Kajian kualitatif yang dijalankan ini mengadaptasi pendekatan fenomenologi hermeneutik Heidegger dan data diperoleh daripada pelbagai sumber seperti temu bual separa berstruktur, jawapan bertulis pelajar, ‘pengajaran eksperimen’, dan refleksi-diri pelajar. Data dianalisis menggunakan analisis kualitatif kandungan dan akhir sekali dapatan kajian dipersembahkan dalam bentuk ilustrasi ‘laluan pembelajaran’ untuk melihat bagaimana pembentukan pemahaman pelajar terhadap konsep tenaga berlaku. Oleh itu, pendekatan turutan pembelajaran-pemudahcaraan menggunakan MPSP ini memiliki potensi yang besar untuk dijadikan salah satu kaedah PdPC terbaik dalam pendidikan sains di Malaysia. 


The teaching-learning-sequence of energy concept is based on microscale scientific educational research designed specifically to study a single topic in classroom teaching and learning. There are several theoretical models associated with this trend, but this article focuses solely on the Model of Educational Reconstruction (MER) discovered in Germany. This model is important in scientific education research because of its unique ability to ‘transform’ the physics content structure understood by the scientific community into the physics content structure easily understood by students in the classroom. This is because, according to MER, the structure of physics teaching and learning must be built around students’ perspectives, particularly pre-knowledge concepts and learning trajectories. The MER is made up of three parts: subject matter clarification and analysis, research on teaching and learning, and design for teaching and learning environments. The objective of this study is to explore how students’ conceptions of energy daily activities-oriented can be transformed/reconstructed into the concept of physics-oriented. This qualitative study adapted Heidegger’s hermeneutic phenomenological approach, and data were gathered from a variety of sources, including semi-structured interviews, written responses from students, a teaching experiment, and students’ self-reflection. The data was analysed using qualitative content analysis, and the study’s findings were presented in the illustration of ‘learning pathways’ to show how students progressed in their understanding of the energy concept. As a result, this teaching-learning sequence approach based on MER has the potential to be one of the most effective teaching and learning methods in Malaysian science education.

Author Biography

Azlinah Ispal

Fakulti Psikologi dan Pendidikan
Universiti Malaysia Sabah

References

Abd-El-Khalick, F., Bell, R., & Lederman, N. G. (1998). The nature of science and instructional practices: Making the unnatural natural. Science Education, 82, 417 – 436.

Aiello-Nicosia, M. L., & Sperandeo-Mineo, R. M. (2000). Educational reconstruction of physics content to be taught and of pre-service teacher training: a case study. International Journal of Science Education, 22(10), 1085 – 1097.

Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? Educational researcher, 41(1), 16 – 25.

Artigue, M. (1992) Didactic engineering. Recherche en didactique des mathématiques, 13(3), 41–66.

Azlinah, I. (2021). Conceptual reconstruction of energy concepts using the model of educational reconstruction in the German didaktik tradition. PhD Thesis, Universiti Malaysia Sabah.

Ausubel, D. P., Novak, J. D., & Hanesian, H. (1968). Educational psychology: A cognitive view (Vol. 6). New York: Holt, Rinehart and Winston.

Bécu-Robinault, K., & Tiberghien, A. (1998). Integrating experiments into the teaching of energy. International Journal Science Education, 20(1), 99 – 114.

Buchberger, F., & Buchberger, I. (1999). Didaktik/fachdidaktik as integrative transformation science (-s)–a science/sciences of/for the teaching profession? TNTEE Publications, 2(1), 67.

Buty, C., Tiberghien, A., & Le Maréchal, J. F. (2004). Learning hypotheses and an associated toolto design and to analyse teaching–learning sequences. International Journal of Science Education, 26(5), 579 – 604.

Chabalengula, V. M., Sanders, M., & Mumba, F. (2012). Diagnosing students’ understanding of energy and its related concepts in biological context. International Journal of Science and Mathematics Education, 10, 241 – 266.

Chai, T. Y., Wan, F., Shima, B., Ismayatim, Seng, Y. K., Ragavan, R., & Roslina, A. (2006). Form Four Physics Textbook. Curriculum Development Center, Ministry of Education Malaysia.

Coelho, R. L. (2014). On the concept of energy: Eclecticism and rationality. Science & Education, 23(6), 1361 – 1380.

Colomb, J. (1999). School knowledge and didactic analysis: A research perspective in comparative didactics. Instructional Science, 27, 53 – 71.

Constantinou, C. P., & Papadouris, N. (2012). Teaching and learning about energy in middle school: An argument for an epistemic approach. Studies in Science Education, 48(2), 161 – 186.

Cotignola, M. I., Bordogna, C., Punte, G., Cappannini, O. M. (2002). Difficulties in learning thermodynamic concepts: Are they linked to the historical development of this field? Science and Education, 11, 279–291.

Dawson-Tunik, T. L. (2006). Stage-like patterns in the development of conceptions of energy. In X. Liu & W. J. Boone (Eds.), Applications of Rasch measurement in science education, 111 – 136.

Diethelm, I., Hubwieser, P., & Klaus, R. (2012). Students, teachers and phenomena: Educational reconstruction for computer science education. In Proceedings of the 12th Koli Calling International Conference on Computing Education Research, 164 – 173.

Doménech, J. L., Gil-Pérez. D., Gras-Marti, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., Trumper, R., Valdés, P., Vilches, A. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science and Education, 16, 43–64.

Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5(1), 61 – 84.

Driver, R., & Millar, R. (Eds.) (1986). Energy matters: Proceedings of an invited conference: Teaching about energy within the secondary science curriculum. Leeds (England): University of Leeds, Centre for Studies in Science in Science and Mathematics Education.

Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13(1), 105 – 122.

Driver, R., Squires, A., Rustworth, P., & Wood-Robinson, V. (1994). Making Sense of Secondary Science Research into Children’s Ideas. Routledge, London, 143 – 147.

Duit, R. (1999). Conceptual change approaches in science education. New perspectives on conceptual change.

Duit, R. (2007). Science Education Research Internationally: Conceptions, Research Methods, Domains of Research. Eurasia Journal of Mathematics, Science & Technology Education, 3(1).

Duit, R., & Häußler, P. (1994). Learning and teaching energy. In P. Fensham, R. Gunstone, & R. White (Eds.), The content of science, 185 – 200. London: The Falmer Press.

Duit, R., & Treagust, D. (1998). Learning science: From behaviourism towards social constructivism and beyond. In: B. J. Fraser & K. J. Tobin (Eds.), International handbook of science education, 3 – 25.

Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671 – 688.

Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction–A framework for improving teaching and learning science. In Science education research and practice in Europe, 13 – 37. Brill Sense.

Duit, R., Komorek, M., & Wilbers, J. (1997). Studies on educational reconstruction of chaos theory. Research in Science Education, 27, 339–357.

Duit, R., Treagust, D. F., & Widodo. (2013). Teaching science for conceptual change: Theory and practice. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change,

– 503. New York: Routledge.

Eger, M. (1992). Hermeneutics and science education: An introduction. Science and Education, 1(4), 337 – 348.

Fensham, P. J. (2001). Science content as problematic—issues for research. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross & P. Reiska, Eds., Research in Science

Education—past, present, and future, 27 – 41. Dordrecht, The Netherlands: Kluwer Academic Publisher.

Fensham, P. J. (2004). Defining an identity: The evolution of science education as a field of research, 20. Springer Science & Business Media.

Feynman, R. P., Leighton, R. B., & Sands, M. (2011). The Feynman lectures on physics. The new millennium edition: mainly mechanics, radiation, and heat, 1. Basic books.

Goldring, H., & Osborne, J. (1994). Students’ difficulties with energy and related concepts. Physics Education, 29(1), 26.IOP Publishing Ltd.

González, R. E. D., Vaneg, E. M., & Raesfeld, L. (2019). The curriculum: origin, evolution and trends in the 21st century. Revista Conrado, 15(68), 37 – 43.

Gropengießer, H. (1998). Educational reconstruction of vision. In H. Bayrhuber & F. Brinkman, Eds.,

What-Why-How? Research in Didaktik of Biology. Proceedings of the First Conference of European Researchers in Didaktik of Biology (ERIDOB), 263–272. Kiel, Germany: IPN – Leibniz- Institute for Science and Mathematics Education.

Grusche, S. (2017a). Students’ ideas about prismatic images: teaching experiments for an image-based approach. International Journal of Science Education, 39(8), 981 – 1007.

Grusche, S. (2017b). Developing students’ ideas about lens imaging: teaching experiments with an image-based approach. Physics Education, 52(4), 044002.

Guisasola, J., Zuza, K., Ametller, J., & Gutierrez-Berraondo, J. (2017). Evaluating and redesigning teaching learning sequences at the introductory physics level. Physical Review Physics Education Research, 13(2), 020139.

Gundem, B. B., & S. Hopmann. (1998). Didaktik and/or curriculum. An international dialogue. New York: Peter Lang.

Gyberg, P., & Lee, F. (2010). The Construction of Facts: Preconditions for meaning and teaching energy in Swedish classrooms. International Journal of Science Education, 32(9), 1173 – 1189.

Hamilton, D., & Gudmundsdottir, S. (1994). Didaktic and/or Curriculum? Curriculum Studies, 2(3), 345 – 350.

Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies. In Aubusson, P. J., Harrison, A. G., & Ritchie, S. M. (Eds.), Metaphor and analogy in science education, 11–24. Netherlands: Springer.

Hewitt, P. G. (2002). Touch this! conceptual physics for everyone. Addison-Wesley.

Hinrichs, R., & Kleinbach, M. (2002). Energy: Its use and the environment. Boston, MA: Thomson Learning.

Hopmann, S., & Riquarts, K. (2000). Starting a dialogue: A beginning conversation between Didaktik and the curriculum traditions. Teaching as a Reflective Practice. The German Didaktik Tradition. Mahwah.

Hudson, B. (2002). Holding complexity and searching for meaning: teaching as reflective practice. Journal of Curriculum Studies, 34(1), 43 – 57.

Hudson, B. (2003). Approaching educational research from the tradition of critical constructive Didaktik. Pedagogy, Culture and Society, 11(2), 173 – 187.

Kansanen, P. & Meri, M. (1999) The Didactic Relation in the Teaching-Studying-Learning Process, in B. Hudson, F. Buchberger, P. Kansanen & H. Seel (Eds) Didaktik/Fachdidaktik as Science(-s) of the Teaching Profession? TNTEE Publications, 2(1), 107 – 116. http://tntee.umu.se/publications/publications.

Kansanen, P. (1995). Discussion on Some Educational Issues VI. Research Report 145. Department of Teacher Education, University of Helsinki, Helsinki, Finland.

Kariotoglou, P., & Tselfes, V. (2000). Science curricula: epistemological, didactical and institutional approach. Physics Review, 31, 19 – 28.

Kattmann, U., Duit, R., Gropengießer, H., & Komorek, M. (1996). Educational Reconstruction—Bringing together issues of scientific clarification and students’ conceptions. Paper presented at the Annual Meeting of the National Association of Research in Science

Teaching (NARST), St. Louis.

Kertz-Welzel, A. (2004). Didaktik of music: A German concept and its comparison to American music pedagogy. International Journal of Music Education, 22(3), 277 – 286.

Klette, K. (2007). Trends in research on teaching and learning in schools: Didactics meets classroom studies. European Educational Research Journal, 6(2), 147 – 160.

Komorek, M. & Duit, R (2004). The teaching experiment as a powerful method to develop and evaluate teaching and learning sequence in the domain of non-linear system. International Journal of Science Education, 26(5), 619 – 633.

Komorek, M., & Kattmann, U. (2008). The model of educational reconstruction. Four decades of research in science education–from curriculum development to quality improvement, 171 – 188.

Kortland, K., & Klaassen, K. (2010). Designing theory-based teaching-learning sequences for science education. FSME, Utrecht.

Krummel, R., Sunal, D. W., & Sunal, C. S. (2007). Helping students reconstruct conceptions of thermodynamics: energy and heat. Science Activities, 44(3), 106 – 112.

Leach, J. & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education 38, 115 – 142.

Leach, J. & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science and Education, 12(1), 91–113.

Leach, J., Scott, P., Ametller, J., & Hind, A. (2006). Implementing and evaluating teaching interventions: Towards research evidence-based practice? In Improving Subject Teaching, 93 113. Routledge.

Lee, H. S., & Liu, O. L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Wiley Periodicals, Inc. Science Education, 94, 665 – 688.

Lijnse, P. (2000). Didactics of science: the forgotten dimension in science education research? In R. Millar, J. Leach and J. Osborne (eds.) Improving Science Education: The Contribution of Research (Buckingham: Open University Press), 308–326

Lijnse, P. L. (1990). Energy between the life-world of pupils and the world of physics. Journal of Science Education, 74(1), 571–583.

Lijnse, P. L. (1995). “Developmental research” as a way to an empirically based “didactical structure” of science. Science Education, 79(2), 189 – 199.

Liu, X., & McKeough, A. (2005). Developmental Growth in Students’ Concept of Energy: Analysis of Selected Items from the TIMSS Database. Journal of Research in Science Teaching, 42(5), 493 – 517.

Liu, X., Ebenezer, J., & Fraser, D. M. (2002). Structural characteristics of university engineering students’ conception of energy. Journal of Research in Science Teaching, 39(5), 423 – 441.

Loverude, E. M., Kautz, H. C., & Heron, P. R. L. (2002). Students understanding of the first law of thermodynamics: Relating work to the adiabatic compression of an ideal gas. American Journal of Physics, 70(2), 137 – 148.

Méheut, M. & Psillos, D. (2000). Designing and validating teaching–learning sequences in a research perspective. An International Symposium, Paris.

Michelini, M. (2021). Innovation of Curriculum and Frontiers of Fundamental Physics in Secondary School: Research-Based Proposals. In Fundamental Physics and Physics Education Research, 101 – 116. Springer, Cham.

Mikelskis-Seifert, S., Ringelband, U., & Brückmann, M. (2008). Four decades of research in science education: from curriculum development to quality improvement, 221 – 238. Münster, Germany: Waxmann.

Millar, R. & Osborne, J. (1999). Beyond 2000: Science education for the future. London: KCL.

Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162 – 188.

Nordine J., Krajcik, J., & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670 – 690.

Palomo, J. R. (2008). Americans’ knowledge about energy improving, but their energy IQ remains low. Oil and Gas Journal, 106(36), 37 – 39.

Pfundt, H., & Duit, R. (1994). Students’ alternative frameworks and science education. Bibliography: Institute for Science Education at the University Kiel.

Psillos, D., & Kariotoglou, P. (Eds.). (2015). Iterative design of teaching-learning sequences: introducing the science of materials in European schools. Springer.

Psillos, D., & Méheut, M. (2001). Teaching-learning sequences as a means for linking research to development. In Proceedings of the third international conference on science education research in the knowledge-based society, 1, 226.

Riemeier, T., & Gropengießer, H. (2008). On the roots of difficulties in learning about cell division: Process‐based analysis of students’ conceptual development in teaching experiments. International Journal of Science Education, 30(7), 923 – 939.

Rizaki, A., & Kokkatos, P. (2013). The use of history and philosophy of science as a core for the socio-constructivist teaching approach to the concept of energy in primary education. Science and Education, 22(5), 1141 – 1165.

Rizaki, A., & Kokkatos, P. (2013). The use of history and philosophy of science as a core for socioconstructivist teaching approach of the concept of energy in primary education. Science and Education, 22(5), 1141 – 1165.

Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational Researcher, 38(5), 329 – 342.

Sağlam-Arslan, A. (2010). Cross-grade comparison of students’ understanding of energy concepts. Journal of Science Education and Technology, 19, 303 – 313.

Sağlam-Arslan, A., & Kurnaz, M. A. (2009). Prospective physics teachers’ level of understanding energy, power, and force concepts. In Asia-Pacific Forum on Science Learning and Teaching, 10(1), 1 – 18. The Education University of Hong Kong, Department of Science and Environmental Studies.

Savinainen, A., Mäkynen, A., Nieminen, P., & Viiri, J. (2017). The effect of using a visual representation tool in a teaching-learning sequence for teaching Newton’s third law. Research in Science Education, 47(1), 119 – 135.

Seel, H. (1999). “Allgemeine Didaktik” (“General Didactics”) and “Fachdidaktik” (“Subject Didactics”). TNTEE Publications, 13

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. Handbook of research design in mathematics and science education, 267 – 306.

Steffe, L., & D’Ambrosio, B. (1996). Using teaching experiments to understand students’ mathematics. In Treagust, D., Duit, R., & Frase, B. (Eds.), Improving teaching and learning in science and mathematics, 65 – 76. New York: Teacher College Press.

Sujarittham, T., & Tanamatayarat, J. (2019, November). A case study of a teaching and learning sequence for Newton’s third law of motion designed by a pre-service teacher. Journal of Physics: Conference Series 1380(1), 012102. IOP Publishing.

Sulistiawati, S. (2020). Langkah–Langkah Pembentukan Bahan Ajar Dalam Merekonstruksi Materi Perkuliahan. In Prosiding Seminar Nasional Program Pascasarjana Universitas Pgri Palembang.

Trumper, R. (1990). Energy and a constructivist way of teaching. Physics Education, 25(4), 208 – 212.

Vásquez-Levy, D. (2002). Bildung-centred Didaktik: a framework for examining the educational potential of subject matter. Journal of Curriculum Studies, 34(1), 117 – 128.

Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295 – 297.

Watts, D. M. (1983). Some alternatives views of energy. Physics Education, 18(5), 213 – 217.

Wen, L., & Chen, Y. (2018). Reconstruction of the Educational Model for Improving the Practical Teaching Ability of Graduate Students Majoring in Physical Education. In International Seminar on Education Research and Social Science (ISERSS 18), Advances in Social Science, Education and Humanities Research, 195, 66 – 68.

Westbury, I. (2000). Teaching as reflective practice: what might Didaktik teaching Curriculum? In Westbury, I., Hopmann, S. and Riquarts, K. (Eds.), Teaching as a Reflective Practice: The German Didaktik Tradition (New Jersey: Lawrence Erlbaum Associates, Publishers), 15 – 40.

Westbury, L., Hopmann, S., & Riquarts, K. (Eds.). (2000). Teaching as reflective practice. The German Didaktik tradition. Mahwah, NJ: Lawrence Erlbaum Associates.

White, R. T. (1994). Dimensions of content. In Peter J. F., Richard, F. G., & Richard, T. W., The content of science: A constructivist approach to its teaching and learning, 255 – 262. The Falmer Press.

Woithe, J., & Kersting, M. (2021). Bend it like dark matter! Physics Education, 56(3), 035011.

Wong, C. L., & Chu, H. E. (2017). The conceptual elements of multiple representations: A study of textbooks’ representations of electric current. In Multiple representations in physics education, 183 – 206. Springer, Cham.

Yusmaita, E., & Nasra, E. (2018). Design of Chemical Literacy Assessment by Using Model of Educational Reconstruction (MER) on Solubility Topic. IOP Conference Series: Materials Science and Engineering, 335(1), 012106. IOP Publishing.

Published

2021-12-22

How to Cite

Azlinah Ispal. (2021). Turutan Pembelajaran-Pemudahcaraan” konsep tenaga pelajar fizik sekolah menengah menggunakan model pembinaan semula PdPC berasaskan tradisi Didaktik-Jerman. Borneo International Journal of Education (BIJE), 2, 85–112. Retrieved from https://jurcon.ums.edu.my/ojums/index.php/bije/article/view/4114
Total Views: 133 | Total Downloads: 155